1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-11.4.2/doc/mat_RR.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.String { color: #4a708b; }
.PreProc { color: #1874cd; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>
<script type='text/javascript'>
<!--
-->
</script>
</head>
<body>
<pre id='vimCodeElement'>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment">MODULE: mat_RR</span>
<span class="Comment">SUMMARY:</span>
<span class="Comment">Defines the class mat_RR.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="PreProc">#include </span><span class="String"><NTL/matrix.h></span>
<span class="PreProc">#include </span><span class="String"><NTL/vec_vec_RR.h></span>
<span class="Type">typedef</span> Mat<RR> mat_RR; <span class="Comment">// backward compatibility</span>
<span class="Type">void</span> add(mat_RR& X, <span class="Type">const</span> mat_RR& A, <span class="Type">const</span> mat_RR& B);
<span class="Comment">// X = A + B</span>
<span class="Type">void</span> sub(mat_RR& X, <span class="Type">const</span> mat_RR& A, <span class="Type">const</span> mat_RR& B);
<span class="Comment">// X = A - B</span>
<span class="Type">void</span> negate(mat_RR& X, <span class="Type">const</span> mat_RR& A);
<span class="Comment">// X = - A</span>
<span class="Type">void</span> mul(mat_RR& X, <span class="Type">const</span> mat_RR& A, <span class="Type">const</span> mat_RR& B);
<span class="Comment">// X = A * B</span>
<span class="Type">void</span> mul(vec_RR& x, <span class="Type">const</span> mat_RR& A, <span class="Type">const</span> vec_RR& b);
<span class="Comment">// x = A * b</span>
<span class="Type">void</span> mul(vec_RR& x, <span class="Type">const</span> vec_RR& a, <span class="Type">const</span> mat_RR& B);
<span class="Comment">// x = a * B</span>
<span class="Type">void</span> mul(mat_RR& X, <span class="Type">const</span> mat_RR& A, <span class="Type">const</span> RR& b);
<span class="Type">void</span> mul(mat_RR& X, <span class="Type">const</span> mat_RR& A, <span class="Type">double</span> b);
<span class="Comment">// X = A * b</span>
<span class="Type">void</span> mul(mat_RR& X, <span class="Type">const</span> RR& a, <span class="Type">const</span> mat_RR& B);
<span class="Type">void</span> mul(mat_RR& X, <span class="Type">double</span> a, <span class="Type">const</span> mat_RR& B);
<span class="Comment">// X = a * B</span>
<span class="Type">void</span> determinant(RR& d, <span class="Type">const</span> mat_RR& A);
RR determinant(<span class="Type">const</span> mat_RR& A);
<span class="Comment">// d = determinant(A)</span>
<span class="Type">void</span> transpose(mat_RR& X, <span class="Type">const</span> mat_RR& A);
mat_RR transpose(<span class="Type">const</span> mat_RR& A);
<span class="Comment">// X = transpose of A</span>
<span class="Type">void</span> solve(RR& d, vec_RR& X,
<span class="Type">const</span> mat_RR& A, <span class="Type">const</span> vec_RR& b);
<span class="Comment">// A is an n x n matrix, b is a length n vector. Computes d =</span>
<span class="Comment">// determinant(A). If d != 0, solves x*A = b.</span>
<span class="Type">void</span> inv(RR& d, mat_RR& X, <span class="Type">const</span> mat_RR& A);
<span class="Comment">// A is an n x n matrix. Computes d = determinant(A). If d != 0,</span>
<span class="Comment">// computes X = A^{-1}.</span>
<span class="Type">void</span> sqr(mat_RR& X, <span class="Type">const</span> mat_RR& A);
mat_RR sqr(<span class="Type">const</span> mat_RR& A);
<span class="Comment">// X = A*A</span>
<span class="Type">void</span> inv(mat_RR& X, <span class="Type">const</span> mat_RR& A);
mat_RR inv(<span class="Type">const</span> mat_RR& A);
<span class="Comment">// X = A^{-1}; error is raised if A is singular</span>
<span class="Type">void</span> power(mat_RR& X, <span class="Type">const</span> mat_RR& A, <span class="Type">const</span> ZZ& e);
mat_RR power(<span class="Type">const</span> mat_RR& A, <span class="Type">const</span> ZZ& e);
<span class="Type">void</span> power(mat_RR& X, <span class="Type">const</span> mat_RR& A, <span class="Type">long</span> e);
mat_RR power(<span class="Type">const</span> mat_RR& A, <span class="Type">long</span> e);
<span class="Comment">// X = A^e; e may be negative (in which case A must be nonsingular).</span>
<span class="Type">void</span> ident(mat_RR& X, <span class="Type">long</span> n);
mat_RR ident_mat_RR(<span class="Type">long</span> n);
<span class="Comment">// X = n x n identity matrix</span>
<span class="Type">long</span> IsIdent(<span class="Type">const</span> mat_RR& A, <span class="Type">long</span> n);
<span class="Comment">// test if A is the n x n identity matrix</span>
<span class="Type">void</span> diag(mat_RR& X, <span class="Type">long</span> n, <span class="Type">const</span> RR& d);
mat_RR diag(<span class="Type">long</span> n, <span class="Type">const</span> RR& d);
<span class="Comment">// X = n x n diagonal matrix with d on diagonal</span>
<span class="Type">long</span> IsDiag(<span class="Type">const</span> mat_RR& A, <span class="Type">long</span> n, <span class="Type">const</span> RR& d);
<span class="Comment">// test if X is an n x n diagonal matrix with d on diagonal</span>
<span class="Comment">// miscellaneous:</span>
<span class="Type">void</span> clear(mat_RR& a);
<span class="Comment">// x = 0 (dimension unchanged)</span>
<span class="Type">long</span> IsZero(<span class="Type">const</span> mat_RR& a);
<span class="Comment">// test if a is the zero matrix (any dimension)</span>
<span class="Comment">// operator notation:</span>
mat_RR <span class="Statement">operator</span>+(<span class="Type">const</span> mat_RR& a, <span class="Type">const</span> mat_RR& b);
mat_RR <span class="Statement">operator</span>-(<span class="Type">const</span> mat_RR& a, <span class="Type">const</span> mat_RR& b);
mat_RR <span class="Statement">operator</span>*(<span class="Type">const</span> mat_RR& a, <span class="Type">const</span> mat_RR& b);
mat_RR <span class="Statement">operator</span>-(<span class="Type">const</span> mat_RR& a);
<span class="Comment">// matrix/scalar multiplication:</span>
mat_RR <span class="Statement">operator</span>*(<span class="Type">const</span> mat_RR& a, <span class="Type">const</span> RR& b);
mat_RR <span class="Statement">operator</span>*(<span class="Type">const</span> mat_RR& a, <span class="Type">double</span> b);
mat_RR <span class="Statement">operator</span>*(<span class="Type">const</span> RR& a, <span class="Type">const</span> mat_RR& b);
mat_RR <span class="Statement">operator</span>*(<span class="Type">double</span> a, <span class="Type">const</span> mat_RR& b);
<span class="Comment">// matrix/vector multiplication:</span>
vec_RR <span class="Statement">operator</span>*(<span class="Type">const</span> mat_RR& a, <span class="Type">const</span> vec_RR& b);
vec_RR <span class="Statement">operator</span>*(<span class="Type">const</span> vec_RR& a, <span class="Type">const</span> mat_RR& b);
<span class="Comment">// assignment operator notation:</span>
mat_RR& <span class="Statement">operator</span>+=(mat_RR& x, <span class="Type">const</span> mat_RR& a);
mat_RR& <span class="Statement">operator</span>-=(mat_RR& x, <span class="Type">const</span> mat_RR& a);
mat_RR& <span class="Statement">operator</span>*=(mat_RR& x, <span class="Type">const</span> mat_RR& a);
mat_RR& <span class="Statement">operator</span>*=(mat_RR& x, <span class="Type">const</span> RR& a);
mat_RR& <span class="Statement">operator</span>*=(mat_RR& x, <span class="Type">double</span> a);
vec_RR& <span class="Statement">operator</span>*=(vec_RR& x, <span class="Type">const</span> mat_RR& a);
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->
|