1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-11.4.2/doc/mat_lzz_p.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.String { color: #4a708b; }
.PreProc { color: #1874cd; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
.Boolean { color: #cd0000; }
-->
</style>
<script type='text/javascript'>
<!--
-->
</script>
</head>
<body>
<pre id='vimCodeElement'>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment">MODULE: mat_zz_p</span>
<span class="Comment">SUMMARY:</span>
<span class="Comment">Defines the class mat_zz_p.</span>
<span class="Comment">Note that the modulus p need not be a prime, except as indicated below.</span>
<span class="Comment">IMPLEMENTATION NOTES: </span>
<span class="Comment">Starting with NTL version 9.7.0 (and 9.7.1), many of the routines here have</span>
<span class="Comment">been optimized to take better advantage of specific hardware features available</span>
<span class="Comment">on 64-bit Intel CPU's. Currently, the mul, inv, determinant, solve, gauss,</span>
<span class="Comment">kernel, and image routines are fastest for p up to 23-bits long (assuming the</span>
<span class="Comment">CPU supports AVX instructions). After that, performance degrades in three</span>
<span class="Comment">stages: stage 1: up to 28-bits; stage 2: up to 31-bits; stage 3: 32-bits and</span>
<span class="Comment">up. </span>
<span class="Comment">For primes up to 23-bits, AVX floating point instructions are used. After</span>
<span class="Comment">that, ordinary integer arithmetic is used. In a future version, I may exploit</span>
<span class="Comment">AVX2 integer instructions to get better stage 2 performance. And in the more</span>
<span class="Comment">distant future, AVX512 instructions will be used, when they become available.</span>
<span class="Comment">On older Intel machines, or non-Intel machines that have "long long" support,</span>
<span class="Comment">one still gets optimizations corresponding to the three stages above. On</span>
<span class="Comment">32-bit machines, one still gets three stages, just with smaller crossover</span>
<span class="Comment">points.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="PreProc">#include </span><span class="String"><NTL/matrix.h></span>
<span class="PreProc">#include </span><span class="String">"vec_vec_zz_p.h"</span>
<span class="Type">typedef</span> Mat<zz_p> mat_zz_p; <span class="Comment">// backward compatibility</span>
<span class="Type">void</span> add(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> mat_zz_p& B);
<span class="Comment">// X = A + B</span>
<span class="Type">void</span> sub(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> mat_zz_p& B);
<span class="Comment">// X = A - B</span>
<span class="Type">void</span> mul(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> mat_zz_p& B);
<span class="Comment">// X = A * B</span>
<span class="Type">void</span> mul(vec_zz_p& x, <span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> vec_zz_p& b);
<span class="Comment">// x = A * b</span>
<span class="Type">void</span> mul(vec_zz_p& x, <span class="Type">const</span> vec_zz_p& a, <span class="Type">const</span> mat_zz_p& B);
<span class="Comment">// x = a * B</span>
<span class="Type">void</span> mul(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, zz_p b);
<span class="Type">void</span> mul(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">long</span> b);
<span class="Comment">// X = A * b</span>
<span class="Type">void</span> mul(mat_zz_p& X, zz_p a, <span class="Type">const</span> mat_zz_p& B);
<span class="Type">void</span> mul(mat_zz_p& X, <span class="Type">long</span> a, <span class="Type">const</span> mat_zz_p& B);
<span class="Comment">// X = a * B</span>
<span class="Type">void</span> transpose(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A);
mat_zz_p transpose(<span class="Type">const</span> mat_zz_p& A);
<span class="Comment">// X = transpose of A</span>
<span class="Type">void</span> determinant(zz_p& d, <span class="Type">const</span> mat_zz_p& A);
zz_p determinant(<span class="Type">const</span> mat_zz_p& a);
<span class="Comment">// d = determinant(A)</span>
<span class="Type">void</span> solve(zz_p& d, vec_zz_p& x, <span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> vec_zz_p& b);
<span class="Comment">// A is an n x n matrix, b is a length n vector. Computes d = determinant(A).</span>
<span class="Comment">// If d != 0, solves x*A = b (so x and b are treated as a row vectors).</span>
<span class="Type">void</span> solve(zz_p& d, <span class="Type">const</span> mat_zz_p& A, vec_zz_p& x, <span class="Type">const</span> vec_zz_p& b);
<span class="Comment">// A is an n x n matrix, b is a length n vector. Computes d = determinant(A).</span>
<span class="Comment">// If d != 0, solves A*x = b (so x and b are treated as a column vectors).</span>
<span class="Type">void</span> inv(zz_p& d, mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A);
<span class="Comment">// A is an n x n matrix. Computes d = determinant(A). If d != 0,</span>
<span class="Comment">// computes X = A^{-1}.</span>
<span class="Type">void</span> inv(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A);
mat_zz_p inv(<span class="Type">const</span> mat_zz_p& A);
<span class="Comment">// X = A^{-1}; error is raised if A is singular</span>
<span class="Type">void</span> power(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> ZZ& e);
mat_zz_p power(<span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> ZZ& e);
<span class="Type">void</span> power(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">long</span> e);
mat_zz_p power(<span class="Type">const</span> mat_zz_p& A, <span class="Type">long</span> e);
<span class="Comment">// X = A^e; e may be negative (in which case A must be nonsingular).</span>
<span class="Comment">// NOTE: the routines determinant, solve, inv, and power (with negative</span>
<span class="Comment">// exponent) all require that the modulus p is prime: during elimination, if a</span>
<span class="Comment">// non-zero pivot element does not have an inverse, and error is raised. The</span>
<span class="Comment">// following "relaxed" versions of these routines will also work with prime</span>
<span class="Comment">// powers, if the optional parameter relax is true (which is the default).</span>
<span class="Comment">// However, note that in these relaxed routines, if a computed determinant</span>
<span class="Comment">// value is zero, this may not be the true determinant: all that you can assume</span>
<span class="Comment">// is that the true determinant is not invertible mod p. If the parameter</span>
<span class="Comment">// relax==false, then these routines behave identically to their "unrelaxed"</span>
<span class="Comment">// counterparts.</span>
<span class="Type">void</span> relaxed_determinant(zz_p& d, <span class="Type">const</span> mat_zz_p& A, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
zz_p relaxed_determinant(<span class="Type">const</span> mat_zz_p& a, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
<span class="Type">void</span> relaxed_solve(zz_p& d, vec_zz_p& x, <span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> vec_zz_p& b, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
<span class="Type">void</span> relaxed_solve(zz_p& d, <span class="Type">const</span> mat_zz_p& A, vec_zz_p& x, <span class="Type">const</span> vec_zz_p& b, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
<span class="Type">void</span> relaxed_inv(zz_p& d, mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
<span class="Type">void</span> relaxed_inv(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
mat_zz_p relaxed_inv(<span class="Type">const</span> mat_zz_p& A, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
<span class="Type">void</span> relaxed_power(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> ZZ& e, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
mat_zz_p relaxed_power(<span class="Type">const</span> mat_zz_p& A, <span class="Type">const</span> ZZ& e, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
<span class="Type">void</span> relaxed_power(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A, <span class="Type">long</span> e, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
mat_zz_p relaxed_power(<span class="Type">const</span> mat_zz_p& A, <span class="Type">long</span> e, <span class="Type">bool</span> relax=<span class="Boolean">true</span>);
<span class="Type">void</span> sqr(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A);
mat_zz_p sqr(<span class="Type">const</span> mat_zz_p& A);
<span class="Comment">// X = A*A </span>
<span class="Type">void</span> ident(mat_zz_p& X, <span class="Type">long</span> n);
mat_zz_p ident_mat_zz_p(<span class="Type">long</span> n);
<span class="Comment">// X = n x n identity matrix</span>
<span class="Type">long</span> IsIdent(<span class="Type">const</span> mat_zz_p& A, <span class="Type">long</span> n);
<span class="Comment">// test if A is the n x n identity matrix</span>
<span class="Type">void</span> diag(mat_zz_p& X, <span class="Type">long</span> n, zz_p d);
mat_zz_p diag(<span class="Type">long</span> n, zz_p d);
<span class="Comment">// X = n x n diagonal matrix with d on diagonal</span>
<span class="Type">long</span> IsDiag(<span class="Type">const</span> mat_zz_p& A, <span class="Type">long</span> n, zz_p d);
<span class="Comment">// test if X is an n x n diagonal matrix with d on diagonal</span>
<span class="Type">void</span> random(mat_zz_p& x, <span class="Type">long</span> n, <span class="Type">long</span> m); <span class="Comment">// x = random n x m matrix</span>
mat_zz_p random_mat_zz_p(<span class="Type">long</span> n, <span class="Type">long</span> m);
<span class="Type">long</span> gauss(mat_zz_p& M);
<span class="Type">long</span> gauss(mat_zz_p& M, <span class="Type">long</span> w);
<span class="Comment">// Performs unitary row operations so as to bring M into row echelon</span>
<span class="Comment">// form. If the optional argument w is supplied, stops when first w</span>
<span class="Comment">// columns are in echelon form. The return value is the rank (or the</span>
<span class="Comment">// rank of the first w columns).</span>
<span class="Type">void</span> image(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A);
<span class="Comment">// The rows of X are computed as basis of A's row space. X is is row</span>
<span class="Comment">// echelon form</span>
<span class="Type">void</span> kernel(mat_zz_p& X, <span class="Type">const</span> mat_zz_p& A);
<span class="Comment">// Computes a basis for the kernel of the map x -> x*A. where x is a</span>
<span class="Comment">// row vector.</span>
<span class="Comment">// NOTE: the gauss, image, and kernel routines all require that</span>
<span class="Comment">// the modulus p is prime. </span>
<span class="Comment">// miscellaneous:</span>
<span class="Type">void</span> clear(mat_zz_p& a);
<span class="Comment">// x = 0 (dimension unchanged)</span>
<span class="Type">long</span> IsZero(<span class="Type">const</span> mat_zz_p& a);
<span class="Comment">// test if a is the zero matrix (any dimension)</span>
<span class="Comment">// operator notation:</span>
mat_zz_p <span class="Statement">operator</span>+(<span class="Type">const</span> mat_zz_p& a, <span class="Type">const</span> mat_zz_p& b);
mat_zz_p <span class="Statement">operator</span>-(<span class="Type">const</span> mat_zz_p& a, <span class="Type">const</span> mat_zz_p& b);
mat_zz_p <span class="Statement">operator</span>*(<span class="Type">const</span> mat_zz_p& a, <span class="Type">const</span> mat_zz_p& b);
mat_zz_p <span class="Statement">operator</span>-(<span class="Type">const</span> mat_zz_p& a);
<span class="Comment">// matrix/scalar multiplication:</span>
mat_zz_p <span class="Statement">operator</span>*(<span class="Type">const</span> mat_zz_p& a, zz_p b);
mat_zz_p <span class="Statement">operator</span>*(<span class="Type">const</span> mat_zz_p& a, <span class="Type">long</span> b);
mat_zz_p <span class="Statement">operator</span>*(zz_p a, <span class="Type">const</span> mat_zz_p& b);
mat_zz_p <span class="Statement">operator</span>*(<span class="Type">long</span> a, <span class="Type">const</span> mat_zz_p& b);
<span class="Comment">// matrix/vector multiplication:</span>
vec_zz_p <span class="Statement">operator</span>*(<span class="Type">const</span> mat_zz_p& a, <span class="Type">const</span> vec_zz_p& b);
vec_zz_p <span class="Statement">operator</span>*(<span class="Type">const</span> vec_zz_p& a, <span class="Type">const</span> mat_zz_p& b);
<span class="Comment">// assignment operator notation:</span>
mat_zz_p& <span class="Statement">operator</span>+=(mat_zz_p& x, <span class="Type">const</span> mat_zz_p& a);
mat_zz_p& <span class="Statement">operator</span>-=(mat_zz_p& x, <span class="Type">const</span> mat_zz_p& a);
mat_zz_p& <span class="Statement">operator</span>*=(mat_zz_p& x, <span class="Type">const</span> mat_zz_p& a);
mat_zz_p& <span class="Statement">operator</span>*=(mat_zz_p& x, zz_p a);
mat_zz_p& <span class="Statement">operator</span>*=(mat_zz_p& x, <span class="Type">long</span> a);
vec_zz_p& <span class="Statement">operator</span>*=(vec_zz_p& x, <span class="Type">const</span> mat_zz_p& a);
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->
|