File: tour-struct.html

package info (click to toggle)
ntl 11.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 8,820 kB
  • sloc: cpp: 92,194; sh: 10,577; ansic: 3,058; makefile: 536
file content (1396 lines) | stat: -rw-r--r-- 45,762 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
<html>
<head>
<title>
A Tour of NTL: Programming Interface </title>
</head>

<center>
<a href="tour-examples.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-modules.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>

<h1> 
<p align=center>
A Tour of NTL: Programming Interface 
</p>
</h1>

<p> <hr> <p>

In this section, we give a general overview of the 
NTL's programming interface.
The following section has links to detailed documentation on 
each and every class and function.
<p>
<i>Note that only those classes and functions documented
in these pages are a part of the "official API":
all other interfaces are subject to change without notice.
</i>

<p>
<p>
<h2>
Basic Ring Classes
</h2>
<p>

The basic ring classes are:
<ul>
<li>
<tt>ZZ</tt>: big integers
<li>
<tt>ZZ_p</tt>: big integers modulo <tt>p</tt>
<li>
<tt>zz_p</tt>: integers mod "single precision" <tt>p</tt>
<li>
<tt>GF2</tt>: integers mod 2
<li>
<tt>ZZX</tt>: univariate polynomials over <tt>ZZ</tt>
<li>
<tt>ZZ_pX</tt>: univariate polynomials over <tt>ZZ_p</tt>
<li>
<tt>zz_pX</tt>: univariate polynomials over <tt>zz_p</tt>
<li>
<tt>GF2X</tt>: polynomials over GF2
<li>
<tt>ZZ_pE</tt>: ring/field extension over ZZ_p
<li>
<tt>zz_pE</tt>: ring/field extension over zz_p
<li>
<tt>GF2E</tt>: ring/field extension over GF2
<li>
<tt>ZZ_pEX</tt>: univariate polynomials over <tt>ZZ_pE</tt>
<li>
<tt>zz_pEX</tt>: univariate polynomials over <tt>zz_pE</tt>
<li>
<tt>GF2EX</tt>: univariate polynomials over <tt>GF2E</tt>
</ul>

<p>
All these classes all support basic
arithmetic operators
<pre>
   +, -, (unary) -, +=, -=, ++, --, 
   *, *=, /, /=, %, %=.
</pre>

<p>
However, the operations 
<pre>
   %, %=
</pre>
only exist for integer and polynomial classes, and 
do not exist
for classes 
<pre>
  ZZ_p, zz_p, GF2, ZZ_pE, zz_pE, GF2E.
</pre>

<p>
The standard equality operators (<tt>==</tt> and <tt>!=</tt>)
are provided for each class.
In addition, the class <tt>ZZ</tt>
supports the usual inequality
operators.

<p>
The integer and polynomial classes also support "shift operators"
for left and right shifting.
For polynomial classes, this means multiplication or division
by a power of <tt>X</tt>.

<p>
<p>
<h2>
Floating Point Classes
</h2>
<p>

In addition to the above ring classes, NTL also provides three
different floating point classes: 
<ul>
<li>
<tt>xdouble</tt>: "double precision" floating point with
extended exponent range (for very large numbers);
<li>
<tt>quad_float</tt>: "quasi" quadruple-precision floating point;
<li>
<tt>RR</tt>: aribitrary precision floating point.
</ul>


<p>
<p>
<h2>
Vectors and Matrices
</h2>
<p>

There are also vectors and matrices over 
<pre>
   ZZ ZZ_p zz_p GF2 ZZ_pE zz_pE GF2E RR
</pre>
which support the usual arithmetic operations.

<p>
<p>
<h2>
Functional and Procedural forms
</h2>
<p>

Generally, for any function defined by NTL, there is 
a functional form, and a procedural form.
For example:

<!-- STARTPLAIN
   ZZ x, a, n;
   x = InvMod(a, n);  // functional form
   InvMod(x, a, n);   // procedural form
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ x, a, n;<br>
&nbsp;&nbsp; x = InvMod(a, n);&nbsp;&nbsp;<font color="#0000ee"><i>// functional form</i></font><br>
&nbsp;&nbsp; InvMod(x, a, n);&nbsp;&nbsp;&nbsp;<font color="#0000ee"><i>// procedural form</i></font><br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<p>
This example illustrates the normal way these two forms differ
syntactically.
However, there are exceptions.

First, if there is a operator that can play the role of the
functional form, that is the notation used:

<!-- STARTPLAIN
   ZZ x, a, b;
   x = a + b;    // functional form
   add(x, a, b); // procedural form
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ x, a, b;<br>
&nbsp;&nbsp; x = a + b;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#0000ee"><i>// functional form</i></font><br>
&nbsp;&nbsp; add(x, a, b);&nbsp;<font color="#0000ee"><i>// procedural form</i></font><br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


Second, if the functional form's name would be ambiguous,
the return type is simply appended to its name:

<!-- STARTPLAIN
   ZZ_p x;
   x = random_ZZ_p();  // functional form
   random(x);          // procedural form
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ_p x;<br>
&nbsp;&nbsp; x = random_ZZ_p();&nbsp;&nbsp;<font color="#0000ee"><i>// functional form</i></font><br>
&nbsp;&nbsp; random(x);&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#0000ee"><i>// procedural form</i></font><br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


Third, there are a number of conversion functions (see below), whose name
in procedural form is <tt>conv</tt>, but whose name in 
functional form is <tt>conv&lt;T&gt;</tt>, where <tt>T</tt> is the return type:

<!-- STARTPLAIN
   ZZ x;  
   double a;

   x = conv<ZZ>(a);  // functional form
   conv(x, a);       // procedural form
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ x;&nbsp;&nbsp;<br>
&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>double</b></font>&nbsp;a;<br>
<br>
&nbsp;&nbsp; x = conv&lt;ZZ&gt;(a);&nbsp;&nbsp;<font color="#0000ee"><i>// functional form</i></font><br>
&nbsp;&nbsp; conv(x, a);&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#0000ee"><i>// procedural form</i></font><br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->




<p>
The use of the procedural form may be more efficient,
since it will generally avoid the creation of a temporary object
to store its result.
However, it is generally silly to get too worked up about
such efficiencies, and the functional form is usually preferable
because the resulting code is usually easier to understand.

<p>
The above rules governing procedural and functional forms apply
to essentially all of the arithmetic classes supported by NTL,
with the exception of
<tt>xdouble</tt> and <tt>quad_float</tt>.
These two classes only support the functional/operator notation
for arithmetic operations (but do support both forms for conversion).




<p>
<p>
<h2>
Conversions and Promotions
</h2>
<p>

As mentioned above, there are numerous explicit conversion routines,
which come in both functional and procedural forms.
A complete list of these can be found in 
<a href="conversions.txt">conversions.txt</a>.
This is the only place these are documented; they do not appear
in the other ".txt" files.

<p>
It is worth mentioning here, however, that generic conversion operators
are provided for vectors and matrices, which act component-wise.
For example, since there is a conversion from <tt>ZZ</tt> to <tt>RR</tt>,
there is automatically a conversion from 
<tt>Vec&lt;ZZ&gt;</tt> to <tt>Vec&lt;RR&gt</tt>.





<p>

Even though there are no implicit conversions, users
of NTL can still have most of their benefits.
This is because all of the basic arithmetic operations 
(in both their functional and procedural forms),
comparison operators, and assignment are overloaded
to get the effect of automatic "promotions".
For example:

<!-- STARTPLAIN
   ZZ x, a;

   x = a + 1;
   if (x < 0) 
      mul(x, 2, a);
   else
      x = -1;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ x, a;<br>
<br>
&nbsp;&nbsp; x = a +&nbsp;<font color="#ff8c00">1</font>;<br>
&nbsp;&nbsp;&nbsp;<font color="#b03060"><b>if</b></font>&nbsp;(x &lt;&nbsp;<font color="#ff8c00">0</font>)&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;mul(x,&nbsp;<font color="#ff8c00">2</font>, a);<br>
&nbsp;&nbsp;&nbsp;<font color="#b03060"><b>else</b></font><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x = -<font color="#ff8c00">1</font>;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<p>

These promotions are documented in the ".txt" files, 
usually using a kind of "short hand" notation.
For example:

<!-- STARTPLAIN
ZZ operator+(const ZZ& a, const ZZ& b);

// PROMOTIONS: operator + promotes long to ZZ on (a, b).
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
ZZ operator+(<font color="#008b00"><b>const</b></font>&nbsp;ZZ&amp; a,&nbsp;<font color="#008b00"><b>const</b></font>&nbsp;ZZ&amp; b);<br>
<br>
<font color="#0000ee"><i>// PROMOTIONS: operator + promotes long to ZZ on (a, b).</i></font><br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


This means that in addition to the declared function, there
are two other functions that are logically equivalent to the following:
<!-- STARTPLAIN
ZZ operator+(long a, const ZZ& b) { return ZZ(a) + b; }
ZZ operator+(const ZZ& a, long b) { return a + ZZ(b); }
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
ZZ operator+(<font color="#008b00"><b>long</b></font>&nbsp;a,&nbsp;<font color="#008b00"><b>const</b></font>&nbsp;ZZ&amp; b) {&nbsp;<font color="#b03060"><b>return</b></font>&nbsp;ZZ(a) + b; }<br>
ZZ operator+(<font color="#008b00"><b>const</b></font>&nbsp;ZZ&amp; a,&nbsp;<font color="#008b00"><b>long</b></font>&nbsp;b) {&nbsp;<font color="#b03060"><b>return</b></font>&nbsp;a + ZZ(b); }<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<p>
Note that this is not how NTL actually implements these functions.
It is in generally more efficient to write
<!-- STARTPLAIN
   x = y + 2;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; x = y +&nbsp;<font color="#ff8c00">2</font>;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

than it is to write
<!-- STARTPLAIN
   x = y + ZZ(2);
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; x = y + ZZ(<font color="#ff8c00">2</font>);<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

The former notation avoids the creation and destruction
of a temporary <tt>ZZ</tt>
object to hold the value 2.

<p>
Also, don't have any inhibitions about writing tests like
<!-- STARTPLAIN
   if (x == 0) ...
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp;&nbsp;<font color="#b03060"><b>if</b></font>&nbsp;(x ==&nbsp;<font color="#ff8c00">0</font>) ...<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

and assignments like
<!-- STARTPLAIN
   x = 1; 
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; x =&nbsp;<font color="#ff8c00">1</font>;&nbsp;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

These are all optimized, and  do not execute significaltly slower
than the "lower level"  (and much less natural) 
<!-- STARTPLAIN
   if (IsZero(x)) ...
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp;&nbsp;<font color="#b03060"><b>if</b></font>&nbsp;(IsZero(x)) ...<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

and
<!-- STARTPLAIN
   set(x);
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; set(x);<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<p>
Some types have even more promotions.
For example, the type <tt>ZZ_pX</tt> has promotions
from <tt>long</tt> and <tt>ZZ_p</tt>.
Thus, the <tt>add</tt> function for <tt>ZZ_pX</tt> takes the following 
argument types:
<pre>
   (ZZ_pX, ZZ_pX), (ZZ_pX, ZZ_p), (ZZ_pX, long), (ZZ_p, ZZ_pX), (long, ZZ_pX)
</pre>
Each of these functions effectively converts the argument to be promoted
to a <tt>ZZ_pX</tt>.

<p>
Note that when promoting a pair of arguments, at least one
of the arguments must be of the target type.

<p>
I have tried to be very consistent with these promotions so
that one usually won't need to hunt through the documentation.
For a given type, there is a natural, fixed set of types
that promote to it.
Here is the complete list:
<!-- STARTPLAIN
   destination  source
   
   xdouble      double
   quad_float   double
   RR           double
   ZZ           long
   ZZ_p         long
   ZZ_pX        long, ZZ_p
   zz_p         long
   zz_pX        long, zz_p
   ZZX          long, ZZ
   GF2          long
   GF2X         long, GF2
   GF2E         long, GF2
   GF2EX        long, GF2, GF2E
   ZZ_pE        long, ZZ_p
   ZZ_pEX       long, ZZ_p, ZZ_pE
   zz_pE        long, zz_p
   zz_pEX       long, zz_p, zz_pE
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; destination&nbsp;&nbsp;source<br>
&nbsp;&nbsp;&nbsp;<br>
&nbsp;&nbsp; xdouble&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>double</b></font><br>
&nbsp;&nbsp; quad_float&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>double</b></font><br>
&nbsp;&nbsp; RR&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>double</b></font><br>
&nbsp;&nbsp; ZZ&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font><br>
&nbsp;&nbsp; ZZ_p&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font><br>
&nbsp;&nbsp; ZZ_pX&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, ZZ_p<br>
&nbsp;&nbsp; zz_p&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font><br>
&nbsp;&nbsp; zz_pX&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, zz_p<br>
&nbsp;&nbsp; ZZX&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, ZZ<br>
&nbsp;&nbsp; GF2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font><br>
&nbsp;&nbsp; GF2X&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, GF2<br>
&nbsp;&nbsp; GF2E&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, GF2<br>
&nbsp;&nbsp; GF2EX&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, GF2, GF2E<br>
&nbsp;&nbsp; ZZ_pE&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, ZZ_p<br>
&nbsp;&nbsp; ZZ_pEX&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, ZZ_p, ZZ_pE<br>
&nbsp;&nbsp; zz_pE&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, zz_p<br>
&nbsp;&nbsp; zz_pEX&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>long</b></font>, zz_p, zz_pE<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<p>
All the promotions are documented, but here
are a few general rules describing the available promotions:

<ul>

<li>
All classes provide explicit constructors for promoted types.
For example,
<!-- STARTPLAIN
   ZZ w = ZZ(1);
   ZZ x(1);  // allowed
   ZZ y{1};  // allowed in C++11
   ZZ z = 1; // not allowed
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ w = ZZ(<font color="#ff8c00">1</font>);<br>
&nbsp;&nbsp; ZZ x(<font color="#ff8c00">1</font>);&nbsp;&nbsp;<font color="#0000ee"><i>// allowed</i></font><br>
&nbsp;&nbsp; ZZ y{<font color="#ff8c00">1</font>};&nbsp;&nbsp;<font color="#0000ee"><i>// allowed in C++11</i></font><br>
&nbsp;&nbsp; ZZ z =&nbsp;<font color="#ff8c00">1</font>;&nbsp;<font color="#0000ee"><i>// not allowed</i></font><br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<li>
Promotions apply uniformly to both procedural and functional 
forms, as well as to the corresponding assignment operator forms.
E.g.,
<!-- STARTPLAIN
   x = x + 2;
   add(x, x, 2);
   x += 2;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; x = x +&nbsp;<font color="#ff8c00">2</font>;<br>
&nbsp;&nbsp; add(x, x,&nbsp;<font color="#ff8c00">2</font>);<br>
&nbsp;&nbsp; x +=&nbsp;<font color="#ff8c00">2</font>;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<li>
The addition, subtraction, multiplication, equality and comparison
routines always promote both arguments.  E.g.,
<!-- STARTPLAIN
   x = 2 + y;
   add(x, 2, y);
   if (3 > x || y == 5) ...
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; x =&nbsp;<font color="#ff8c00">2</font>&nbsp;+ y;<br>
&nbsp;&nbsp; add(x,&nbsp;<font color="#ff8c00">2</font>, y);<br>
&nbsp;&nbsp;&nbsp;<font color="#b03060"><b>if</b></font>&nbsp;(<font color="#ff8c00">3</font>&nbsp;&gt; x || y ==&nbsp;<font color="#ff8c00">5</font>) ...<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<li>
The assignment operator always promotes the right-hand side.
E.g.,
<!-- STARTPLAIN
   x = 2;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; x =&nbsp;<font color="#ff8c00">2</font>;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<li>
For non-integer,  non-polynomial types, the division routine
promotes both arguments.
E.g.,
<!-- STARTPLAIN
   RR x, y, z;
      ...
   x = 1.0/y;
   z = y/2.0;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; RR x, y, z;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...<br>
&nbsp;&nbsp; x =&nbsp;<font color="#ff8c00">1.0</font>/y;<br>
&nbsp;&nbsp; z = y/<font color="#ff8c00">2.0</font>;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


For integer or polynomial types, the division routine
promotes the denominator only. E.g.,
<pre>
   ZZ x, y;
      ...
   y = x/2;
</pre>
   

<li>
Matrix by scalar and vector by scalar multiplication promote the scalar.
E.g.,
<!-- STARTPLAIN
   Vec<ZZ> v, w;
      ...
   v = w*2;
   v = 2*w;
   v *= 2;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; Vec&lt;ZZ&gt; v, w;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...<br>
&nbsp;&nbsp; v = w*<font color="#ff8c00">2</font>;<br>
&nbsp;&nbsp; v =&nbsp;<font color="#ff8c00">2</font>*w;<br>
&nbsp;&nbsp; v *=&nbsp;<font color="#ff8c00">2</font>;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->



<li>
The monomial constructors for polynomials
and the corresponding <tt>SetCoeff</tt> routines 
promote the coefficient argument.
E.g.,
<!-- STARTPLAIN
   ZZX f;
   f = ZZX(INIT_MONO, 3, 5);  // f == 5*X^3
   SetCoeff(f, 0, 2);  // f == 5*x^3 + 2;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZX f;<br>
&nbsp;&nbsp; f = ZZX(INIT_MONO,&nbsp;<font color="#ff8c00">3</font>,&nbsp;<font color="#ff8c00">5</font>);&nbsp;&nbsp;<font color="#0000ee"><i>// f == 5*X^3</i></font><br>
&nbsp;&nbsp; SetCoeff(f,&nbsp;<font color="#ff8c00">0</font>,&nbsp;<font color="#ff8c00">2</font>);&nbsp;&nbsp;<font color="#0000ee"><i>// f == 5*x^3 + 2;</i></font><br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<li>
In module <tt>ZZ</tt>, the modular arithmetic routines, as well as 
the bit-wise <i>and</i>, <i>or</i>, and <i>xor</i> routines promote their arguments.
There are also several other routines in module <tt>ZZ</tt>
that have both <tt>ZZ</tt> and <tt>long</tt> versions, e.g.,
<tt>NumBits</tt>, <tt>bit</tt>, <tt>weight</tt>.
Check the documentation in <a href="ZZ.cpp.html"><tt>ZZ.txt</tt></a> 
for complete details.

</ul>

<p>


<p>
<p>
<h3>
Some Conversion and Promotion Technicalities 
</h3>
<p>

<p>
Usually, conversions and promotions are semantically equivalent.
There are three exceptions, however.

<p>
One exception 
is conversion of floating point <tt>double</tt> to
<tt>ZZ</tt>.
The safest way to do this is to apply an explicit conversion operator,
and not to rely on promotions.
For example, consider
<!-- STARTPLAIN
   ZZ a; double x;

   a = a + x;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ a;&nbsp;<font color="#008b00"><b>double</b></font>&nbsp;x;<br>
<br>
&nbsp;&nbsp; a = a + x;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

This is equivialent to
<!-- STARTPLAIN
   a = a + long(x);
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; a = a +&nbsp;<font color="#008b00"><b>long</b></font>(x);<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

and to 
<!-- STARTPLAIN
   a = a + ZZ(x);
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; a = a + ZZ(x);<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

One could also use an explicit conversion function:
<!-- STARTPLAIN
   a = a + conv<ZZ>(x);
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; a = a + conv&lt;ZZ&gt;(x);<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

This last version guarantees that there is no loss of precision,
and also guarantees that the floor of <tt>x</tt> is computed.
With the first version, one may lose precision when <tt>x</tt>
is converted to a <tt>long</tt>, and also the direction of truncation
for negative numbers is implementation dependent
(usually truncating towards zero, instead of computing the floor).
<p>
The second exception is conversion of <tt>unsigned int</tt>
or <tt>unsigned long</tt> to <tt>ZZ</tt>.
Again, the safest way to do this is with an explicit conversion operator.
As above, if one relies on promotions, the unsigned integer
will be first converted to a <i>signed</i> <tt>long</tt>, which is most
likely not what was intended.
<p>
The third exception can occur
on 64-bit machines when 
converting a signed or unsigned <tt>long</tt> to one of NTL's 
extended precision floating-point types (<tt>RR</tt> or <tt>quad_float</tt>).
These types only provide promotions from <tt>double</tt>,
and converting a <tt>long</tt> to a <tt>double</tt> on a 64-bit machine
can lead to a loss of precision.
Again, if one uses the appropriate NTL conversion routine,
no loss of precision will occur.

<p>

Another pitfall too avoid is initialzing <tt>ZZ</tt>'s
with integer constants that are too big.
Consider the following:
<!-- STARTPLAIN
   ZZ x;
   x = 1234567890123456789012;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ x;<br>
&nbsp;&nbsp; x =&nbsp;<font color="#ff8c00">1234567890123456789012</font>;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

This integer constant is too big, and this overflow
condition may or may not cause your compiler to give
you a warning or an error.
The easiest way to introduce such large constants into your
program is as follows:
<!-- STARTPLAIN
   ZZ x;
   x = conv<ZZ>("1234567890123456789012");
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ x;<br>
&nbsp;&nbsp; x = conv&lt;ZZ&gt;(<font color="#4a708b">&quot;1234567890123456789012&quot;</font>);<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

Conversion functions are provided for converting <tt>C</tt> character strings
to  the types <tt>ZZ</tt>, <tt>RR</tt>, <tt>quad_float</tt>, 
and <tt>xdouble</tt>.

<p>
One should also be careful when converting to <tt>RR</tt>.
All of these conversions round to the current working precision, which is
usually, but not always, what one wants.

<p>
<p>
<h2>
Input and Output
</h2>
<p>
NTL provides input and output operators for all
types, using the usual conventions for input and output streams.
If an input error occurs, the "fail bit" of the input stream
is set, and the input variable remains unchanged.
<p>
Although conversions from <tt>C</tt>-style character strings
to the types <tt>ZZ</tt>, <tt>xdouble</tt>, <tt>quad_float</tt>,
and <tt>RR</tt> are provided, one can always read and write
to <tt>C++</tt> character streams using the <tt>stringstream</tt>
class from the standard library, in conjunction with the input
and output operators provided by NTL.

<p>
<p>
<h2>
Aliasing
</h2>
<p>

An important feature of NTL is that aliasing of input and output
parameters is generally allowed.  For example, if you
write <tt>mul(x, a, b)</tt>, then <tt>a</tt> or <tt>b</tt>
may alias (have the same address as) <tt>x</tt>
(or any object that <tt>x</tt> contains, e.g., scalar/vector
or scalar/polynomial multiplication).

<p>
One exception to this rule:
the generic conversions provided for vectors and
matrices assume that their inputs do not alias their outputs.


<p>
<p>
<h2>
Constructors, Destructors, and Memory Management
</h2>
<p>

NTL generally takes care of managing the space occupied by large,
dynamically sized objects, like objects of class <tt>ZZ</tt> or any of
NTL's dynamic vectors.
However, it is helpful to understand a little of what is happening behind the scenes.

<p>
Almost all classes are implemented as a pointer, and the default constructor
just sets this pointer to 0.
Space is allocated for the object as needed, and when the object's
destructor is called, the space is freed.

<p>
Copies are "deep" rather than "shallow".
This means the data itself is copied, and not just a pointer to the data.
If the destination object does not have enough space to hold the source data,
then the space held by the destination object is "grown".
This is done using the <tt>C</tt> routine <tt>realloc()</tt>.
Note, however, that if the source object is smaller than the destination
object, the space held by the destination object is retained.
This strategy usually yields reasonable behaviour;
however, one can take explicit control of the situation if necessary, since
almost all NTL classes have a method <tt>kill()</tt>
which frees all space held by the object, and sets its state to
the default initial state (a value 0 or a zero-length vector).

<p>
The only exception to the above is the class
<tt>ZZ_pContext</tt>, and the analogous classes for <tt>zz_p</tt>, 
<tt>ZZ_pE</tt>, <tt>zz_pE</tt>, and <tt>GF2E</tt>.
These objects are implemented as referenced-counted pointers,
and copies are "shallow".

<p> 
While we are discussing initialization, there is one technical point
worth mentioning.
It is safe to declare global objects of any NTL type 
as long as one uses only the default constructor.
For example, the global declarations
<!-- STARTPLAIN
   ZZ global_integer;
   Vec<ZZ_p> global_vector;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ global_integer;<br>
&nbsp;&nbsp; Vec&lt;ZZ_p&gt; global_vector;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

should always work, since their initialization only involves
setting a pointer to 0.
However,
one should avoid initializing global objects with
non-default constructors, and should avoid doing anything that would lead to
non-trivial computations with NTL objects
prior to the beginning of the execution of routine <tt>main()</tt>.
The reasons for this are quite esoteric and can only be appreciated
by a true
<tt>C++</tt> afficianado.
Actually, most such initializations and computations probably will work,
but it is somewhat platform dependant.

<p>
Normal people usually do none of these things, so all of this
should not matter too much.
There is, however, one possible exception to this.
A programmer might want to have a global constant initialized like this:
<!-- STARTPLAIN
   const quad_float Pi = conv<quad_float>("3.1415926535897932384626433832795029");
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>const</b></font>&nbsp;quad_float Pi = conv&lt;quad_float&gt;(<font color="#4a708b">&quot;3.1415926535897932384626433832795029&quot;</font>);<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

While this probably will work fine on most platforms, 
it may not be an entirely portable construction,
since it will involve a non-trivial computation before
execution of <tt>main()</tt> begins.
A more portable strategy
is to define a function returning a read-only
reference:
<!-- STARTPLAIN
   const quad_float& Pi()
   {
      static quad_float pi = 
         conv<quad_float>("3.1415926535897932384626433832795029");
      return pi;
   }
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>const</b></font>&nbsp;quad_float&amp; Pi()<br>
&nbsp;&nbsp; {<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#008b00"><b>static</b></font>&nbsp;quad_float pi =&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; conv&lt;quad_float&gt;(<font color="#4a708b">&quot;3.1415926535897932384626433832795029&quot;</font>);<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#b03060"><b>return</b></font>&nbsp;pi;<br>
&nbsp;&nbsp; }<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

and then call the function <tt>Pi()</tt> to get a read-only reference
to this constant value:
<!-- STARTPLAIN
   area = Pi()*r*r;
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; area = Pi()*r*r;<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

The initialization will then take place the first time <tt>Pi()</tt>
is called, which is presumably after <tt>main()</tt> starts,
and so everything should work fine.
This is a very simple and general strategy that most <tt>C++</tt>
experts recommend using whenever the initialization of a non-global
object requires non-trivial computation.



<p>
<p>
<h2>
Residue class rings and modulus switching
</h2>
<p>

NTL provides a number of classes to represent residue class rings:
<pre>
   ZZ_p, zz_p, GF2, ZZ_pE, lzz_pE, GF2E.
</pre>
For each such class, except <tt>GF2</tt>, there is a global, current modulus.

<p>
We focus on the class <tt>ZZ_p</tt>, but similar comments apply to the other
residue class types.
For example, for <tt>ZZ_p</tt>, you can set the current modulus to <tt>p</tt>
as follows:
<!-- STARTPLAIN
   ZZ_p::init(p);
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; ZZ_p::init(p);<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

The current modulus <i>must</i> be initialized before any operations
on <tt>ZZ_p</tt>'s are performed.  The modulus may be changed, and a mechanism is provided
for saving and restoring a modulus.

<p>
Here is what you do to save the current modulus, temporarily
set it to p, and automatically restore it:

<!-- STARTPLAIN
   { 
      ZZ_pPush push(p); 

      ...

   }
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000">
<font face="monospace">
&nbsp;&nbsp; {&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ZZ_pPush push(p);&nbsp;<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...<br>
<br>
&nbsp;&nbsp; }<br>
</font>
</font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


The constructor for <tt>push</tt> will save the current modulus, and install <tt>p</tt> as the
current modulus.  The destructor for <tt>push</tt> will restore the old modulus when the
scope enclosing it exits.  This is the so-called RAII (resource acquisition is
initialization) paradigm.

<p>
You could also do the following:

<!-- STARTPLAIN
   {
      ZZ_pPush push; // just backup current modulus

        ...

      ZZ_p::init(p1); // install p1 

        ...

      ZZ_p::init(p2); // install p2

      // reinstall original modulus at close of scope
   }
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000"><font face="monospace">
&nbsp;&nbsp; {<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ZZ_pPush push; <font color="#0000ed"><i>// just backup current modulus</i></font><br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ZZ_p::init(p1); <font color="#0000ed"><i>// install p1 </i></font><br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ZZ_p::init(p2); <font color="#0000ed"><i>// install p2</i></font><br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#0000ed"><i>// reinstall original modulus at close of scope</i></font><br>
&nbsp;&nbsp; }<br>
</font></font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->


<p>
<b>Warning:</b> <tt>C++</tt> syntax can be rather unfriendly sometimes.
When using RAII objects like <tt>ZZ_pPush</tt>, watch out for
the following errors:
<!-- STARTPLAIN
   ZZ_pPush push();  // ERROR: local declaration of a function!!
   ZZ_pPush(p);      // ERROR: temporary RAII-object created and 
                     //        immediately destroyed!!
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000"><font face="monospace">
&nbsp;&nbsp; ZZ_pPush push();&nbsp;&nbsp;<font color="#0000ed"><i>// ERROR: local declaration of a function!!</i></font><br>
&nbsp;&nbsp; ZZ_pPush(p);&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<font color="#0000ed"><i>// ERROR: temporary RAII-object created and </i></font><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <font color="#0000ed"><i>//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;immediately destroyed!!</i></font><br>
</font></font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

Unfortunately, most compilers do not issue any warnings
in these situations.
I have fallen into both traps myself.
      
<p>
The <tt>ZZ_pPush</tt> interface is good for implementing simple stack-like
"context switching".  For more general context switching,
use the class <tt>ZZ_pContext</tt>:
<!-- STARTPLAIN
   ZZ_p::init(p);     // set current modulus to p

      ...

   ZZ_pContext context;
   context.save();    // save the current modulus p

      ...

   ZZ_p::init(q);     // set current modulus to q

      ...
   
   context.restore(); // restore p as the current modulus
ENDPLAIN -->
<!-- STARTPRETTY {{{ -->
<p><p><table cellPadding=10px><tr><td><font color="#000000"><font face="monospace">
&nbsp;&nbsp; ZZ_p::init(p);&nbsp;&nbsp;&nbsp;&nbsp; <font color="#0000ed"><i>// set current modulus to p</i></font><br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...<br>
<br>
&nbsp;&nbsp; ZZ_pContext context;<br>
&nbsp;&nbsp; context.save();&nbsp;&nbsp;&nbsp;&nbsp;<font color="#0000ed"><i>// save the current modulus p</i></font><br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...<br>
<br>
&nbsp;&nbsp; ZZ_p::init(q);&nbsp;&nbsp;&nbsp;&nbsp; <font color="#0000ed"><i>// set current modulus to q</i></font><br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...<br>
&nbsp;&nbsp; <br>
&nbsp;&nbsp; context.restore(); <font color="#0000ed"><i>// restore p as the current modulus</i></font><br>
</font></font></td></tr></table><p><p>
<!-- }}} ENDPRETTY -->

Note that <tt>ZZ_pContext</tt>'s are essentially "smart pointers",
and they may be copied.
Generally speaking, saving, restoring, and copying <tt>ZZ_pContext</tt>'s
are very cheap operations.
Likewise, saving and restoring contexts using <tt>ZZ_pPush</tt>
objects are very cheap operations.


<p>
It is critical that <tt>ZZ_p</tt> objects created under one <tt>ZZ_p</tt> modulus are not used in
any non-trivial way "out of context", i.e., under a different (or undefined)
<tt>ZZ_p</tt> modulus.  However, for ease-of-use, some operations may be safely
performed out of context.  These safe operations include: the default and copy
constructor, the destructor, and the assignment operator.  In addition it is
generally safe to read any <tt>ZZ_p</tt> object out of context (i.e., printing it out, or
fetching its underlying representive using the rep() function).

<p>
Any unsafe uses out of context are not in general checked, and may 
lead to unpredictable behavior.



<p>
The implementations of <tt>Vec&lt;ZZ_p&gt;</tt>, <tt>Vec&lt;GF2E&gt;</tt>, and <tt>Vec&lt;GF2&gt;</tt> 
are specialized to manage memory more
efficiently than in the default implementation of <tt>Vec&lt;T&gt;</tt>:
<ul>
<p><li>
Contiguous elements in a <tt>Vec&lt;ZZ_p&gt;</tt> are allocated in a contiguous region of
memory.  This reduces the number of calls to the memory allocator, and  
leads to greater locality of reference.  A consequence of
this implementation is that any calls to SetLength on a <tt>Vec&lt;ZZ_p&gt;</tt> object will
need to use information about the current modulus, and so such calls should
only be done "in context".  That said, it is still safe to construct a
<tt>Vec&lt;ZZ_p&gt;</tt> using the default or copy contructor, and to assign or append one
<tt>Vec&lt;ZZ_p&gt;</tt> to another "out of context".

<p><li>
The same strategy is used for <tt>Vec&lt;GF2E&gt;</tt>'s.

<p><li>
In any case, the above restrictions adhere to the general rules
for safely using residue class ring objects "out of context".

<p><li>
<tt>Vec&lt;GF2&gt;</tt>'s are implemented by packing coefficients (which are just bits)
into words.  A mechanism is provided to make indexing these vectors
behave like normal vectors, via a class the mimics ordinary references
to <tt>GF2</tt>'s.  
</ul>

<p>
<p>
<h2>
C+11 Support
</h2>
<p>

As of version 10.4, NTL supports a number of C++11 specific features.
To enable this support, you must build NTL with <tt>NTL_STD_CXX11=on</tt>.
This build flag is  automatically turned on by a number of other
NTL features that require NTL support.

<p>
The most important of these is "move semantics".
Most of the important classes are now equipped with
"move" constructors and "move" assignment operators.
Where possible, these are declared <tt>noexcept</tt>.
NTL's <tt>Vec</tt> class and STL's <tt>vector</tt> class
can take advantage of noexcept move constructors in certain
situations.
<a href="#efficiency">See below</a> 
for more details regarding exceptions and move semantics.





<p>
<p>
<h2>
<a name="except">Error Handling and Exceptions</a>
</h2>
<p>
Prior to version 8.0 of NTL, errors were dealt with in a simlple way:
print an error message and abort.

As of version 8.0, NTL provides error handling with exceptions.
To use this feature, you will need to configure NTL with the
<tt>NTL_EXCEPTIONS</tt> flag turned on.
You will also need a <tt>C++11</tt> compiler.

<p>
The exceptions thrown by NTL are either a <tt>std::bad_alloc</tt>
exception (in case of memory allocation error),
or a class (defined in namespace NTL) 
derived from <tt>std::runtime_error</tt>:
<ul>
<li> <tt>ErrorObject</tt> &#8594; <tt>std::runtime_error</tt>
<ul> <li> base class  </ul>
<li> <tt>LogicErrorObject</tt> &#8594; <tt>ErrorObject</tt>
<ul> <li> used to indicate a logic error, such as incorrect
          function parameters, index out of range, etc. </ul>
<li> <tt>ArithmeticErrorObject</tt> &#8594; <tt>ErrorObject</tt>
<ul> <li> used to indicate an arithmetic error, such as divide by zero </ul>
<li> <tt>ResourceErrorObject</tt> &#8594; <tt>ErrorObject</tt>
<ul> <li> used to indicate an overflow error (e.g., when a number cannot be stored as a <tt>long</tt>) </ul>
<li> <tt>FileErrorObject</tt> &#8594; <tt>ErrorObject</tt>
<ul> <li> used to indicate a problem opening or closing a file</ul>
<li> <tt>InputErrorObject</tt> &#8594; <tt>ErrorObject</tt>
<ul> <li> used to indicate a problem reading from a stream</ul>
</ul>

<p>
All of these error objects override the <tt>what()</tt>
method of <tt>std::exception</tt> with an appropriate
error message.

<p>
There is also a special exception class <tt>InvModErrorObject</tt>,
which is derived from <tt>ArithmeticErrorObject</tt>,
and is thrown when a modular inverse computation over <tt>ZZ</tt> fails
(either directly, or indirectly through <tt>PowerMod</tt>
computation, or via an inverse computation in <tt>ZZ_p</tt>).
The  <tt>InvModErrorObject</tt> provides two methods, 
<tt>get_a()</tt> and <tt>get_n()</tt>, which provide read-only
references to the offending objects <tt>a</tt> and <tt>n</tt>
(so <tt>GCD(a, n) != 1</tt>).

<p>
The generic class <tt>ErrorObject</tt> is not thrown directly
by any NTL routines, except for the legacy function <tt>Error</tt>,
which is no longer called by any NTL routines.
New functions 
<pre>
   MemoryError, LogicError, ArithmeticError, ResourceError, FileError, InputError
</pre>
are used to throw exceptions derived from <tt>ErrorObject</tt>.

<p>
<a name="efficiency">
<b>Efficiency considerations:</b>
</a>
Because of a bunch of design decsions that were made long before
<tt>C++11</tt> came along, most of the important NTL classes
<i>do not</i> have <tt>noexcept</tt> move constructors <i>if</i> you enable
exceptions in NTL, which can reduce performance somewhat.
Therefore, if you do not really need to have NTL handle errors
by throwing exceptions,  
and you do want to maximize performance,
you should <i>not</i> enable exceptions
in NTL.
But even with exceptions enabled, the performance penalty
should not be terrible.


<p>
<b>Issues with GMP:</b>
GMP itself (at least as of version 6.1.2) 
provides only the very crude print-message-then-abort
error handling.
Note that NTL only uses low-level GMP routines (the <tt>mpn</tt>-level
routines),
and these routines should only abort if they cannot allocate space
for temporary big integers within GMP itself.
So this should only be an issue of you are working with some
very large integers.
The GMP developers are working on improving their error handling.
When that happens, NTL will inherit these improvements.
If you really need proper error handling, and are willing to pay
a certain performance penalty, then you should configure
and build NTL <i>without</i> GMP.

<p>
<b>Issues with gf2x:</b>
Similar comments apply to NTL builds that use the <tt>gf2x</tt>
library.


<p>
<p>
<b>Exception safety:</b>
I have tried to carefully document exception safety characterstics
for just a few, critical, low-level classes: 
vectors and matrices 
(<a href="vector.cpp.html">vector.txt</a> and
<a href="matrix.cpp.html">matrix.txt</a>),
smart pointer classes (<a href="SmartPtr.cpp.html">SmartPtr.txt</a>),
thread-safe lazy initialization classes
(<a href="Lazy.cpp.html">Lazy.txt</a> and 
<a href="LazyTable.cpp.html">LazyTable.txt</a>).
Otherwise, it is only safe to assume that NTL functions
provide a weak exception-safety guarantee:
if an exception is thrown, the stack unwinding process will
will not leak any resources and will leave all modified objects
in a reasonable state: at least, such objects may be safely 
destroyed, and may also be assigned to or reset; 
however, they may not necessarily
be safely used as inputs to other functions.
When stronger exception safety is required, you can always 
compute results into dynamically allocated objects
pointed to by "smart pointers",
and then move or swap these pointers into place after all computations
have succeeded.
<p>
As NTL provides <tt>swap</tt> functions for all its major classes,
and as <tt>swap</tt> functions have evolved to play a critical role
in writing exception-safe code, they deserve a special mention here:
<ul>
<p><li> 
For all classes except <tt>ZZ</tt>, <tt>ZZ_p</tt>, <tt>GF2X</tt>,
<tt>GF2E</tt>, and <tt>Vec&lt;T&gt;</tt>, the swap function is guaranteed to not throw
any exceptions.
<p><li>
For <tt>ZZ</tt> objects that are not elements of a <tt>ZZVec</tt>,
<tt>ZZ_p</tt> objects that are not elements of a <tt>Vec&lt;ZZ_p&gt;</tt>,
<tt>GF2X</tt> objects that are not elements of a <tt>GF2XVec</tt>,
and
<tt>GF2E</tt> objects that are not elements of a <tt>Vec&lt;GF2E&gt;</tt>,
the swap function is guaranteed to not throw any exceptions.
<p><li>
For  <tt>Vec&lt;T&gt;</tt> objects whose length has not been fixed,
the swap function is guaranteed to not throw any exceptions.
<p><li>
For the remaining cases, the swap function provides a strong exception-safety
guarantee (the operation either succeeds, or throws and leaves data unchanged).
</ul>
These rules are unfortunatley a bit complicated, due to NTL's historical
legacy, and to its special memory management of
<tt>ZZVec</tt>,
<tt>Vec&lt;ZZ_p&gt;</tt>,
<tt>GF2XVec</tt>,
and
<tt>Vec&lt;GF2E&gt;</tt>
types.






<p>

<center>
<a href="tour-examples.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-modules.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>


</body>
</html>