1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-11.4.2/doc/vector.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>
<script type='text/javascript'>
<!--
-->
</script>
</head>
<body>
<pre id='vimCodeElement'>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment">MODULE: vector</span>
<span class="Comment">SUMMARY:</span>
<span class="Comment">Template class for dynamic-sized vectors.</span>
<span class="Comment">The declaration</span>
<span class="Comment"> Vec<T> v;</span>
<span class="Comment">creates a zero-length vector. To grow this vector to length n,</span>
<span class="Comment">execute</span>
<span class="Comment"> v.SetLength(n)</span>
<span class="Comment">This causes space to be allocated for (at least) n elements, and also causes</span>
<span class="Comment">the default constructor for T to be called to initialize these elements.</span>
<span class="Comment">The current length of a vector is available as v.length().</span>
<span class="Comment">Let n = v.length(). Calling v.SetLength(m) with m <= n sets the current length</span>
<span class="Comment">of v to m (but does not call any destructors or free any space). Calling</span>
<span class="Comment">v.SetLength(m) with m > n will allocate space and initialize as necessary, but</span>
<span class="Comment">will leave the values of the already allocated elements unchanged (although</span>
<span class="Comment">their addresses may change). If T has a user-defined default constructor, that</span>
<span class="Comment">is invoked. Otherwise, the new memory locations are "default initialized". In</span>
<span class="Comment">particular, this means that POD types may be uninitialized.</span>
<span class="Comment">v.MaxLength() is the largest value of n for which v.SetLength(n) was invoked,</span>
<span class="Comment">and is equal to the number of entries that have been initialized.</span>
<span class="Comment">v.SetMaxLength(n) will allocate space for and initialize up to n elements,</span>
<span class="Comment">without changing v.length().</span>
<span class="Comment">When v's destructor is called, all constructed elements will be destructed, and</span>
<span class="Comment">all space will be relinquished.</span>
<span class="Comment">v.allocated() is the number of elements which have been allocated,</span>
<span class="Comment">which may be more than the number elements initialized.</span>
<span class="Comment">Note that if n <= v.allocated(), then v.SetLength(n) is guaranteed</span>
<span class="Comment">not to cause any memory allocation or movement of objects.</span>
<span class="Comment">Space is managed using malloc, realloc, and free. When a vector is grown, a</span>
<span class="Comment">bit more space may be allocated than was requested for efficiency reasons.</span>
<span class="Comment">Note that when a vector is grown, the objects in the vector may have moved,</span>
<span class="Comment">possibly creating dangling references to vector elements. One has to be</span>
<span class="Comment">especially careful of this when using vectors passed as reference parameters</span>
<span class="Comment">that may alias one another.</span>
<span class="Comment">----------------------</span>
<span class="Comment">IMPLEMENTATION DETAILS</span>
<span class="Comment">----------------------</span>
<span class="Comment">A Vec<T> object is just a pointer to the first element of the array. There is</span>
<span class="Comment">a control block immediately before the first element that keeps track of</span>
<span class="Comment">several parameters: </span>
<span class="Comment"> len -- the logical length of the array (returned by length())</span>
<span class="Comment"> init -- the number of elements constructed (returned ny MaxLength())</span>
<span class="Comment"> alloc -- the number of elements for which space has been allocated</span>
<span class="Comment"> (returned by allocated())</span>
<span class="Comment"> fixed -- flag that indicates that the length is fixed </span>
<span class="Comment"> (returned by fixed())</span>
<span class="Comment">Note that 0 <= len <= init <- alloc</span>
<span class="Comment">---------------</span>
<span class="Comment">SPECIALIZATIONS</span>
<span class="Comment">---------------</span>
<span class="Comment">NTL currently defines an optimized specialization Vec<GF2>. There are a few</span>
<span class="Comment">quirks to be aware of. See the documentation file for vec_GF2 for more</span>
<span class="Comment">details.</span>
<span class="Comment">---------------------</span>
<span class="Comment">RANGE-BASED FOR LOOPS</span>
<span class="Comment">---------------------</span>
<span class="Comment">NTL's vectors provide sufficient functionality to enable range-based for-loops</span>
<span class="Comment">(in C++11). The safest ways to use this functionality are to write:</span>
<span class="Comment"> for (auto&& item : vec) { ... } // for read-only or read/write access</span>
<span class="Comment">or</span>
<span class="Comment"> for (T item : vec) { ... } // for access via a copy</span>
<span class="Comment">This is especially true if vec may be of type Vec<GF2>. Again, see the</span>
<span class="Comment">documentation file for vec_GF2 for more details.</span>
<span class="Comment">--------------</span>
<span class="Comment">OTHER FEATURES</span>
<span class="Comment">--------------</span>
<span class="Comment">The i-th vector element (counting from 0) is accessed as v[i]. If the macro</span>
<span class="Comment">NTL_RANGE_CHECK is defined, code is emitted to test if 0 <= i < v.length().</span>
<span class="Comment">This check is not performed by default.</span>
<span class="Comment">For old-time FORTRAN programmers, the i-th vector element (counting from 1) is</span>
<span class="Comment">accessed as v(i).</span>
<span class="Comment">--------------------</span>
<span class="Comment">REALLOCATION DETAILS</span>
<span class="Comment">--------------------</span>
<span class="Comment">When a vector is resized and not enough space has been allocated, then a</span>
<span class="Comment">reallocation process takes place. There are several strategies which can be</span>
<span class="Comment">used, which we list here from least to most efficient.</span>
<span class="Comment">COPY AND DESTROY STRATEGY:</span>
<span class="Comment">This is the same strategy used by the STL prior to C++11. New memory is</span>
<span class="Comment">allocated, and each element of the vector is copied (using a copy constructor)</span>
<span class="Comment">to the new memory, and then all the elements in the old memory is destroyed</span>
<span class="Comment">(using a destructor). While much safer than the Realloc Strategy, it can be a</span>
<span class="Comment">bit slower.</span>
<span class="Comment">MOVE STRATEGY:</span>
<span class="Comment">This is a strategy that is also used by the STL, assuming C++11. New memory is</span>
<span class="Comment">allocated, and each element of the vector is moved (using a move constructor)</span>
<span class="Comment">to the new memory, and then all the elements in the old memory is destroyed</span>
<span class="Comment">(using a destructor). This strategy is only viable if the underlying type has</span>
<span class="Comment">a "nothrow" move constructor. Typically, it will be significantly faster than</span>
<span class="Comment">the Copy and Destroy Strategy.</span>
<span class="Comment">REALLOC STRATEGY:</span>
<span class="Comment">This strategy simply calls the realloc function, which may result in objects</span>
<span class="Comment">being copied bit-wise from one location in memory to another. For most types</span>
<span class="Comment">of objects, even those with non-trivial constructors and destructors, this is</span>
<span class="Comment">perfectly safe, as most objects really don't care what address they are stored</span>
<span class="Comment">at. As an example of where this doesn't work, STL string implementations using</span>
<span class="Comment">a "short string" optimization may consist of an object containing a pointer to</span>
<span class="Comment">a sub-object, which would be invalidated if the object were bit-wise moved from</span>
<span class="Comment">one location to another. This strategy is the fastest of them all.</span>
<span class="Comment">CHOOSING A STRATEGY:</span>
<span class="Comment">In the implementation of Vec<T>, NTL will opt for the Realloc Strategy</span>
<span class="Comment">if one of the two conditions hold:</span>
<span class="Comment"> (i) T has a trivial copy constructor and a trivial destructor, or</span>
<span class="Comment"> (iii) T is a class that has been explicit declared "relocatable".</span>
<span class="Comment">(See below for details on how to declare that a class is relocatable.)</span>
<span class="Comment">Otherwise, NTL will use the Move Strategy if T has a nothrow move costructor.</span>
<span class="Comment">Otherwise, NTL will use the Copy Strategy if T has a copy constructor that is</span>
<span class="Comment">accessible (i.e., not private and not deleted). Otherwise, no reallocation</span>
<span class="Comment">implementation is provided, and a runtime error will be raised if a</span>
<span class="Comment">reallocation is required (this provides maximum flexiblilty and also maximum</span>
<span class="Comment">backward compatibility with previous versions of NTL, even though sometimes a</span>
<span class="Comment">compile-time diagnostic would be preferable).</span>
<span class="Comment">DECLARING A CLASS RELOCATABLE:</span>
<span class="Comment">One can declare T to be relocatable by adding the following line of code</span>
<span class="Comment">immediately after the definition of class T:</span>
<span class="Comment"> NTL_DECLARE_RELOCATABLE((T*))</span>
<span class="Comment">Notice the double parentheses and the "*" --- these are unfortunately </span>
<span class="Comment">necessary. This macro expands as </span>
<span class="Comment"> constexpr bool DeclareRelocatableType(T*) { return true; }</span>
<span class="Comment">Inside the class Vec<T>, this function is invoked with ((T*) 0) as the</span>
<span class="Comment">argument. By declaring relocatability via a function definition in this way,</span>
<span class="Comment">the Vec<T> class will always find (via "Koenig lookup", or ADL) the declaration</span>
<span class="Comment">for T in the namespace in which T is defined (assuming you put the</span>
<span class="Comment">relocatability declaration there as well).</span>
<span class="Comment">You can also declare a template class to be relocatable, as in:</span>
<span class="Comment"> template<class X, class Y></span>
<span class="Comment"> NTL_DECLARE_RELOCATABLE((T<X,Y>*))</span>
<span class="Comment">There is also a macro NTL_DECLARE_RELOCATABLE_WHEN, which leaves off the</span>
<span class="Comment">function body, if you want something other than { return true; }</span>
<span class="Comment">NTL also defines template functions:</span>
<span class="Comment"> template<class T></span>
<span class="Comment"> constexpr bool DeclareRelocatableType(T*) </span>
<span class="Comment"> { return ... ; }</span>
<span class="Comment">where "..." is an expression that returns true if T is a simple type that is</span>
<span class="Comment">safe to relocate, as determined by C++11 type traits. Such simple types</span>
<span class="Comment">include scalar types and simple classes with trivial copy constructor and</span>
<span class="Comment">destructor.</span>
<span class="Comment">NTL already declares as relocatable most if the fundamental types fot which it</span>
<span class="Comment">makes sense to do so.</span>
<span class="Comment">UNSAFE VECTOR MODE:</span>
<span class="Comment">The above describes the default behavior of NTL as of version 11.0. Prior to</span>
<span class="Comment">version 11.0, the default behavior was to only use the Realloc Strategy, which</span>
<span class="Comment">is potentially unsafe. You can revert to this old behavior by configuring</span>
<span class="Comment">NTL_SAFE_VECTORS=off.</span>
<span class="Comment">-------------------------</span>
<span class="Comment">COMPARISON TO STL VECTORS </span>
<span class="Comment">-------------------------</span>
<span class="Comment">When the length of an NTL vector is reduced, no objects are destroyed.</span>
<span class="Comment">In contrast, when the length of an STL vector is reduced, objects are</span>
<span class="Comment">destroyed (effectively, maintaining the invariant len == init).</span>
<span class="Comment">Also, STL vectors never use anything like the Realloc Strategy.</span>
<span class="Comment">----------------------</span>
<span class="Comment">HISTORICAL PERSPECTIVE</span>
<span class="Comment">----------------------</span>
<span class="Comment">When I first started working on NTL around 1990, C++ was a much simpler</span>
<span class="Comment">language. Among other things, there were no templates and no STL, so the Vec</span>
<span class="Comment">class started out (and remained, for many years) a set of macros (indeed, this</span>
<span class="Comment">approach was advocated in the first edition of Stroustrup's book).</span>
<span class="Comment">My thinking at that time was very much "C oriented". The idea of resizing a</span>
<span class="Comment">vector without using realloc never occured to me, and all of the classes I</span>
<span class="Comment">wanted to put in vectors were relocatable. Why would you ever bother making</span>
<span class="Comment">copies of vector elements and destroy the originals when you could just</span>
<span class="Comment">realloc? It wasn't until many years later that I even realized this was</span>
<span class="Comment">somehow questionable practice. Indeed, resizing via malloc is technically</span>
<span class="Comment">undefined behavior, but it's been working for me for over 25 years without</span>
<span class="Comment">problems.</span>
<span class="Comment">Furthermore, because of the poor performance of malloc in those days (which is</span>
<span class="Comment">much better now), I designed the Vec<ZZ_p> class (and a few others) to allocate</span>
<span class="Comment">the underlying ZZ's in blocks. This not only reduces the number of calls to</span>
<span class="Comment">malloc, but it also gives better locality of reference. Experiments in the</span>
<span class="Comment">last couple of years show that this is still benefit to doing this.</span>
<span class="Comment">With all of these design decisions baked into NTL's Vec class, transitioning to</span>
<span class="Comment">STL vectors would be problematic, and is unlikely to ever happen. But as</span>
<span class="Comment">things have evolved, NTL Vec's offers many of the same convenience and safety</span>
<span class="Comment">features as STL vector's.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Comment">// EXCEPTIONS: all functions below do not throw any exceptions,</span>
<span class="Comment">// except as noted</span>
<span class="Type">template</span><<span class="Type">class</span> T>
<span class="Type">class</span> Vec {
<span class="Statement">public</span>:
Vec(); <span class="Comment">// initially length 0</span>
Vec(<span class="Type">const</span> Vec& a);
<span class="Comment">// copy constructor; uses the assignment operator of T</span>
<span class="Comment">// for copying into locations that have already been initialized,</span>
<span class="Comment">// and uses the copy constructor for T for initializing new locations.</span>
<span class="Comment">// EXCEPTIONS: may throw</span>
Vec& <span class="Statement">operator</span>=(<span class="Type">const</span> Vec& a);
<span class="Comment">// assignment; uses the assignment operator of T</span>
<span class="Comment">// for copying into locations that have already been initialized,</span>
<span class="Comment">// and uses the copy constructor for T for initializing new locations.</span>
<span class="Comment">// EXCEPTIONS: weak ES (but if it throws, neither length nor MaxLength</span>
<span class="Comment">// will change, although some previously initialized elements</span>
<span class="Comment">// may have been assigned new values).</span>
Vec(Vec&& a);
<span class="Comment">// move constructor (C++11 only)</span>
<span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>
<span class="Comment">// will revert to copy constructor if a is fixed</span>
Vec& <span class="Statement">operator</span>=(Vec&& a);
<span class="Comment">// move assignment (C++11 only)</span>
<span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>
<span class="Comment">// will revert to copy assignment if *this or a is fixed</span>
<span class="Comment">// NOTE: If neither source nor destination are fixed, these operations will</span>
<span class="Comment">// be fast pointer moves and no exceptions will be thrown. If either are</span>
<span class="Comment">// fixed (say, the row in a Mat<T>), these operations revert to copy</span>
<span class="Comment">// operations, which may either throw an exception (if NTL_EXCEPTIONS is on)</span>
<span class="Comment">// or abort the program (if NTL_EXCEPTIONS is off).</span>
<span class="Comment">// NOTE: In a vector copy assignment x=a, all iterators, references,</span>
<span class="Comment">// and pointers related to x may be invalidated by the assignment.</span>
<span class="Comment">// In a vector move assignment, the same applies to a as well.</span>
<span class="Comment">// BACKWARD COMPATIBILITY: after introducing of "move constructors" in NTL</span>
<span class="Comment">// 10.4, there have been some reports of incompatibilties. Some legacy NTL</span>
<span class="Comment">// clients have been known to assume that x=a does not invalidate pointers</span>
<span class="Comment">// into x, provided x.length() >= a.length() before the assignment. This</span>
<span class="Comment">// assumption is not valid, however, for a move assignment. Because of this</span>
<span class="Comment">// problem, as of NTL 11.0, move assignments have been disabled by default</span>
<span class="Comment">// (this is controlled by the configuration flag NTL_DISABLE_MOVE_ASSIGN).</span>
<span class="Comment">// This affects vectors and matrices, as well as many other types (such as</span>
<span class="Comment">// polynomials) that are implemented in terms of vectors. Move assignment</span>
<span class="Comment">// is not disabled.</span>
~Vec();
<span class="Comment">// destructor: calls T's destructor for all initialized</span>
<span class="Comment">// elements in the vector, and then frees the vector itself</span>
<span class="Type">void</span> SetLength(<span class="Type">long</span> n);
<span class="Comment">// set current length to n, growing vector if necessary</span>
<span class="Comment">// new objects are initialized using the default contructor for T</span>
<span class="Comment">// EXCEPTIONS: strong ES (but the vector may have been</span>
<span class="Comment">// reallocated)</span>
<span class="Type">void</span> SetLength(<span class="Type">long</span> n, <span class="Type">const</span> T& a);
<span class="Comment">// set current length to n, growing vector if necessary</span>
<span class="Comment">// new objects are initialized using the copy contructor for T</span>
<span class="Comment">// EXCEPTIONS: strong ES (but the vector may have been</span>
<span class="Comment">// reallocated)</span>
<span class="Type">template</span><<span class="Type">class</span> F>
<span class="Type">void</span> SetLengthAndApply(<span class="Type">long</span> n, F f);
<span class="Comment">// set current length to n, growing vector if necessary</span>
<span class="Comment">// any new objects are initialized using defauly constructor</span>
<span class="Comment">// for T, and after that, f is applied to each new object x</span>
<span class="Comment">// as f(x).</span>
<span class="Comment">// EXCEPTIONS: strong ES (but the vector may have been</span>
<span class="Comment">// reallocated)</span>
<span class="Type">long</span> length() <span class="Type">const</span>;
<span class="Comment">// current length</span>
T& <span class="Statement">operator</span>[](<span class="Type">long</span> i);
<span class="Type">const</span> T& <span class="Statement">operator</span>[](<span class="Type">long</span> i) <span class="Type">const</span>;
<span class="Comment">// indexing operation, starting from 0.</span>
<span class="Comment">// The first version is applied to non-const Vec<T>,</span>
<span class="Comment">// and returns a non-const reference to a T, while the second version</span>
<span class="Comment">// is applied to a const Vec<T> and returns a const reference to a T.</span>
<span class="Comment">// EXCEPTIONS: may throw if range checking turned on, strong ES</span>
T& <span class="Statement">operator</span>()(<span class="Type">long</span> i);
<span class="Type">const</span> T& <span class="Statement">operator</span>()(<span class="Type">long</span> i) <span class="Type">const</span>;
<span class="Comment">// indexing operation, starting from 1</span>
<span class="Comment">// The first version is applied to non-const Vec<T>,</span>
<span class="Comment">// and returns a non-const reference to a T, while the second version</span>
<span class="Comment">// is applied to a const Vec<T> and returns a const reference to a T.</span>
<span class="Comment">// EXCEPTIONS: may throw if range checking turned on, strong ES</span>
T* elts();
<span class="Type">const</span> T* elts() <span class="Type">const</span>;
<span class="Comment">// returns address of first vector element (or 0 if no space has been</span>
<span class="Comment">// allocated for this vector). If a vector potentially has length 0, it is</span>
<span class="Comment">// safer to write v.elts() instead of &v[0]: the latter is not well defined</span>
<span class="Comment">// by the C++ standard (although this is likely an academic concern).</span>
<span class="Comment">//</span>
<span class="Comment">// The first version is applied to non-const Vec<T>, and returns a non-const</span>
<span class="Comment">// pointer to a T, while the second version is applied to a const Vec<T> and</span>
<span class="Comment">// returns a const reference to a T.</span>
<span class="Type">void</span> swap(Vec& y);
<span class="Comment">// swap with y (fast: just swaps pointers)</span>
<span class="Comment">// EXCEPTIONS: throws if vectors are fixed and lengths do not match, strong ES</span>
<span class="Type">void</span> move(Vec& y);
<span class="Comment">// move y into *this, killing y (fast: just moves pointers)</span>
<span class="Comment">// EXCEPTIONS: strong ES, raises an error if </span>
<span class="Comment">// &y != this and either y or *this are fixed</span>
<span class="Type">void</span> append(<span class="Type">const</span> T& a);
<span class="Comment">// append a to end of vector; uses the assignment operator of T</span>
<span class="Comment">// for copying into locations that have already been initialized,</span>
<span class="Comment">// and uses the copy constructor for T for initializing new locations.</span>
<span class="Comment">// EXCEPTIONS: strong ES if initializing a new element (and in any </span>
<span class="Comment">// case, if an exception throws, length and MaxLength remain </span>
<span class="Comment">// unchanged).</span>
<span class="Type">void</span> append(<span class="Type">const</span> Vec& w);
<span class="Comment">// append w to end of vector; uses the assignment operator of T</span>
<span class="Comment">// for copying into locations that have already been initialized,</span>
<span class="Comment">// and uses the copy constructor for T for initializing new locations.</span>
<span class="Comment">// EXCEPTIONS: strong ES if initializing new elements (and in any </span>
<span class="Comment">// case, if an exception throws, length and MaxLength remain </span>
<span class="Comment">// unchanged).</span>
<span class="Comment">// Alternative access interface </span>
<span class="Type">const</span> T& get(<span class="Type">long</span> i) <span class="Type">const</span>;
<span class="Comment">// v.get(i) returns v[i]</span>
<span class="Type">void</span> put(<span class="Type">long</span> i, <span class="Type">const</span> T& a);
<span class="Comment">// v.put(i, a) equivalent to v[i] = q</span>
<span class="Comment">// Some STL compatibility</span>
<span class="Type">typedef</span> T value_type;
<span class="Type">typedef</span> value_type& reference;
<span class="Type">typedef</span> <span class="Type">const</span> value_type& const_reference;
<span class="Type">typedef</span> value_type *iterator;
<span class="Type">typedef</span> <span class="Type">const</span> value_type *const_iterator;
T* data();
<span class="Type">const</span> T* data() <span class="Type">const</span>;
<span class="Comment">// v.data() same as v.elts()</span>
T* begin();
<span class="Type">const</span> T* begin() <span class="Type">const</span>;
<span class="Comment">// v.begin() same as v.elts()</span>
T* end();
<span class="Type">const</span> T* end() <span class="Type">const</span>;
<span class="Comment">// pointer to (one past) last element (or NULL)</span>
T& at(<span class="Type">long</span> i);
<span class="Type">const</span> T& at(<span class="Type">long</span> i) <span class="Type">const</span>;
<span class="Comment">// indexing with range checking</span>
<span class="Comment">// the remaining member functions are a bit esoteric (skip on first</span>
<span class="Comment">// reading)</span>
Vec(INIT_SIZE_TYPE, <span class="Type">long</span> n);
<span class="Comment">// Vec(INIT_SIZE, n) initializes vector with an intial length of n.</span>
<span class="Comment">// new objects are initialized using the default contructor for T</span>
<span class="Comment">// EXCEPTIONS: may throw</span>
Vec(INIT_SIZE_TYPE, <span class="Type">long</span> n, <span class="Type">const</span> T& a);
<span class="Comment">// Vec(INIT_SIZE, n, a) initializes vector with an intial length of n.</span>
<span class="Comment">// new objects are initialized using the copy contructor for T</span>
<span class="Comment">// EXCEPTIONS: may throw</span>
<span class="Type">void</span> kill();
<span class="Comment">// release space and set to length 0</span>
<span class="Type">void</span> SetMaxLength(<span class="Type">long</span> n);
<span class="Comment">// allocates space and initializes up to n elements. Does not change</span>
<span class="Comment">// current length</span>
<span class="Comment">// EXCEPTIONS: may throw, strong ES</span>
<span class="Type">void</span> FixLength(<span class="Type">long</span> n);
<span class="Comment">// sets length to n and prohibits all future length changes.</span>
<span class="Comment">// FixLength may only be invoked immediately after the default</span>
<span class="Comment">// construction or kill.</span>
<span class="Comment">// The kill operation is also subsequently prohibited, and swap is</span>
<span class="Comment">// allowed on fixed length vectors of the same length.</span>
<span class="Comment">// FixLength is provided mainly to implement Mat<T>, to enforce</span>
<span class="Comment">// the restriction that all rows have the same length.</span>
<span class="Comment">// EXCEPTIONS: may throw, strong ES</span>
<span class="Type">void</span> FixAtCurrentLength();
<span class="Comment">// fixes the length at the cuurent length and prohibits</span>
<span class="Comment">// all future length changes. </span>
<span class="Comment">// It is required that length() == MaxLength() when called.</span>
<span class="Comment">// EXCEPTIONS: if length() != MaxLength() and error is raised;</span>
<span class="Comment">// if length() == 0, a memory allocation error may be raised.</span>
<span class="Comment">// Strong ES.</span>
<span class="Type">long</span> fixed() <span class="Type">const</span>;
<span class="Comment">// test if length has been fixed by FixLength() or FixAtCurrentLength()</span>
<span class="Type">long</span> MaxLength() <span class="Type">const</span>;
<span class="Comment">// maximum length, i.e., number of allocated and initialized elements</span>
<span class="Type">long</span> allocated() <span class="Type">const</span>;
<span class="Comment">// the number of objects for which space has been allocated, but not</span>
<span class="Comment">// necessarily initialized; this may be larger than MaxLength().</span>
T& RawGet(<span class="Type">long</span> i);
<span class="Type">const</span> T& RawGet(<span class="Type">long</span> i) <span class="Type">const</span>;
<span class="Comment">// indexing with no range checking</span>
<span class="Type">long</span> position(<span class="Type">const</span> T& a) <span class="Type">const</span>;
<span class="Comment">// returns position of a in the vector, or -1 if it is not there.</span>
<span class="Comment">// The search is conducted from position 0 to allocated()-1 the vector, </span>
<span class="Comment">// and an error is raised if the object is found at position MaxLength()</span>
<span class="Comment">// or higher (in which case a references an uninitialized object).</span>
<span class="Comment">// Note that if NTL_CLEAN_PTR flag is set, this routine takes</span>
<span class="Comment">// linear time, and otherwise, it takes constant time.</span>
<span class="Comment">// EXCEPTIONS: may throw (as indicated above)</span>
<span class="Type">long</span> position1(<span class="Type">const</span> T& a) <span class="Type">const</span>;
<span class="Comment">// returns position of a in the vector, or -1 if it is not there.</span>
<span class="Comment">// The search is conducted from position 0 to length()-1 of the vector.</span>
<span class="Comment">// Note that if NTL_CLEAN_PTR flag is set, this routine takes</span>
<span class="Comment">// linear time, and otherwise, it takes constant time.</span>
};
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Some utility routines</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">template</span><<span class="Type">class</span> T>
<span class="Type">void</span> swap(Vec<T>& x, Vec<T>& y);
<span class="Comment">// swaps x & y; same as x.swap(y)</span>
<span class="Comment">// EXCEPTIONS: same as for swap member function</span>
<span class="Type">template</span><<span class="Type">class</span> T>
<span class="Type">void</span> append(Vec<T>& v, <span class="Type">const</span> T& a);
<span class="Comment">// appends a to the end of v; same as v.append(a)</span>
<span class="Comment">// EXCEPTIONS: same as for append member function</span>
<span class="Type">template</span><<span class="Type">class</span> T>
<span class="Type">void</span> append(Vec<T>& v, <span class="Type">const</span> Vec<T>& w);
<span class="Comment">// appends w to the end of v; same as v.append(w)</span>
<span class="Comment">// EXCEPTIONS: same as for append member function</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Input/Output</span>
<span class="Comment">The I/O format for a vector v with n elements is:</span>
<span class="Comment"> [v[0] v[1] ... v[n-1]]</span>
<span class="Comment">Uses corresponding I/O operators for T</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">template</span><<span class="Type">class</span> T>
istream& <span class="Statement">operator</span>>>(istream&, Vec<T>&);
<span class="Comment">// EXCEPTIONS: may throw, weak ES</span>
<span class="Type">template</span><<span class="Type">class</span> T>
ostream& <span class="Statement">operator</span><<(ostream&, <span class="Type">const</span> Vec<T>&);
<span class="Comment">// EXCEPTIONS: may throw, weak ES</span>
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Equality Testing</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
<span class="Type">template</span><<span class="Type">class</span> T>
<span class="Type">long</span> <span class="Statement">operator</span>==(<span class="Type">const</span> Vec<T>& a, <span class="Type">const</span> Vec<T>& b);
<span class="Type">template</span><<span class="Type">class</span> T>
<span class="Type">long</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> Vec<T>& a, <span class="Type">const</span> Vec<T>& b);
<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>
<span class="Comment"> Customized Constructors and Destructors</span>
<span class="Comment"> </span>
<span class="Comment">Esoteric: skip on first reading...also these interfaces are subject to change</span>
<span class="Comment">When new elements in a vector need to be constructed, one of the</span>
<span class="Comment">following routines is called:</span>
<span class="Comment"> void BlockConstruct(T* p, long n); </span>
<span class="Comment"> // invokes T() to initialize p[i] for i = 0..n-1</span>
<span class="Comment"> void BlockConstructFromVec(T* p, long n, const T* q);</span>
<span class="Comment"> // invokes T(q[i]) to initialize p[i] for i = 0..n-1;</span>
<span class="Comment"> // q points to elements from a Vec<T></span>
<span class="Comment"> void BlockConstructFromObj(T* p, long n, const T& q);</span>
<span class="Comment"> // invokes T(q) to initialize p[i] for i = 0..n-1</span>
<span class="Comment">When a vector is destroyed, the following routine is called:</span>
<span class="Comment"> void BlockDestroy(T* p, long n);</span>
<span class="Comment"> // invokes ~T() on p[i] for i = 0..n-1</span>
<span class="Comment">The default behavior of these routines may be modified by </span>
<span class="Comment">overloading these functions with a custom implementation.</span>
<span class="Comment">EXCEPTIONS:</span>
<span class="Comment">In order to provide exception safe code, the Construct routines</span>
<span class="Comment">should provide strong ES; in particular, if any constructor</span>
<span class="Comment">throws, all newly constructed objects should be destroyed.</span>
<span class="Comment">Moreover, the BlockDestroy routine should not throw at all.</span>
<span class="Comment">In NTL, these routines are overridden for the ZZ_p and GF2E classes,</span>
<span class="Comment">so that many vector entries will be packed into contiguous storage</span>
<span class="Comment">locations. This reduces the number of invocations of malloc, and</span>
<span class="Comment">increases locality of reference.</span>
<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->
|