File: ZZ_pEX.txt

package info (click to toggle)
ntl 9.9.1-3~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 6,348 kB
  • sloc: ansic: 78,019; cpp: 10,441; makefile: 350; sh: 14
file content (890 lines) | stat: -rw-r--r-- 28,203 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

/**************************************************************************\

MODULE: ZZ_pEX

SUMMARY:

The class ZZ_pEX represents polynomials over ZZ_pE,
and so can be used, for example, for arithmentic in GF(p^n)[X].
However, except where mathematically necessary (e.g., GCD computations),
ZZ_pE need not be a field.

\**************************************************************************/

#include <NTL/ZZ_pE.h>
#include <NTL/vec_ZZ_pE.h>

class ZZ_pEX {
public:

   ZZ_pEX(); // initial value 0

   ZZ_pEX(const ZZ_pEX& a); // copy

   explicit ZZ_pEX(const ZZ_pE& a); // promotion
   explicit ZZ_pEX(const ZZ_p& a); 
   explicit ZZ_pEX(long a); 

   ZZ_pEX& operator=(const ZZ_pEX& a); // assignment
   ZZ_pEX& operator=(const ZZ_pE& a);
   ZZ_pEX& operator=(const ZZ_p& a);
   ZZ_pEX& operator=(long a);

   ~ZZ_pEX(); // destructor

   ZZ_pEX(INIT_MONO_TYPE, long i, const ZZ_pE& c); 
   ZZ_pEX(INIT_MONO_TYPE, long i, const ZZ_p& c); 
   ZZ_pEX(INIT_MONO_TYPE, long i, long c); 
   // initialize to c*X^i, invoke as ZZ_pEX(INIT_MONO, i, c)

   ZZ_pEX(INIT_MONO_TYPE, long i); 
   // initialize to X^i, invoke as ZZ_pEX(INIT_MONO, i)

   // typedefs to aid in generic programming
   typedef ZZ_pE coeff_type;
   typedef ZZ_pEXModulus modulus_type;

   // ...

};




/**************************************************************************\

                              Accessing coefficients

The degree of a polynomial f is obtained as deg(f),
where the zero polynomial, by definition, has degree -1.

A polynomial f is represented as a coefficient vector.
Coefficients may be accesses in one of two ways.

The safe, high-level method is to call the function
coeff(f, i) to get the coefficient of X^i in the polynomial f,
and to call the function SetCoeff(f, i, a) to set the coefficient
of X^i in f to the scalar a.

One can also access the coefficients more directly via a lower level 
interface.  The coefficient of X^i in f may be accessed using 
subscript notation f[i].  In addition, one may write f.SetLength(n)
to set the length of the underlying coefficient vector to n,
and f.SetMaxLength(n) to allocate space for n coefficients,
without changing the coefficient vector itself.

After setting coefficients using this low-level interface,
one must ensure that leading zeros in the coefficient vector
are stripped afterwards by calling the function f.normalize().

NOTE: the coefficient vector of f may also be accessed directly
as f.rep; however, this is not recommended. Also, for a properly
normalized polynomial f, we have f.rep.length() == deg(f)+1,
and deg(f) >= 0  =>  f.rep[deg(f)] != 0.

\**************************************************************************/



long deg(const ZZ_pEX& a);  // return deg(a); deg(0) == -1.

const ZZ_pE& coeff(const ZZ_pEX& a, long i);
// returns the coefficient of X^i, or zero if i not in range

const ZZ_pE& LeadCoeff(const ZZ_pEX& a);
// returns leading term of a, or zero if a == 0

const ZZ_pE& ConstTerm(const ZZ_pEX& a);
// returns constant term of a, or zero if a == 0

void SetCoeff(ZZ_pEX& x, long i, const ZZ_pE& a);
void SetCoeff(ZZ_pEX& x, long i, const ZZ_p& a);
void SetCoeff(ZZ_pEX& x, long i, long a);
// makes coefficient of X^i equal to a; error is raised if i < 0

void SetCoeff(ZZ_pEX& x, long i);
// makes coefficient of X^i equal to 1;  error is raised if i < 0

void SetX(ZZ_pEX& x); // x is set to the monomial X

long IsX(const ZZ_pEX& a); // test if x = X




ZZ_pE& ZZ_pEX::operator[](long i); 
const ZZ_pE& ZZ_pEX::operator[](long i) const;
// indexing operators: f[i] is the coefficient of X^i ---
// i should satsify i >= 0 and i <= deg(f).
// No range checking (unless NTL_RANGE_CHECK is defined).

void ZZ_pEX::SetLength(long n);
// f.SetLength(n) sets the length of the inderlying coefficient
// vector to n --- after this call, indexing f[i] for i = 0..n-1
// is valid.

void ZZ_pEX::normalize();  
// f.normalize() strips leading zeros from coefficient vector of f

void ZZ_pEX::SetMaxLength(long n);
// f.SetMaxLength(n) pre-allocate spaces for n coefficients.  The
// polynomial that f represents is unchanged.










/**************************************************************************\

                                  Comparison

\**************************************************************************/


long operator==(const ZZ_pEX& a, const ZZ_pEX& b);
long operator!=(const ZZ_pEX& a, const ZZ_pEX& b);

long IsZero(const ZZ_pEX& a); // test for 0
long IsOne(const ZZ_pEX& a); // test for 1

// PROMOTIONS: ==, != promote {long,ZZ_p,ZZ_pE} to ZZ_pEX on (a, b).

/**************************************************************************\

                                   Addition

\**************************************************************************/

// operator notation:

ZZ_pEX operator+(const ZZ_pEX& a, const ZZ_pEX& b);
ZZ_pEX operator-(const ZZ_pEX& a, const ZZ_pEX& b);
ZZ_pEX operator-(const ZZ_pEX& a);

ZZ_pEX& operator+=(ZZ_pEX& x, const ZZ_pEX& a);
ZZ_pEX& operator+=(ZZ_pEX& x, const ZZ_pE& a);
ZZ_pEX& operator+=(ZZ_pEX& x, const ZZ_p& a);
ZZ_pEX& operator+=(ZZ_pEX& x, long a);


ZZ_pEX& operator++(ZZ_pEX& x);  // prefix
void operator++(ZZ_pEX& x, int);  // postfix

ZZ_pEX& operator-=(ZZ_pEX& x, const ZZ_pEX& a);
ZZ_pEX& operator-=(ZZ_pEX& x, const ZZ_pE& a);
ZZ_pEX& operator-=(ZZ_pEX& x, const ZZ_p& a);
ZZ_pEX& operator-=(ZZ_pEX& x, long a);

ZZ_pEX& operator--(ZZ_pEX& x);  // prefix
void operator--(ZZ_pEX& x, int);  // postfix

// procedural versions:

void add(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b); // x = a + b
void sub(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b); // x = a - b 
void negate(ZZ_pEX& x, const ZZ_pEX& a); // x = - a 

// PROMOTIONS: +, -, add, sub promote {long,ZZ_p,ZZ_pE} to ZZ_pEX on (a, b).



/**************************************************************************\

                               Multiplication

\**************************************************************************/

// operator notation:

ZZ_pEX operator*(const ZZ_pEX& a, const ZZ_pEX& b);

ZZ_pEX& operator*=(ZZ_pEX& x, const ZZ_pEX& a);
ZZ_pEX& operator*=(ZZ_pEX& x, const ZZ_pE& a);
ZZ_pEX& operator*=(ZZ_pEX& x, const ZZ_p& a);
ZZ_pEX& operator*=(ZZ_pEX& x, long a);


// procedural versions:


void mul(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b); // x = a * b

void sqr(ZZ_pEX& x, const ZZ_pEX& a); // x = a^2
ZZ_pEX sqr(const ZZ_pEX& a); 

// PROMOTIONS: *, mul promote {long,ZZ_p,ZZ_pE} to ZZ_pEX on (a, b).

void power(ZZ_pEX& x, const ZZ_pEX& a, long e);  // x = a^e (e >= 0)
ZZ_pEX power(const ZZ_pEX& a, long e);


/**************************************************************************\

                               Shift Operations

LeftShift by n means multiplication by X^n
RightShift by n means division by X^n

A negative shift amount reverses the direction of the shift.

\**************************************************************************/

// operator notation:

ZZ_pEX operator<<(const ZZ_pEX& a, long n);
ZZ_pEX operator>>(const ZZ_pEX& a, long n);

ZZ_pEX& operator<<=(ZZ_pEX& x, long n);
ZZ_pEX& operator>>=(ZZ_pEX& x, long n);

// procedural versions:

void LeftShift(ZZ_pEX& x, const ZZ_pEX& a, long n); 
ZZ_pEX LeftShift(const ZZ_pEX& a, long n);

void RightShift(ZZ_pEX& x, const ZZ_pEX& a, long n); 
ZZ_pEX RightShift(const ZZ_pEX& a, long n); 



/**************************************************************************\

                                  Division

\**************************************************************************/

// operator notation:

ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pEX& b);
ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pE& b);
ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_p& b);
ZZ_pEX operator/(const ZZ_pEX& a, long b);

ZZ_pEX operator%(const ZZ_pEX& a, const ZZ_pEX& b);

ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pEX& a);
ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pE& a);
ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_p& a);
ZZ_pEX& operator/=(ZZ_pEX& x, long a);

ZZ_pEX& operator%=(ZZ_pEX& x, const ZZ_pEX& a);

// procedural versions:


void DivRem(ZZ_pEX& q, ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEX& b);
// q = a/b, r = a%b

void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEX& b);
void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pE& b);
void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_p& b);
void div(ZZ_pEX& q, const ZZ_pEX& a, long b);
// q = a/b

void rem(ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEX& b);
// r = a%b

long divide(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0

long divide(const ZZ_pEX& a, const ZZ_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0


/**************************************************************************\

                                   GCD's

These routines are intended for use when ZZ_pE is a field.

\**************************************************************************/


void GCD(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b);
ZZ_pEX GCD(const ZZ_pEX& a, const ZZ_pEX& b); 
// x = GCD(a, b),  x is always monic (or zero if a==b==0).


void XGCD(ZZ_pEX& d, ZZ_pEX& s, ZZ_pEX& t, const ZZ_pEX& a, const ZZ_pEX& b);
// d = gcd(a,b), a s + b t = d 


/**************************************************************************\

                                  Input/Output

I/O format:

   [a_0 a_1 ... a_n],

represents the polynomial a_0 + a_1*X + ... + a_n*X^n.

On output, all coefficients will be polynomials of degree < ZZ_pE::degree() and
a_n not zero (the zero polynomial is [ ]).  On input, the coefficients
are arbitrary polynomials which are reduced modulo ZZ_pE::modulus(), 
and leading zeros stripped.

\**************************************************************************/

istream& operator>>(istream& s, ZZ_pEX& x);
ostream& operator<<(ostream& s, const ZZ_pEX& a);


/**************************************************************************\

                              Some utility routines

\**************************************************************************/


void diff(ZZ_pEX& x, const ZZ_pEX& a); // x = derivative of a
ZZ_pEX diff(const ZZ_pEX& a); 

void MakeMonic(ZZ_pEX& x); 
// if x != 0 makes x into its monic associate; LeadCoeff(x) must be
// invertible in this case

void reverse(ZZ_pEX& x, const ZZ_pEX& a, long hi);
ZZ_pEX reverse(const ZZ_pEX& a, long hi);

void reverse(ZZ_pEX& x, const ZZ_pEX& a);
ZZ_pEX reverse(const ZZ_pEX& a);

// x = reverse of a[0]..a[hi] (hi >= -1);
// hi defaults to deg(a) in second version

void VectorCopy(vec_ZZ_pE& x, const ZZ_pEX& a, long n);
vec_ZZ_pE VectorCopy(const ZZ_pEX& a, long n);
// x = copy of coefficient vector of a of length exactly n.
// input is truncated or padded with zeroes as appropriate.




/**************************************************************************\

                             Random Polynomials

\**************************************************************************/

void random(ZZ_pEX& x, long n);
ZZ_pEX random_ZZ_pEX(long n);
// x = random polynomial of degree < n 


/**************************************************************************\

                    Polynomial Evaluation and related problems

\**************************************************************************/


void BuildFromRoots(ZZ_pEX& x, const vec_ZZ_pE& a);
ZZ_pEX BuildFromRoots(const vec_ZZ_pE& a);
// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()

void eval(ZZ_pE& b, const ZZ_pEX& f, const ZZ_pE& a);
ZZ_pE eval(const ZZ_pEX& f, const ZZ_pE& a);
// b = f(a)

void eval(ZZ_pE& b, const ZZ_pX& f, const ZZ_pE& a);
ZZ_pE eval(const ZZ_pEX& f, const ZZ_pE& a);
// b = f(a); uses ModComp algorithm for ZZ_pX

void eval(vec_ZZ_pE& b, const ZZ_pEX& f, const vec_ZZ_pE& a);
vec_ZZ_pE eval(const ZZ_pEX& f, const vec_ZZ_pE& a);
//  b.SetLength(a.length()); b[i] = f(a[i]) for 0 <= i < a.length()

void interpolate(ZZ_pEX& f, const vec_ZZ_pE& a, const vec_ZZ_pE& b);
ZZ_pEX interpolate(const vec_ZZ_pE& a, const vec_ZZ_pE& b);
// interpolates the polynomial f satisfying f(a[i]) = b[i].  

/**************************************************************************\

                       Arithmetic mod X^n

Required: n >= 0; otherwise, an error is raised.

\**************************************************************************/

void trunc(ZZ_pEX& x, const ZZ_pEX& a, long n); // x = a % X^n
ZZ_pEX trunc(const ZZ_pEX& a, long n); 

void MulTrunc(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b, long n);
ZZ_pEX MulTrunc(const ZZ_pEX& a, const ZZ_pEX& b, long n);
// x = a * b % X^n

void SqrTrunc(ZZ_pEX& x, const ZZ_pEX& a, long n);
ZZ_pEX SqrTrunc(const ZZ_pEX& a, long n);
// x = a^2 % X^n

void InvTrunc(ZZ_pEX& x, const ZZ_pEX& a, long n);
ZZ_pEX InvTrunc(ZZ_pEX& x, const ZZ_pEX& a, long n);
// computes x = a^{-1} % X^m.  Must have ConstTerm(a) invertible.

/**************************************************************************\

                Modular Arithmetic (without pre-conditioning)

Arithmetic mod f.

All inputs and outputs are polynomials of degree less than deg(f), and
deg(f) > 0.


NOTE: if you want to do many computations with a fixed f, use the
ZZ_pEXModulus data structure and associated routines below for better
performance.

\**************************************************************************/

void MulMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEX& f);
ZZ_pEX MulMod(const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEX& f);
// x = (a * b) % f

void SqrMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);
ZZ_pEX SqrMod(const ZZ_pEX& a, const ZZ_pEX& f);
// x = a^2 % f

void MulByXMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);
ZZ_pEX MulByXMod(const ZZ_pEX& a, const ZZ_pEX& f);
// x = (a * X) mod f

void InvMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);
ZZ_pEX InvMod(const ZZ_pEX& a, const ZZ_pEX& f);
// x = a^{-1} % f, error is a is not invertible

long InvModStatus(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,
// returns 1 and sets x = (a, f)


/**************************************************************************\

                     Modular Arithmetic with Pre-Conditioning

If you need to do a lot of arithmetic modulo a fixed f, build
ZZ_pEXModulus F for f.  This pre-computes information about f that
speeds up subsequent computations.

As an example, the following routine the product modulo f of a vector
of polynomials.

#include <NTL/ZZ_pEX.h>

void product(ZZ_pEX& x, const vec_ZZ_pEX& v, const ZZ_pEX& f)
{
   ZZ_pEXModulus F(f);
   ZZ_pEX res;
   res = 1;
   long i;
   for (i = 0; i < v.length(); i++)
      MulMod(res, res, v[i], F); 
   x = res;
}

NOTE: A ZZ_pEX may be used wherever a ZZ_pEXModulus is required,
and a ZZ_pEXModulus may be used wherever a ZZ_pEX is required.


\**************************************************************************/

class ZZ_pEXModulus {
public:
   ZZ_pEXModulus(); // initially in an unusable state

   ZZ_pEXModulus(const ZZ_pEX& f); // initialize with f, deg(f) > 0

   ZZ_pEXModulus(const ZZ_pEXModulus&); // copy

   ZZ_pEXModulus& operator=(const ZZ_pEXModulus&); // assignment

   ~ZZ_pEXModulus(); // destructor

   operator const ZZ_pEX& () const; // implicit read-only access to f

   const ZZ_pEX& val() const; // explicit read-only access to f
};

void build(ZZ_pEXModulus& F, const ZZ_pEX& f);
// pre-computes information about f and stores it in F.  Must have
// deg(f) > 0.  Note that the declaration ZZ_pEXModulus F(f) is
// equivalent to ZZ_pEXModulus F; build(F, f).

// In the following, f refers to the polynomial f supplied to the
// build routine, and n = deg(f).


long deg(const ZZ_pEXModulus& F);  // return n=deg(f)

void MulMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b, 
            const ZZ_pEXModulus& F);
ZZ_pEX MulMod(const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEXModulus& F);
// x = (a * b) % f; deg(a), deg(b) < n

void SqrMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEXModulus& F);
ZZ_pEX SqrMod(const ZZ_pEX& a, const ZZ_pEXModulus& F);
// x = a^2 % f; deg(a) < n

void PowerMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ& e, const ZZ_pEXModulus& F);
ZZ_pEX PowerMod(const ZZ_pEX& a, const ZZ& e, const ZZ_pEXModulus& F);

void PowerMod(ZZ_pEX& x, const ZZ_pEX& a, long e, const ZZ_pEXModulus& F);
ZZ_pEX PowerMod(const ZZ_pEX& a, long e, const ZZ_pEXModulus& F);

// x = a^e % f; e >= 0, deg(a) < n.  Uses a sliding window algorithm.
// (e may be negative)

void PowerXMod(ZZ_pEX& x, const ZZ& e, const ZZ_pEXModulus& F);
ZZ_pEX PowerXMod(const ZZ& e, const ZZ_pEXModulus& F);

void PowerXMod(ZZ_pEX& x, long e, const ZZ_pEXModulus& F);
ZZ_pEX PowerXMod(long e, const ZZ_pEXModulus& F);

// x = X^e % f (e may be negative)

void rem(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEXModulus& F);
// x = a % f

void DivRem(ZZ_pEX& q, ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEXModulus& F);
// q = a/f, r = a%f

void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEXModulus& F);
// q = a/f

// operator notation:

ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pEXModulus& F);
ZZ_pEX operator%(const ZZ_pEX& a, const ZZ_pEXModulus& F);

ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pEXModulus& F);
ZZ_pEX& operator%=(ZZ_pEX& x, const ZZ_pEXModulus& F);



/**************************************************************************\

                             vectors of ZZ_pEX's

\**************************************************************************/


typedef Vec<ZZ_pEX> vec_ZZ_pEX; // backward compatibility



/**************************************************************************\

                              Modular Composition

Modular composition is the problem of computing g(h) mod f for
polynomials f, g, and h.

The algorithm employed is that of Brent & Kung (Fast algorithms for
manipulating formal power series, JACM 25:581-595, 1978), which uses
O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar
operations.


\**************************************************************************/

void CompMod(ZZ_pEX& x, const ZZ_pEX& g, const ZZ_pEX& h, 
             const ZZ_pEXModulus& F);
ZZ_pEX CompMod(const ZZ_pEX& g, const ZZ_pEX& h, 
                    const ZZ_pEXModulus& F);

// x = g(h) mod f; deg(h) < n

void Comp2Mod(ZZ_pEX& x1, ZZ_pEX& x2, const ZZ_pEX& g1, const ZZ_pEX& g2,
              const ZZ_pEX& h, const ZZ_pEXModulus& F);
// xi = gi(h) mod f (i=1,2); deg(h) < n.


void Comp3Mod(ZZ_pEX& x1, ZZ_pEX& x2, ZZ_pEX& x3, 
              const ZZ_pEX& g1, const ZZ_pEX& g2, const ZZ_pEX& g3,
              const ZZ_pEX& h, const ZZ_pEXModulus& F);
// xi = gi(h) mod f (i=1..3); deg(h) < n.



/**************************************************************************\

                     Composition with Pre-Conditioning

If a single h is going to be used with many g's then you should build
a ZZ_pEXArgument for h, and then use the compose routine below.  The
routine build computes and stores h, h^2, ..., h^m mod f.  After this
pre-computation, composing a polynomial of degree roughly n with h
takes n/m multiplies mod f, plus n^2 scalar multiplies.  Thus,
increasing m increases the space requirement and the pre-computation
time, but reduces the composition time.

\**************************************************************************/


struct ZZ_pEXArgument {
   vec_ZZ_pEX H;
};

void build(ZZ_pEXArgument& H, const ZZ_pEX& h, const ZZ_pEXModulus& F, long m);
// Pre-Computes information about h.  m > 0, deg(h) < n.

void CompMod(ZZ_pEX& x, const ZZ_pEX& g, const ZZ_pEXArgument& H, 
             const ZZ_pEXModulus& F);

ZZ_pEX CompMod(const ZZ_pEX& g, const ZZ_pEXArgument& H, 
                    const ZZ_pEXModulus& F);

extern long ZZ_pEXArgBound;

// Initially 0.  If this is set to a value greater than zero, then
// composition routines will allocate a table of no than about
// ZZ_pEXArgBound KB.  Setting this value affects all compose routines
// and the power projection and minimal polynomial routines below, 
// and indirectly affects many routines in ZZ_pEXFactoring.

/**************************************************************************\

                     power projection routines

\**************************************************************************/

void project(ZZ_pE& x, const ZZ_pEVector& a, const ZZ_pEX& b);
ZZ_pE project(const ZZ_pEVector& a, const ZZ_pEX& b);
// x = inner product of a with coefficient vector of b


void ProjectPowers(vec_ZZ_pE& x, const vec_ZZ_pE& a, long k,
                   const ZZ_pEX& h, const ZZ_pEXModulus& F);

vec_ZZ_pE ProjectPowers(const vec_ZZ_pE& a, long k,
                   const ZZ_pEX& h, const ZZ_pEXModulus& F);

// Computes the vector

//    project(a, 1), project(a, h), ..., project(a, h^{k-1} % f).  

// This operation is the "transpose" of the modular composition operation.

void ProjectPowers(vec_ZZ_pE& x, const vec_ZZ_pE& a, long k,
                   const ZZ_pEXArgument& H, const ZZ_pEXModulus& F);

vec_ZZ_pE ProjectPowers(const vec_ZZ_pE& a, long k,
                   const ZZ_pEXArgument& H, const ZZ_pEXModulus& F);

// same as above, but uses a pre-computed ZZ_pEXArgument


class ZZ_pEXTransMultiplier { /* ... */ };

void build(ZZ_pEXTransMultiplier& B, const ZZ_pEX& b, const ZZ_pEXModulus& F);

void UpdateMap(vec_ZZ_pE& x, const vec_ZZ_pE& a,
               const ZZ_pEXMultiplier& B, const ZZ_pEXModulus& F);

vec_ZZ_pE UpdateMap(const vec_ZZ_pE& a,
               const ZZ_pEXMultiplier& B, const ZZ_pEXModulus& F);

// Computes the vector

//    project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)

// Required: a.length() <= deg(F), deg(b) < deg(F).
// This is "transposed" MulMod by B.
// Input may have "high order" zeroes stripped.
// Output always has high order zeroes stripped.


/**************************************************************************\

                              Minimum Polynomials

These routines should be used only when ZZ_pE is a field.

All of these routines implement the algorithm from [Shoup, J. Symbolic
Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,
1995], based on transposed modular composition and the
Berlekamp/Massey algorithm.

\**************************************************************************/


void MinPolySeq(ZZ_pEX& h, const vec_ZZ_pE& a, long m);
ZZ_pEX MinPolySeq(const vec_ZZ_pE& a, long m);
// computes the minimum polynomial of a linealy generated sequence; m
// is a bound on the degree of the polynomial; required: a.length() >=
// 2*m


void ProbMinPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
ZZ_pEX ProbMinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);

void ProbMinPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);
ZZ_pEX ProbMinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F);

// computes the monic minimal polynomial if (g mod f).  m = a bound on
// the degree of the minimal polynomial; in the second version, this
// argument defaults to n.  The algorithm is probabilistic, always
// returns a divisor of the minimal polynomial, and returns a proper
// divisor with probability at most m/2^{ZZ_pE::degree()}.

void MinPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
ZZ_pEX MinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);

void MinPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);
ZZ_pEX MinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F);

// same as above, but guarantees that result is correct

void IrredPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
ZZ_pEX IrredPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);

void IrredPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);
ZZ_pEX IrredPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F);

// same as above, but assumes that f is irreducible, or at least that
// the minimal poly of g is itself irreducible.  The algorithm is
// deterministic (and is always correct).

/**************************************************************************\

           Composition and Minimal Polynomials in towers

These are implementations of algorithms that will be described
and analyzed in a forthcoming paper.

The routines require that p is prime, but ZZ_pE need not be a field.

\**************************************************************************/


void CompTower(ZZ_pEX& x, const ZZ_pX& g, const ZZ_pEXArgument& h,
             const ZZ_pEXModulus& F);

ZZ_pEX CompTower(const ZZ_pX& g, const ZZ_pEXArgument& h,
             const ZZ_pEXModulus& F);

void CompTower(ZZ_pEX& x, const ZZ_pX& g, const ZZ_pEX& h,
             const ZZ_pEXModulus& F);

ZZ_pEX CompTower(const ZZ_pX& g, const ZZ_pEX& h,
             const ZZ_pEXModulus& F);


// x = g(h) mod f


void ProbMinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F,
                      long m);

ZZ_pX ProbMinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);

void ProbMinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);

ZZ_pX ProbMinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F);

// Uses a probabilistic algorithm to compute the minimal
// polynomial of (g mod f) over ZZ_p.
// The parameter m is a bound on the degree of the minimal polynomial
// (default = deg(f)*ZZ_pE::degree()).
// In general, the result will be a divisor of the true minimimal
// polynomial.  For correct results, use the MinPoly routines below.



void MinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);

ZZ_pX MinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);

void MinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);

ZZ_pX MinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F);

// Same as above, but result is always correct.


void IrredPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);

ZZ_pX IrredPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);

void IrredPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);

ZZ_pX IrredPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F);

// Same as above, but assumes the minimal polynomial is
// irreducible, and uses a slightly faster, deterministic algorithm.


/**************************************************************************\

                   Traces, norms, resultants

\**************************************************************************/


void TraceMod(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEXModulus& F);
ZZ_pE TraceMod(const ZZ_pEX& a, const ZZ_pEXModulus& F);

void TraceMod(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEX& f);
ZZ_pE TraceMod(const ZZ_pEX& a, const ZZ_pEXModulus& f);
// x = Trace(a mod f); deg(a) < deg(f)


void TraceVec(vec_ZZ_pE& S, const ZZ_pEX& f);
vec_ZZ_pE TraceVec(const ZZ_pEX& f);
// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 < deg(f)

// The above trace routines implement the asymptotically fast trace
// algorithm from [von zur Gathen and Shoup, Computational Complexity,
// 1992].

void NormMod(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEX& f);
ZZ_pE NormMod(const ZZ_pEX& a, const ZZ_pEX& f);
// x = Norm(a mod f); 0 < deg(f), deg(a) < deg(f)

void resultant(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEX& b);
ZZ_pE resultant(const ZZ_pEX& a, const ZZ_pEX& b);
// x = resultant(a, b)

// NormMod and resultant require that ZZ_pE is a field.




/**************************************************************************\

                           Miscellany


\**************************************************************************/


void clear(ZZ_pEX& x) // x = 0
void set(ZZ_pEX& x); // x = 1

void ZZ_pEX::kill();
// f.kill() sets f to 0 and frees all memory held by f.  Equivalent to
// f.rep.kill().

ZZ_pEX::ZZ_pEX(INIT_SIZE_TYPE, long n);
// ZZ_pEX(INIT_SIZE, n) initializes to zero, but space is pre-allocated
// for n coefficients

static const ZZ_pEX& zero();
// ZZ_pEX::zero() is a read-only reference to 0

void ZZ_pEX::swap(ZZ_pEX& x);
void swap(ZZ_pEX& x, ZZ_pEX& y); 
// swap (via "pointer swapping")


ZZ_pEX::ZZ_pEX(long i, const ZZ_pE& c); 
ZZ_pEX::ZZ_pEX(long i, const ZZ_p& c); 
ZZ_pEX::ZZ_pEX(long i, long c); 
// initialize to c*X^i, provided for backward compatibility