1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
|
/********************************************************************
Count-Min Sketches
G. Cormode 2003,2004, 2010, 2012
Updated: 2004-06 Added a floating point sketch and support for
inner product point estimation
Initial version: 2003-12
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*********************************************************************/
#include <stdlib.h>
#include "prng.h"
#include "countmin.h"
#define min(x,y) ((x) < (y) ? (x) : (y))
#define max(x,y) ((x) > (y) ? (x) : (y))
double eps; /* 1+epsilon = approximation factor */
double delta; /* probability of failure */
/************************************************************************/
/* Routines to support Count-Min sketches */
/************************************************************************/
CM_type * CM_Init(int width, int depth, int seed)
{ // Initialize the sketch based on user-supplied size
CM_type * cm;
int j;
prng_type * prng;
cm=(CM_type *) malloc(sizeof(CM_type));
prng=prng_Init(-abs(seed),2);
// initialize the generator to pick the hash functions
if (cm && prng)
{
cm->depth=depth;
cm->width=width;
cm->count=0;
cm->counts=(int **)calloc(sizeof(int *),cm->depth);
cm->counts[0]=(int *)calloc(sizeof(int), cm->depth*cm->width);
cm->hasha=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
cm->hashb=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
if (cm->counts && cm->hasha && cm->hashb && cm->counts[0])
{
for (j=0;j<depth;j++)
{
cm->hasha[j]=prng_int(prng) & MOD;
cm->hashb[j]=prng_int(prng) & MOD;
// pick the hash functions
cm->counts[j]=(int *) cm->counts[0]+(j*cm->width);
}
}
else cm=NULL;
}
if (prng)
prng_Destroy(prng);
return cm;
}
CM_type * CM_Copy(CM_type * cmold)
{ // create a new sketch with the same parameters as an existing one
CM_type * cm;
int j;
if (!cmold) return(NULL);
cm=(CM_type *) malloc(sizeof(CM_type));
if (cm)
{
cm->depth=cmold->depth;
cm->width=cmold->width;
cm->count=0;
cm->counts=(int **)calloc(sizeof(int *),cm->depth);
cm->counts[0]=(int *)calloc(sizeof(int), cm->depth*cm->width);
cm->hasha=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
cm->hashb=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
if (cm->counts && cm->hasha && cm->hashb && cm->counts[0])
{
for (j=0;j<cm->depth;j++)
{
cm->hasha[j]=cmold->hasha[j];
cm->hashb[j]=cmold->hashb[j];
cm->counts[j]=(int *) cm->counts[0]+(j*cm->width);
}
}
else cm=NULL;
}
return cm;
}
void CM_Destroy(CM_type * cm)
{ // get rid of a sketch and free up the space
if (!cm) return;
if (cm->counts)
{
if (cm->counts[0]) free(cm->counts[0]);
free(cm->counts);
cm->counts=NULL;
}
if (cm->hasha) free(cm->hasha); cm->hasha=NULL;
if (cm->hashb) free(cm->hashb); cm->hashb=NULL;
free(cm); cm=NULL;
}
int CM_Size(CM_type * cm)
{ // return the size of the sketch in bytes
int counts, hashes, admin;
if (!cm) return 0;
admin=sizeof(CM_type);
counts=cm->width*cm->depth*sizeof(int);
hashes=cm->depth*2*sizeof(unsigned int);
return(admin + hashes + counts);
}
void CM_Update(CM_type * cm, unsigned int item, int diff)
{
int j;
if (!cm) return;
cm->count+=diff;
for (j=0;j<cm->depth;j++)
cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],item) % cm->width]+=diff;
// this can be done more efficiently if the width is a power of two
}
int CM_PointEst(CM_type * cm, unsigned int query)
{
// return an estimate of the count of an item by taking the minimum
int j, ans;
if (!cm) return 0;
ans=cm->counts[0][hash31(cm->hasha[0],cm->hashb[0],query) % cm->width];
for (j=1;j<cm->depth;j++)
ans=min(ans,cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],query)%cm->width]);
// this can be done more efficiently if the width is a power of two
return (ans);
}
#if 0
int CM_PointMed(CM_type * cm, unsigned int query)
{
// return an estimate of the count by taking the median estimate
// useful when counts can become negative
// depth needs to be larger for this to work well
int j, * ans, result=0;
if (!cm) return 0;
ans=(int *) calloc(1+cm->depth,sizeof(int));
for (j=0;j<cm->depth;j++)
ans[j+1]=cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],query)%cm->width];
if (cm->depth==1)
result=ans[1];
else
if (cm->depth==2)
{
//result=(ans[1]+ans[2])/2;
if (abs(ans[1]) < abs(ans[2]))
result=ans[1]; else result=ans[2];
// special tweak for small depth sketches
}
else
result=(MedSelect(1+cm->depth/2,cm->depth,ans));
return result;
// need to adjust for routine starting at 1
}
#endif
int CM_Compatible(CM_type * cm1, CM_type * cm2)
{ // test whether two sketches are comparable (have same parameters)
int i;
if (!cm1 || !cm2) return 0;
if (cm1->width!=cm2->width) return 0;
if (cm1->depth!=cm2->depth) return 0;
for (i=0;i<cm1->depth;i++)
{
if (cm1->hasha[i]!=cm2->hasha[i]) return 0;
if (cm1->hashb[i]!=cm2->hashb[i]) return 0;
}
return 1;
}
long long CM_InnerProd(CM_type * cm1, CM_type * cm2)
{ // Estimate the inner product of two vectors by comparing their sketches
int i,j;
long long result, tmp;
result=0;
if (CM_Compatible(cm1,cm2))
{
for (i=0;i<cm1->width;i++)
result+=cm1->counts[0][i]*cm2->counts[0][i];
for (j=1;j<cm1->depth;j++)
{
tmp=0;
for (i=0;i<cm1->width;i++)
tmp+=cm1->counts[j][i]*cm2->counts[j][i];
result=min(tmp,result);
}
}
return result;
}
#if 0
long long CM_F2Est(CM_type * cm)
{ // Estimate the second frequency moment of the stream
int i,j;
long long result, tmp, *ans;
if (!cm) return 0;
ans=(long long *) calloc(1+cm->depth,sizeof(long long));
for (j=0;j<cm->depth;j++)
{
result=0;
for (i=0;i<cm->width;i+=2)
{
tmp=(cm->counts[j][i]-cm->counts[j][i+1]);
result+=tmp*tmp;
}
ans[j+1]=result;
}
result=LLMedSelect((cm->depth+1)/2,cm->depth,ans);
return result;
}
#endif
int CM_Residue(CM_type * cm, unsigned int * Q)
{
// CM_Residue computes the sum of everything left after the points
// from Q have been removed
// Q is a list of points, where Q[0] gives the length of the list
char * bitmap;
int i,j;
int estimate=0, nextest;
if (!cm) return 0;
bitmap=(char *) calloc(cm->width,sizeof(char));
for (j=0;j<cm->depth;j++)
{
nextest=0;
for (i=0;i<cm->width;i++)
bitmap[i]=0;
for (i=1;i<(int) Q[0];i++)
bitmap[hash31(cm->hasha[j],cm->hashb[j],Q[i]) % cm->width]=1;
for (i=0;i<cm->width;i++)
if (bitmap[i]==0) nextest+=cm->counts[j][i];
estimate=max(estimate,nextest);
}
return(estimate);
}
/************************************************************************/
/* Routines to support Count-Min sketches with floating point data */
/************************************************************************/
CMF_type * CMF_Init(int width, int depth, int seed)
{ // Initialize the sketch based on user-supplied size
CMF_type * cm;
int j;
prng_type * prng;
cm=(CMF_type *) malloc(sizeof(CMF_type));
prng=prng_Init(-abs(seed),2);
// initialize the generator to pick the hash functions
if (cm && prng)
{
cm->depth=depth;
cm->width=width;
cm->count=0;
cm->counts=(double **)calloc(sizeof(double *),cm->depth);
cm->counts[0]=(double *)calloc(sizeof(double), cm->depth*cm->width);
cm->hasha=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
cm->hashb=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
if (cm->counts && cm->hasha && cm->hashb && cm->counts[0])
{
for (j=0;j<depth;j++)
{
cm->hasha[j]=prng_int(prng) & MOD;
cm->hashb[j]=prng_int(prng) & MOD;
// pick the hash functions
cm->counts[j]=(double *) cm->counts[0]+(j*cm->width);
}
}
else cm=NULL;
}
if (prng)
prng_Destroy(prng);
return cm;
}
CMF_type * CMF_Copy(CMF_type * cmold)
{ // create a new sketch with the same parameters as an existing one
CMF_type * cm;
int j;
if (!cmold) return(NULL);
cm=(CMF_type *) malloc(sizeof(CMF_type));
if (cm)
{
cm->depth=cmold->depth;
cm->width=cmold->width;
cm->count=0;
cm->counts=(double **)calloc(sizeof(double *),cm->depth);
cm->counts[0]=(double *)calloc(sizeof(double), cm->depth*cm->width);
cm->hasha=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
cm->hashb=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
if (cm->counts && cm->hasha && cm->hashb && cm->counts[0])
{
for (j=0;j<cm->depth;j++)
{
cm->hasha[j]=cmold->hasha[j];
cm->hashb[j]=cmold->hashb[j];
cm->counts[j]=(double *) cm->counts[0]+(j*cm->width);
}
}
else cm=NULL;
}
return cm;
}
void CMF_Destroy(CMF_type * cm)
{ // get rid of a sketch and free up the space
if (!cm) return;
if (cm->counts)
{
if (cm->counts[0]) free(cm->counts[0]);
free(cm->counts);
cm->counts=NULL;
}
if (cm->hasha) free(cm->hasha); cm->hasha=NULL;
if (cm->hashb) free(cm->hashb); cm->hashb=NULL;
free(cm); cm=NULL;
}
int CMF_Size(CMF_type * cm)
{ // return the size of the sketch in bytes
int counts, hashes, admin;
if (!cm) return 0;
admin=sizeof(CM_type);
counts=cm->width*cm->depth*sizeof(double);
hashes=cm->depth*2*sizeof(unsigned int);
return(admin + hashes + counts);
}
void CMF_Update(CMF_type * cm, unsigned int item, double diff)
{
int j;
if (!cm) return;
cm->count+=diff;
for (j=0;j<cm->depth;j++)
cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],item) % cm->width]+=diff;
// this can be done more efficiently if the width is a power of two
}
double CMF_PointEst(CMF_type * cm, unsigned int query)
{
// return an estimate of the count of an item by taking the minimum
int j;
double ans=0.;
if (!cm) return 0;
ans=cm->counts[0][hash31(cm->hasha[0],cm->hashb[0],query) % cm->width];
for (j=1;j<cm->depth;j++)
ans=min(ans,cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],query)%cm->width]);
// this can be done more efficiently if the width is a power of two
return (ans);
}
int CMF_Compatible(CMF_type * cm1, CMF_type * cm2)
{ // test whether two sketches are comparable (have same parameters)
int i;
if (!cm1 || !cm2) return 0;
if (cm1->width!=cm2->width) return 0;
if (cm1->depth!=cm2->depth) return 0;
for (i=0;i<cm1->depth;i++)
{
if (cm1->hasha[i]!=cm2->hasha[i]) return 0;
if (cm1->hashb[i]!=cm2->hashb[i]) return 0;
}
return 1;
}
double CMF_PointProd(CMF_type * cm1, CMF_type * cm2, unsigned int query)
{ // Estimate the inner product of two vectors by comparing their sketches
int j, loc;
double tmp, ans;
ans=0.0;
if (CMF_Compatible(cm1,cm2))
{
loc=hash31(cm1->hasha[0],cm1->hashb[0],query) % cm1->width;
ans=cm1->counts[0][loc]*cm2->counts[0][loc];
for (j=1;j<cm1->depth;j++)
{
loc=hash31(cm1->hasha[j],cm1->hashb[j],query) % cm1->width;
tmp=cm1->counts[j][loc]*cm2->counts[j][loc];
ans=min(ans,tmp);
}
}
return (ans);
}
double CMF_InnerProd(CMF_type * cm1, CMF_type * cm2)
{ // Estimate the inner product of two vectors by comparing their sketches
int i,j;
double tmp, result;
result=0;
if (CMF_Compatible(cm1,cm2))
{
for (i=0;i<cm1->width;i++)
result+=cm1->counts[0][i]*cm2->counts[0][i];
for (j=1;j<cm1->depth;j++)
{
tmp=0.0;
for (i=0;i<cm1->width;i++)
tmp+=cm1->counts[j][i]*cm2->counts[j][i];
result=min(tmp,result);
}
}
return result;
}
/************************************************************************/
/* Routines to support hierarchical Count-Min sketches */
/************************************************************************/
CMH_type * CMH_Init(int width, int depth, int U, int gran)
{
// initialize a hierarchical set of sketches for range queries
// heavy hitters or quantiles
CMH_type * cmh;
int i,j,k;
prng_type * prng;
if (U<=0 || U>32) return(NULL);
// U is the log the size of the universe in bits
if (gran>U || gran<1) return(NULL);
// gran is the granularity to look at the universe in
// check that the parameters make sense...
cmh=(CMH_type *) calloc(1,sizeof(CMH_type));
prng=prng_Init(-12784,2);
// initialize the generator for picking the hash functions
if (cmh && prng)
{
cmh->depth=depth;
cmh->width=width;
cmh->count=0;
cmh->U=U;
cmh->gran=gran;
cmh->levels=(int) ceil(((float) U)/((float) gran));
for (j=0;j<cmh->levels;j++)
if ((long long) 1<<(cmh->gran*j) <= cmh->depth*cmh->width)
cmh->freelim=j;
//find the level up to which it is cheaper to keep exact counts
cmh->freelim=cmh->levels-cmh->freelim;
cmh->counts=(int **) calloc(sizeof(int *), 1+cmh->levels);
cmh->hasha=(unsigned int **)calloc(sizeof(unsigned int *),1+cmh->levels);
cmh->hashb=(unsigned int **)calloc(sizeof(unsigned int *),1+cmh->levels);
j=1;
for (i=cmh->levels-1;i>=0;i--)
{
if (i>=cmh->freelim)
{ // allocate space for representing things exactly at high levels
cmh->counts[i]=(int *) calloc(1<<(cmh->gran*j),sizeof(int));
j++;
cmh->hasha[i]=NULL;
cmh->hashb[i]=NULL;
}
else
{ // allocate space for a sketch
cmh->counts[i]=(int *)calloc(sizeof(int), cmh->depth*cmh->width);
cmh->hasha[i]=(unsigned int *)
calloc(sizeof(unsigned int),cmh->depth);
cmh->hashb[i]=(unsigned int *)
calloc(sizeof(unsigned int),cmh->depth);
if (cmh->hasha[i] && cmh->hashb[i])
for (k=0;k<cmh->depth;k++)
{ // pick the hash functions
cmh->hasha[i][k]=prng_int(prng) & MOD;
cmh->hashb[i][k]=prng_int(prng) & MOD;
}
}
}
}
if (prng)
prng_Destroy(prng);
return cmh;
}
void CMH_Destroy(CMH_type * cmh)
{ // free up the space
int i;
if (!cmh) return;
for (i=0;i<cmh->levels;i++)
{
if (i>=cmh->freelim)
{
free(cmh->counts[i]);
}
else
{
free(cmh->hasha[i]);
free(cmh->hashb[i]);
free(cmh->counts[i]);
}
}
free(cmh->counts);
free(cmh->hasha);
free(cmh->hashb);
free(cmh);
cmh=NULL;
}
void CMH_Update(CMH_type * cmh, unsigned int item, int diff)
{ // update with a new value
int i,j,offset;
if (!cmh) return;
cmh->count+=diff;
for (i=0;i<cmh->levels;i++)
{
offset=0;
if (i>=cmh->freelim)
{ // level 0 = leaves, higher levels = internal nodes
cmh->counts[i][item]+=diff;
// keep exact counts at high levels in the hierarchy
}
else
for (j=0;j<cmh->depth;j++)
{
cmh->counts[i][(hash31(cmh->hasha[i][j],cmh->hashb[i][j],item)
% cmh->width) + offset]+=diff;
// this can be done more efficiently if the width is a power of two
offset+=cmh->width;
}
item>>=cmh->gran;
}
}
int CMH_Size(CMH_type * cmh)
{ // return the size used in bytes
int counts, hashes, admin,i;
if (!cmh) return 0;
admin=sizeof(CMH_type);
counts=cmh->levels*sizeof(int **);
for (i=0;i<cmh->levels;i++)
if (i>=cmh->freelim)
counts+=(1<<(cmh->gran*(cmh->levels-i)))*sizeof(int);
else
counts+=cmh->width*cmh->depth*sizeof(int);
hashes=(cmh->levels-cmh->freelim)*cmh->depth*2*sizeof(unsigned int);
hashes+=(cmh->levels)*sizeof(unsigned int *);
return(admin + hashes + counts);
}
int CMH_count(CMH_type * cmh, int depth, unsigned int item)
{
// return an estimate of item at level depth
int j;
int offset;
int estimate;
if (depth>=cmh->levels) return(cmh->count);
if (depth>=cmh->freelim)
{ // use an exact count if there is one
return(cmh->counts[depth][item]);
}
// else, use the appropriate sketch to make an estimate
offset=0;
estimate=cmh->counts[depth][(hash31(cmh->hasha[depth][0],
cmh->hashb[depth][0],item)
% cmh->width) + offset];
for (j=1;j<cmh->depth;j++)
{
offset+=cmh->width;
estimate=min(estimate,
cmh->counts[depth][(hash31(cmh->hasha[depth][j],
cmh->hashb[depth][j],item)
% cmh->width) + offset]);
}
return(estimate);
}
void CMH_recursive(CMH_type * cmh, int depth, int start,
int thresh, unsigned int * results)
{
// for finding heavy hitters, recursively descend looking
// for ranges that exceed the threshold
int i;
int blocksize;
int estcount;
int itemshift;
estcount=CMH_count(cmh,depth,start);
if (estcount>=thresh)
{
if (depth==0)
{
if (results[0]<(unsigned int) cmh->width)
{
results[0]++;
results[results[0]]=start;
}
}
else
{
blocksize=1<<cmh->gran;
itemshift=start<<cmh->gran;
// assumes that gran is an exact multiple of the bit dept
for (i=0;i<blocksize;i++)
CMH_recursive(cmh,depth-1,itemshift+i,thresh,results);
}
}
}
unsigned int * CMH_FindHH(CMH_type * cmh, int thresh)
{ // find all items whose estimated count is greater than phi n
unsigned int * results;
results=(unsigned int *) calloc(cmh->width,sizeof(unsigned int));
results[0]=0;
CMH_recursive(cmh,cmh->levels,0,thresh,results);
return(results);
}
int CMH_Rangesum(CMH_type * cmh, long long start, long long end)
{
// compute a range sum:
// start at bottom level
// compute any estimates needed at each level
// work upwards
int depth, result;
long long range, leftend, rightend;
long long topend, i;
topend=((long long) 1)<<cmh->U;
end=min(topend,end);
if ((end>topend) && (start==0)) {
return cmh->count;
}
end+=1; // adjust for end effects
result=0;
for (depth=0;depth<=cmh->levels;depth++)
{
if (start==end) break;
range=(end-start+1);
if ((unsigned int) (end-start+1)<(((unsigned int) 1)<<cmh->gran))
{ // if only a few nodes to probe at this level, probe them all
for (i=start;i<end;i++)
result+=CMH_count(cmh,depth,i);
break;
}
else
{ // figure out what needs to be done at each end
leftend=(((start>>cmh->gran)+1)<<cmh->gran) - start;
if (leftend>= 1<<cmh->gran) leftend=0;
rightend=(end)-((end>>cmh->gran)<<cmh->gran);
if ((leftend>0) && (start<end))
for (i=0;i<leftend;i++)
{
result+=CMH_count(cmh,depth,start+i);
}
if ((rightend>0) && (start<end))
for (i=0;i<rightend;i++)
{
result+=CMH_count(cmh,depth,end-i-1);
}
start=start>>cmh->gran;
if (leftend>0) start++;
end=end>>cmh->gran;
}
}
return result;
}
long long CMH_FindRange(CMH_type * cmh, int sum)
{
long long low, high, mid=0;
int i, est=0;
// find a range starting from zero that adds up to sum
if (cmh->count<sum) return 1<<(cmh->U);
low=0;
high=((long long) 1)<<cmh->U;
for (i=0;i<cmh->U;i++)
{
mid=(low+high)/2;
est=CMH_Rangesum(cmh,0,(unsigned int) mid);
if (est>sum)
high=mid;
else
low=mid;
}
return mid;
}
long long CMH_AltFindRange(CMH_type * cmh, int sum)
{
long long low, high, mid=0,top;
int i, est=0;
// find a range starting from the right hand side that adds up to sum
if (cmh->count<sum) return 1<<(cmh->U);
low=0;
top=((long long) 1)<<cmh->U;
high=top;
for (i=0;i<cmh->U;i++) {
mid=(low+high)/2;
est=CMH_Rangesum(cmh,mid,top);
if (est<sum)
high=mid;
else
low=mid;
}
return mid;
}
long long CMH_Quantile(CMH_type * cmh, float frac)
{
// find a quantile by doing the appropriate range search
if (frac<0) return 0;
if (frac>1)
return 1<<cmh->U;
return ((CMH_FindRange(cmh,(long long) (cmh->count*frac))+
CMH_AltFindRange(cmh,(long long) (cmh->count*(1-frac))))/2);
// each result gives a lower/upper bound on the location of the quantile
// with high probability, these will be close: only a small number of values
// will be between the estimates.
}
long long CMH_F2Est(CMH_type * cmh)
{
// A heuristic for estimating the F2 of a stream
// tends to overestimate a great deal on non-skewed streams
int i,j,k;
long long est, result;
k=0; result=-1;
for (i=0;i<cmh->depth;i++)
{
est=0;
for (j=0;j<cmh->width;j++)
{
est+=(long long) cmh->counts[0][k] * (long long) cmh->counts[0][k];
k++;
}
if (result<0) result=est; else
result=min(result,est);
}
return result;
}
|