File: countmin.c

package info (click to toggle)
ntop 3%3A5.0.1%2Bdfsg1-2.1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 15,720 kB
  • ctags: 11,480
  • sloc: ansic: 79,804; sh: 21,658; python: 1,948; awk: 1,504; perl: 971; makefile: 745; php: 123; xml: 71; sql: 13; sed: 11
file content (788 lines) | stat: -rw-r--r-- 21,199 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/********************************************************************
Count-Min Sketches

G. Cormode 2003,2004, 2010, 2012

Updated: 2004-06 Added a floating point sketch and support for
                 inner product point estimation
Initial version: 2003-12


    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with this program; if not, write to the Free Software Foundation, Inc.,
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*********************************************************************/

#include <stdlib.h>
#include "prng.h"
#include "countmin.h"

#define min(x,y)	((x) < (y) ? (x) : (y))
#define max(x,y)	((x) > (y) ? (x) : (y))

double eps;	               /* 1+epsilon = approximation factor */
double delta;                  /* probability of failure */

/************************************************************************/
/* Routines to support Count-Min sketches                               */
/************************************************************************/

CM_type * CM_Init(int width, int depth, int seed)
{     // Initialize the sketch based on user-supplied size
  CM_type * cm;
  int j;
  prng_type * prng;

  cm=(CM_type *) malloc(sizeof(CM_type));
  prng=prng_Init(-abs(seed),2);
  // initialize the generator to pick the hash functions

  if (cm && prng)
    {
      cm->depth=depth;
      cm->width=width;
      cm->count=0;
      cm->counts=(int **)calloc(sizeof(int *),cm->depth);
      cm->counts[0]=(int *)calloc(sizeof(int), cm->depth*cm->width);
      cm->hasha=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
      cm->hashb=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
      if (cm->counts && cm->hasha && cm->hashb && cm->counts[0])
	{
	  for (j=0;j<depth;j++)
	    {
	      cm->hasha[j]=prng_int(prng) & MOD;
	      cm->hashb[j]=prng_int(prng) & MOD;
	      // pick the hash functions
	      cm->counts[j]=(int *) cm->counts[0]+(j*cm->width);
	    }
	}
      else cm=NULL;
    }
  if (prng)
      prng_Destroy(prng);
  return cm;
}

CM_type * CM_Copy(CM_type * cmold)
{     // create a new sketch with the same parameters as an existing one
  CM_type * cm;
  int j;

  if (!cmold) return(NULL);
  cm=(CM_type *) malloc(sizeof(CM_type));
  if (cm)
    {
      cm->depth=cmold->depth;
      cm->width=cmold->width;
      cm->count=0;
      cm->counts=(int **)calloc(sizeof(int *),cm->depth);
      cm->counts[0]=(int *)calloc(sizeof(int), cm->depth*cm->width);
      cm->hasha=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
      cm->hashb=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
      if (cm->counts && cm->hasha && cm->hashb && cm->counts[0])
	{
	  for (j=0;j<cm->depth;j++)
	    {
	      cm->hasha[j]=cmold->hasha[j];
	      cm->hashb[j]=cmold->hashb[j];
	      cm->counts[j]=(int *) cm->counts[0]+(j*cm->width);
	    }
	}
      else cm=NULL;
    }
  return cm;
}

void CM_Destroy(CM_type * cm)
{     // get rid of a sketch and free up the space
  if (!cm) return;
  if (cm->counts)
    {
      if (cm->counts[0]) free(cm->counts[0]);
      free(cm->counts);
      cm->counts=NULL;
    }
  if (cm->hasha) free(cm->hasha); cm->hasha=NULL;
  if (cm->hashb) free(cm->hashb); cm->hashb=NULL;
  free(cm);  cm=NULL;
}

int CM_Size(CM_type * cm)
{ // return the size of the sketch in bytes
  int counts, hashes, admin;
  if (!cm) return 0;
  admin=sizeof(CM_type);
  counts=cm->width*cm->depth*sizeof(int);
  hashes=cm->depth*2*sizeof(unsigned int);
  return(admin + hashes + counts);
}

void CM_Update(CM_type * cm, unsigned int item, int diff)
{
  int j;

  if (!cm) return;
  cm->count+=diff;
  for (j=0;j<cm->depth;j++)
    cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],item) % cm->width]+=diff;
  // this can be done more efficiently if the width is a power of two
}

int CM_PointEst(CM_type * cm, unsigned int query)
{
  // return an estimate of the count of an item by taking the minimum
  int j, ans;

  if (!cm) return 0;
  ans=cm->counts[0][hash31(cm->hasha[0],cm->hashb[0],query) % cm->width];
  for (j=1;j<cm->depth;j++)
    ans=min(ans,cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],query)%cm->width]);
  // this can be done more efficiently if the width is a power of two
  return (ans);
}

#if 0
int CM_PointMed(CM_type * cm, unsigned int query)
{
  // return an estimate of the count by taking the median estimate
  // useful when counts can become negative
  // depth needs to be larger for this to work well
  int j, * ans, result=0;

  if (!cm) return 0;
  ans=(int *) calloc(1+cm->depth,sizeof(int));
  for (j=0;j<cm->depth;j++)
    ans[j+1]=cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],query)%cm->width];

  if (cm->depth==1)
    result=ans[1];
  else
    if (cm->depth==2)
      {
	//result=(ans[1]+ans[2])/2;
	if (abs(ans[1]) < abs(ans[2]))
	  result=ans[1]; else result=ans[2];
	// special tweak for small depth sketches
      }
    else
      result=(MedSelect(1+cm->depth/2,cm->depth,ans));
  return result;
  // need to adjust for routine starting at 1
}
#endif

int CM_Compatible(CM_type * cm1, CM_type * cm2)
{ // test whether two sketches are comparable (have same parameters)
  int i;
  if (!cm1 || !cm2) return 0;
  if (cm1->width!=cm2->width) return 0;
  if (cm1->depth!=cm2->depth) return 0;
  for (i=0;i<cm1->depth;i++)
    {
      if (cm1->hasha[i]!=cm2->hasha[i]) return 0;
      if (cm1->hashb[i]!=cm2->hashb[i]) return 0;
    }
  return 1;
}

long long CM_InnerProd(CM_type * cm1, CM_type * cm2)
{ // Estimate the inner product of two vectors by comparing their sketches
  int i,j;
  long long result, tmp;

  result=0;
  if (CM_Compatible(cm1,cm2))
    {
      for (i=0;i<cm1->width;i++)
	result+=cm1->counts[0][i]*cm2->counts[0][i];
      for (j=1;j<cm1->depth;j++)
	{
	  tmp=0;
	  for (i=0;i<cm1->width;i++)
	    tmp+=cm1->counts[j][i]*cm2->counts[j][i];
	  result=min(tmp,result);
	}
    }
  return result;
}

#if 0
long long CM_F2Est(CM_type * cm)
{ // Estimate the second frequency moment of the stream
  int i,j;
  long long result, tmp, *ans;

  if (!cm) return 0;
  ans=(long long *) calloc(1+cm->depth,sizeof(long long));

  for (j=0;j<cm->depth;j++)
    {
      result=0;
      for (i=0;i<cm->width;i+=2)
	{
	  tmp=(cm->counts[j][i]-cm->counts[j][i+1]);
	  result+=tmp*tmp;
	}
      ans[j+1]=result;
    }
  result=LLMedSelect((cm->depth+1)/2,cm->depth,ans);
  return result;
}
#endif

int CM_Residue(CM_type * cm, unsigned int * Q)
{
// CM_Residue computes the sum of everything left after the points
// from Q have been removed
// Q is a list of points, where Q[0] gives the length of the list

  char * bitmap;
  int i,j;
  int estimate=0, nextest;

  if (!cm) return 0;
  bitmap=(char *) calloc(cm->width,sizeof(char));
  for (j=0;j<cm->depth;j++)
    {
      nextest=0;
      for (i=0;i<cm->width;i++)
	bitmap[i]=0;
      for (i=1;i<(int) Q[0];i++)
	bitmap[hash31(cm->hasha[j],cm->hashb[j],Q[i]) % cm->width]=1;
      for (i=0;i<cm->width;i++)
	if (bitmap[i]==0) nextest+=cm->counts[j][i];
      estimate=max(estimate,nextest);
    }
  return(estimate);
}

/************************************************************************/
/* Routines to support Count-Min sketches with floating point data      */
/************************************************************************/

CMF_type * CMF_Init(int width, int depth, int seed)
{     // Initialize the sketch based on user-supplied size
  CMF_type * cm;
  int j;
  prng_type * prng;

  cm=(CMF_type *) malloc(sizeof(CMF_type));

  prng=prng_Init(-abs(seed),2);
  // initialize the generator to pick the hash functions

  if (cm && prng)
    {
      cm->depth=depth;
      cm->width=width;
      cm->count=0;
      cm->counts=(double **)calloc(sizeof(double *),cm->depth);
      cm->counts[0]=(double *)calloc(sizeof(double), cm->depth*cm->width);
      cm->hasha=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
      cm->hashb=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
      if (cm->counts && cm->hasha && cm->hashb && cm->counts[0])
	{
	  for (j=0;j<depth;j++)
	    {
	      cm->hasha[j]=prng_int(prng) & MOD;
	      cm->hashb[j]=prng_int(prng) & MOD;
	      // pick the hash functions
	      cm->counts[j]=(double *) cm->counts[0]+(j*cm->width);
	    }
	}
      else cm=NULL;
    }
  if (prng)
      prng_Destroy(prng);
  return cm;
}

CMF_type * CMF_Copy(CMF_type * cmold)
{     // create a new sketch with the same parameters as an existing one
  CMF_type * cm;
  int j;

  if (!cmold) return(NULL);
  cm=(CMF_type *) malloc(sizeof(CMF_type));
  if (cm)
    {
      cm->depth=cmold->depth;
      cm->width=cmold->width;
      cm->count=0;
      cm->counts=(double **)calloc(sizeof(double *),cm->depth);
      cm->counts[0]=(double *)calloc(sizeof(double), cm->depth*cm->width);
      cm->hasha=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
      cm->hashb=(unsigned int *)calloc(sizeof(unsigned int),cm->depth);
      if (cm->counts && cm->hasha && cm->hashb && cm->counts[0])
	{
	  for (j=0;j<cm->depth;j++)
	    {
	      cm->hasha[j]=cmold->hasha[j];
	      cm->hashb[j]=cmold->hashb[j];
	      cm->counts[j]=(double *) cm->counts[0]+(j*cm->width);
	    }
	}
      else cm=NULL;
    }
  return cm;
}

void CMF_Destroy(CMF_type * cm)
{     // get rid of a sketch and free up the space
  if (!cm) return;
  if (cm->counts)
    {
      if (cm->counts[0]) free(cm->counts[0]);
      free(cm->counts);
      cm->counts=NULL;
    }
  if (cm->hasha) free(cm->hasha); cm->hasha=NULL;
  if (cm->hashb) free(cm->hashb); cm->hashb=NULL;
  free(cm);  cm=NULL;
}

int CMF_Size(CMF_type * cm)
{ // return the size of the sketch in bytes
  int counts, hashes, admin;
  if (!cm) return 0;
  admin=sizeof(CM_type);
  counts=cm->width*cm->depth*sizeof(double);
  hashes=cm->depth*2*sizeof(unsigned int);
  return(admin + hashes + counts);
}

void CMF_Update(CMF_type * cm, unsigned int item, double diff)
{
  int j;

  if (!cm) return;
  cm->count+=diff;
  for (j=0;j<cm->depth;j++)
    cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],item) % cm->width]+=diff;
  // this can be done more efficiently if the width is a power of two
}

double CMF_PointEst(CMF_type * cm, unsigned int query)
{
  // return an estimate of the count of an item by taking the minimum
  int j;
  double ans=0.;

  if (!cm) return 0;
  ans=cm->counts[0][hash31(cm->hasha[0],cm->hashb[0],query) % cm->width];
  for (j=1;j<cm->depth;j++)
    ans=min(ans,cm->counts[j][hash31(cm->hasha[j],cm->hashb[j],query)%cm->width]);
  // this can be done more efficiently if the width is a power of two
  return (ans);
}

int CMF_Compatible(CMF_type * cm1, CMF_type * cm2)
{ // test whether two sketches are comparable (have same parameters)
  int i;
  if (!cm1 || !cm2) return 0;
  if (cm1->width!=cm2->width) return 0;
  if (cm1->depth!=cm2->depth) return 0;
  for (i=0;i<cm1->depth;i++)
    {
      if (cm1->hasha[i]!=cm2->hasha[i]) return 0;
      if (cm1->hashb[i]!=cm2->hashb[i]) return 0;
    }
  return 1;
}

double CMF_PointProd(CMF_type * cm1, CMF_type * cm2, unsigned int query)
{ // Estimate the inner product of two vectors by comparing their sketches
  int j, loc;
  double tmp, ans;

  ans=0.0;
  if (CMF_Compatible(cm1,cm2))
    {
      loc=hash31(cm1->hasha[0],cm1->hashb[0],query) % cm1->width;
      ans=cm1->counts[0][loc]*cm2->counts[0][loc];
      for (j=1;j<cm1->depth;j++)
	{
	  loc=hash31(cm1->hasha[j],cm1->hashb[j],query) % cm1->width;
	  tmp=cm1->counts[j][loc]*cm2->counts[j][loc];
	  ans=min(ans,tmp);
	}
    }
  return (ans);
}

double CMF_InnerProd(CMF_type * cm1, CMF_type * cm2)
{ // Estimate the inner product of two vectors by comparing their sketches
  int i,j;
  double tmp, result;

  result=0;
  if (CMF_Compatible(cm1,cm2))
    {
      for (i=0;i<cm1->width;i++)
	result+=cm1->counts[0][i]*cm2->counts[0][i];
      for (j=1;j<cm1->depth;j++)
	{
	  tmp=0.0;
	  for (i=0;i<cm1->width;i++)
	    tmp+=cm1->counts[j][i]*cm2->counts[j][i];
	  result=min(tmp,result);
	}
    }
  return result;
}

/************************************************************************/
/* Routines to support hierarchical Count-Min sketches                  */
/************************************************************************/

CMH_type * CMH_Init(int width, int depth, int U, int gran)
{
  // initialize a hierarchical set of sketches for range queries
  // heavy hitters or quantiles

  CMH_type * cmh;
  int i,j,k;
  prng_type * prng;

  if (U<=0 || U>32) return(NULL);
  // U is the log the size of the universe in bits

  if (gran>U || gran<1) return(NULL);
  // gran is the granularity to look at the universe in
  // check that the parameters make sense...

  cmh=(CMH_type *) calloc(1,sizeof(CMH_type));

  prng=prng_Init(-12784,2);
  // initialize the generator for picking the hash functions

  if (cmh && prng)
    {
      cmh->depth=depth;
      cmh->width=width;
      cmh->count=0;
      cmh->U=U;
      cmh->gran=gran;
      cmh->levels=(int) ceil(((float) U)/((float) gran));
      for (j=0;j<cmh->levels;j++)
	if ((long long) 1<<(cmh->gran*j) <= cmh->depth*cmh->width)
	  cmh->freelim=j;
      //find the level up to which it is cheaper to keep exact counts
      cmh->freelim=cmh->levels-cmh->freelim;

      cmh->counts=(int **) calloc(sizeof(int *), 1+cmh->levels);
      cmh->hasha=(unsigned int **)calloc(sizeof(unsigned int *),1+cmh->levels);
      cmh->hashb=(unsigned int **)calloc(sizeof(unsigned int *),1+cmh->levels);
      j=1;
      for (i=cmh->levels-1;i>=0;i--)
	{
	  if (i>=cmh->freelim)
	    { // allocate space for representing things exactly at high levels
	      cmh->counts[i]=(int *) calloc(1<<(cmh->gran*j),sizeof(int));
	      j++;
	      cmh->hasha[i]=NULL;
	      cmh->hashb[i]=NULL;
	    }
	  else
	    { // allocate space for a sketch
	      cmh->counts[i]=(int *)calloc(sizeof(int), cmh->depth*cmh->width);
	      cmh->hasha[i]=(unsigned int *)
		calloc(sizeof(unsigned int),cmh->depth);
	      cmh->hashb[i]=(unsigned int *)
		calloc(sizeof(unsigned int),cmh->depth);

	      if (cmh->hasha[i] && cmh->hashb[i])
		for (k=0;k<cmh->depth;k++)
		  { // pick the hash functions
		    cmh->hasha[i][k]=prng_int(prng) & MOD;
		    cmh->hashb[i][k]=prng_int(prng) & MOD;
		  }
	    }
	}
    }
  if (prng)
      prng_Destroy(prng);
  return cmh;
}

void CMH_Destroy(CMH_type * cmh)
{  // free up the space
  int i;
  if (!cmh) return;
  for (i=0;i<cmh->levels;i++)
    {
      if (i>=cmh->freelim)
	{
	  free(cmh->counts[i]);
	}
      else
	{
	  free(cmh->hasha[i]);
	  free(cmh->hashb[i]);
	  free(cmh->counts[i]);
	}
    }
  free(cmh->counts);
  free(cmh->hasha);
  free(cmh->hashb);
  free(cmh);
  cmh=NULL;
}

void CMH_Update(CMH_type * cmh, unsigned int item, int diff)
{ // update with a new value
  int i,j,offset;

  if (!cmh) return;
  cmh->count+=diff;
  for (i=0;i<cmh->levels;i++)
    {
      offset=0;
      if (i>=cmh->freelim)
	{ // level 0 = leaves, higher levels = internal nodes
	  cmh->counts[i][item]+=diff;
	  // keep exact counts at high levels in the hierarchy
	}
      else
	for (j=0;j<cmh->depth;j++)
	  {
	    cmh->counts[i][(hash31(cmh->hasha[i][j],cmh->hashb[i][j],item)
			    % cmh->width) + offset]+=diff;
	    // this can be done more efficiently if the width is a power of two
	    offset+=cmh->width;
	  }
      item>>=cmh->gran;
    }
}

int CMH_Size(CMH_type * cmh)
{ // return the size used in bytes
  int counts, hashes, admin,i;
  if (!cmh) return 0;
  admin=sizeof(CMH_type);
  counts=cmh->levels*sizeof(int **);
  for (i=0;i<cmh->levels;i++)
    if (i>=cmh->freelim)
      counts+=(1<<(cmh->gran*(cmh->levels-i)))*sizeof(int);
    else
      counts+=cmh->width*cmh->depth*sizeof(int);
  hashes=(cmh->levels-cmh->freelim)*cmh->depth*2*sizeof(unsigned int);
  hashes+=(cmh->levels)*sizeof(unsigned int *);
  return(admin + hashes + counts);
}

int CMH_count(CMH_type * cmh, int depth, unsigned int item)
{
  // return an estimate of item at level depth

  int j;
  int offset;
  int estimate;

  if (depth>=cmh->levels) return(cmh->count);
  if (depth>=cmh->freelim)
    { // use an exact count if there is one
      return(cmh->counts[depth][item]);
    }
  // else, use the appropriate sketch to make an estimate
  offset=0;
  estimate=cmh->counts[depth][(hash31(cmh->hasha[depth][0],
				      cmh->hashb[depth][0],item)
			       % cmh->width) + offset];
  for (j=1;j<cmh->depth;j++)
    {
      offset+=cmh->width;
      estimate=min(estimate,
		   cmh->counts[depth][(hash31(cmh->hasha[depth][j],
					      cmh->hashb[depth][j],item)
				       % cmh->width) + offset]);
    }
  return(estimate);
}

void CMH_recursive(CMH_type * cmh, int depth, int start,
		    int thresh, unsigned int * results)
{
  // for finding heavy hitters, recursively descend looking
  // for ranges that exceed the threshold

  int i;
  int blocksize;
  int estcount;
  int itemshift;

  estcount=CMH_count(cmh,depth,start);
  if (estcount>=thresh)
    {
      if (depth==0)
	{
	  if (results[0]<(unsigned int) cmh->width)
	    {
	      results[0]++;
	      results[results[0]]=start;
	    }
	}
      else
	{
	  blocksize=1<<cmh->gran;
	  itemshift=start<<cmh->gran;
	  // assumes that gran is an exact multiple of the bit dept
	  for (i=0;i<blocksize;i++)
	    CMH_recursive(cmh,depth-1,itemshift+i,thresh,results);
	}
    }
}

unsigned int * CMH_FindHH(CMH_type * cmh, int thresh)
{ // find all items whose estimated count is greater than phi n

  unsigned int * results;
  results=(unsigned int *) calloc(cmh->width,sizeof(unsigned int));
  results[0]=0;

  CMH_recursive(cmh,cmh->levels,0,thresh,results);
  return(results);
}

int CMH_Rangesum(CMH_type * cmh, long long start, long long end)
{
  // compute a range sum:
  // start at bottom level
  // compute any estimates needed at each level
  // work upwards

  int depth, result;
  long long range, leftend, rightend;
  long long topend, i;

  topend=((long long) 1)<<cmh->U;
  end=min(topend,end);
  if ((end>topend) && (start==0)) {
    return cmh->count;
  }

  end+=1; // adjust for end effects
  result=0;
  for (depth=0;depth<=cmh->levels;depth++)
    {
      if (start==end) break;
      range=(end-start+1);
      if ((unsigned int) (end-start+1)<(((unsigned int) 1)<<cmh->gran))
	{ // if only a few nodes to probe at this level, probe them all
	  for (i=start;i<end;i++)
	    result+=CMH_count(cmh,depth,i);
	  break;
	}
      else
	{  // figure out what needs to be done at each end
	  leftend=(((start>>cmh->gran)+1)<<cmh->gran) - start;
	  if (leftend>= 1<<cmh->gran) leftend=0;
	  rightend=(end)-((end>>cmh->gran)<<cmh->gran);
	  if ((leftend>0) && (start<end))
	    for (i=0;i<leftend;i++)
	      {
		result+=CMH_count(cmh,depth,start+i);
	      }
	  if ((rightend>0) && (start<end))
	    for (i=0;i<rightend;i++)
	      {
		result+=CMH_count(cmh,depth,end-i-1);
	      }
	  start=start>>cmh->gran;
	  if (leftend>0) start++;
	  end=end>>cmh->gran;
	}
    }
  return result;
}

long long CMH_FindRange(CMH_type * cmh, int sum)
{
  long long low, high, mid=0;
  int i, est=0;
  // find a range starting from zero that adds up to sum

  if (cmh->count<sum) return 1<<(cmh->U);
  low=0;
  high=((long long) 1)<<cmh->U;

  for (i=0;i<cmh->U;i++)
    {
      mid=(low+high)/2;
      est=CMH_Rangesum(cmh,0,(unsigned int) mid);
      if (est>sum)
	high=mid;
      else
	low=mid;
    }
  return mid;

}

long long CMH_AltFindRange(CMH_type * cmh, int sum)
{
  long long low, high, mid=0,top;
  int i, est=0;
  // find a range starting from the right hand side that adds up to sum

  if (cmh->count<sum) return 1<<(cmh->U);
  low=0;
  top=((long long) 1)<<cmh->U;
  high=top;
  for (i=0;i<cmh->U;i++) {
      mid=(low+high)/2;
      est=CMH_Rangesum(cmh,mid,top);
      if (est<sum)
	high=mid;
      else
	low=mid;
    }
  return mid;

}

long long CMH_Quantile(CMH_type * cmh, float frac)
{
  // find a quantile by doing the appropriate range search
  if (frac<0) return 0;
  if (frac>1)
    return 1<<cmh->U;
  return ((CMH_FindRange(cmh,(long long) (cmh->count*frac))+
	   CMH_AltFindRange(cmh,(long long) (cmh->count*(1-frac))))/2);
  // each result gives a lower/upper bound on the location of the quantile
  // with high probability, these will be close: only a small number of values
  // will be between the estimates.
}

long long CMH_F2Est(CMH_type * cmh)
{
  // A heuristic for estimating the F2 of a stream
  // tends to overestimate a great deal on non-skewed streams

  int i,j,k;
  long long est, result;

  k=0; result=-1;
  for (i=0;i<cmh->depth;i++)
    {
      est=0;
      for (j=0;j<cmh->width;j++)
	{
	  est+=(long long) cmh->counts[0][k] * (long long) cmh->counts[0][k];
	  k++;
	}
      if (result<0) result=est; else
	result=min(result,est);
    }
  return result;
}