File: ntp_loopfilter.c

package info (click to toggle)
ntp 1%3A4.2.2.p4%2Bdfsg-2etch4
  • links: PTS
  • area: main
  • in suites: etch
  • size: 10,236 kB
  • ctags: 10,865
  • sloc: ansic: 90,242; sh: 4,314; perl: 1,331; makefile: 631; awk: 417; asm: 37; sed: 7
file content (1077 lines) | stat: -rw-r--r-- 31,573 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
/*
 * ntp_loopfilter.c - implements the NTP loop filter algorithm
 *
 * ATTENTION: Get approval from Dave Mills on all changes to this file!
 *
 */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif

#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_unixtime.h"
#include "ntp_stdlib.h"

#include <stdio.h>
#include <ctype.h>

#include <signal.h>
#include <setjmp.h>

#if defined(VMS) && defined(VMS_LOCALUNIT)	/*wjm*/
#include "ntp_refclock.h"
#endif /* VMS */

#ifdef KERNEL_PLL
#include "ntp_syscall.h"
#endif /* KERNEL_PLL */

/*
 * This is an implementation of the clock discipline algorithm described
 * in UDel TR 97-4-3, as amended. It operates as an adaptive parameter,
 * hybrid phase/frequency-lock loop. A number of sanity checks are
 * included to protect against timewarps, timespikes and general mayhem.
 * All units are in s and s/s, unless noted otherwise.
 */
#define CLOCK_MAX	.128	/* default step threshold (s) */
#define CLOCK_MINSTEP	900.	/* default stepout threshold (s) */
#define CLOCK_PANIC	1000.	/* default panic threshold (s) */
#define	CLOCK_PHI	15e-6	/* max frequency error (s/s) */
#define CLOCK_PLL	16.	/* PLL loop gain (log2) */
#define CLOCK_AVG	8.	/* parameter averaging constant */
#define CLOCK_FLL	(NTP_MAXPOLL + CLOCK_AVG) /* FLL loop gain */
#define	CLOCK_ALLAN	1500.	/* compromise Allan intercept (s) */
#define CLOCK_DAY	86400.	/* one day in seconds (s) */
#define CLOCK_JUNE	(CLOCK_DAY * 30) /* June in seconds (s) */
#define CLOCK_LIMIT	30	/* poll-adjust threshold */
#define CLOCK_PGATE	4.	/* poll-adjust gate */
#define PPS_MAXAGE	120	/* kernel pps signal timeout (s) */

/*
 * Clock discipline state machine. This is used to control the
 * synchronization behavior during initialization and following a
 * timewarp.
 *
 *	State	< step		> step		Comments
 *	====================================================
 *	NSET	FREQ		step, FREQ	no ntp.drift
 *
 *	FSET	SYNC		step, SYNC	ntp.drift
 *
 *	FREQ	if (mu < 900)	if (mu < 900)	set freq
 *		    ignore	    ignore
 *		else		else
 *		    freq, SYNC	    freq, step, SYNC
 *
 *	SYNC	SYNC		if (mu < 900)	adjust phase/freq
 *				    ignore
 *				else
 *				    SPIK
 *
 *	SPIK	SYNC		step, SYNC	set phase
 */
#define S_NSET	0		/* clock never set */
#define S_FSET	1		/* frequency set from the drift file */
#define S_SPIK	2		/* spike detected */
#define S_FREQ	3		/* frequency mode */
#define S_SYNC	4		/* clock synchronized */

/*
 * Kernel PLL/PPS state machine. This is used with the kernel PLL
 * modifications described in the README.kernel file.
 *
 * If kernel support for the ntp_adjtime() system call is available, the
 * ntp_control flag is set. The ntp_enable and kern_enable flags can be
 * set at configuration time or run time using ntpdc. If ntp_enable is
 * false, the discipline loop is unlocked and no corrections of any kind
 * are made. If both ntp_control and kern_enable are set, the kernel
 * support is used as described above; if false, the kernel is bypassed
 * entirely and the daemon discipline used instead.
 *
 * There have been three versions of the kernel discipline code. The
 * first (microkernel) now in Solaris discipilnes the microseconds. The
 * second and third (nanokernel) disciplines the clock in nanoseconds.
 * These versions are identifed if the symbol STA_PLL is present in the
 * header file /usr/include/sys/timex.h. The third and current version
 * includes TAI offset and is identified by the symbol NTP_API with
 * value 4.
 *
 * Each update to a prefer peer sets pps_stratum if it survives the
 * intersection algorithm and its time is within range. The PPS time
 * discipline is enabled (STA_PPSTIME bit set in the status word) when
 * pps_stratum is true and the PPS frequency discipline is enabled. If
 * the PPS time discipline is enabled and the kernel reports a PPS
 * signal is present, the pps_control variable is set to the current
 * time. If the current time is later than pps_control by PPS_MAXAGE
 * (120 s), this variable is set to zero.
 *
 * If an external clock is present, the clock driver sets STA_CLK in the
 * status word. When the local clock driver sees this bit, it updates
 * via this routine, which then calls ntp_adjtime() with the STA_PLL bit
 * set to zero, in which case the system clock is not adjusted. This is
 * also a signal for the external clock driver to discipline the system
 * clock.
 */
/*
 * Program variables that can be tinkered.
 */
double	clock_max = CLOCK_MAX;	/* step threshold (s) */
double	clock_minstep = CLOCK_MINSTEP; /* stepout threshold (s) */
double	clock_panic = CLOCK_PANIC; /* panic threshold (s) */
double	clock_phi = CLOCK_PHI;	/* dispersion rate (s/s) */
double	allan_xpt = CLOCK_ALLAN; /* Allan intercept (s) */

/*
 * Program variables
 */
static double clock_offset;	/* offset (s) */
double	clock_jitter;		/* offset jitter (s) */
double	drift_comp;		/* frequency (s/s) */
double	clock_stability;	/* frequency stability (wander) (s/s) */
u_long	sys_clocktime;		/* last system clock update */
u_long	pps_control;		/* last pps update */
u_long	sys_tai;		/* UTC offset from TAI (s) */
static void rstclock P((int, u_long, double)); /* transition function */

#ifdef KERNEL_PLL
struct timex ntv;		/* kernel API parameters */
int	pll_status;		/* status bits for kernel pll */
#endif /* KERNEL_PLL */

/*
 * Clock state machine control flags
 */
int	ntp_enable;		/* clock discipline enabled */
int	pll_control;		/* kernel support available */
int	kern_enable;		/* kernel support enabled */
int	pps_enable;		/* kernel PPS discipline enabled */
int	ext_enable;		/* external clock enabled */
int	pps_stratum;		/* pps stratum */
int	allow_panic = FALSE;	/* allow panic correction */
int	mode_ntpdate = FALSE;	/* exit on first clock set */

/*
 * Clock state machine variables
 */
int	state;			/* clock discipline state */
u_char	sys_poll = NTP_MINDPOLL; /* time constant/poll (log2 s) */
int	tc_counter;		/* jiggle counter */
double	last_offset;		/* last offset (s) */
double	last_base;		/* last base offset (s) */

/*
 * Huff-n'-puff filter variables
 */
static double *sys_huffpuff;	/* huff-n'-puff filter */
static int sys_hufflen;		/* huff-n'-puff filter stages */
static int sys_huffptr;		/* huff-n'-puff filter pointer */
static double sys_mindly;	/* huff-n'-puff filter min delay */

#if defined(KERNEL_PLL)
/* Emacs cc-mode goes nuts if we split the next line... */
#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | \
    MOD_STATUS | MOD_TIMECONST)
#ifdef SIGSYS
static void pll_trap P((int));	/* configuration trap */
static struct sigaction sigsys;	/* current sigaction status */
static struct sigaction newsigsys; /* new sigaction status */
static sigjmp_buf env;		/* environment var. for pll_trap() */
#endif /* SIGSYS */
#endif /* KERNEL_PLL */

/*
 * init_loopfilter - initialize loop filter data
 */
void
init_loopfilter(void)
{
	/*
	 * Initialize state variables. Initially, we expect no drift
	 * file, so set the state to S_NSET. If a drift file is present,
	 * it will be detected later and the state set to S_FSET.
	 */
	rstclock(S_NSET, 0, 0);
	clock_jitter = LOGTOD(sys_precision);
}

/*
 * local_clock - the NTP logical clock loop filter.
 *
 * Return codes:
 * -1	update ignored: exceeds panic threshold
 * 0	update ignored: popcorn or exceeds step threshold
 * 1	clock was slewed
 * 2	clock was stepped
 *
 * LOCKCLOCK: The only thing this routine does is set the
 * sys_rootdispersion variable equal to the peer dispersion.
 */
int
local_clock(
	struct	peer *peer,	/* synch source peer structure */
	double	fp_offset	/* clock offset (s) */
	)
{
	int	rval;		/* return code */
	u_long	mu;		/* interval since last update (s) */
	double	flladj;		/* FLL frequency adjustment (ppm) */
	double	plladj;		/* PLL frequency adjustment (ppm) */
	double	clock_frequency; /* clock frequency adjustment (ppm) */
	double	dtemp, etemp;	/* double temps */
#ifdef OPENSSL
	u_int32 *tpt;
	int	i;
	u_int	len;
	long	togo;
#endif /* OPENSSL */

	/*
	 * If the loop is opened or the NIST LOCKCLOCK is in use,
	 * monitor and record the offsets anyway in order to determine
	 * the open-loop response and then go home.
	 */
#ifdef DEBUG
	if (debug)
		printf(
		    "local_clock: assocID %d offset %.9f freq %.3f state %d\n",
		    peer->associd, fp_offset, drift_comp * 1e6, state);
#endif
#ifdef LOCKCLOCK
	return (0);

#else /* LOCKCLOCK */
	if (!ntp_enable) {
		record_loop_stats(fp_offset, drift_comp, clock_jitter,
		    clock_stability, sys_poll);
		return (0);
	}

	/*
	 * If the clock is way off, panic is declared. The clock_panic
	 * defaults to 1000 s; if set to zero, the panic will never
	 * occur. The allow_panic defaults to FALSE, so the first panic
	 * will exit. It can be set TRUE by a command line option, in
	 * which case the clock will be set anyway and time marches on.
	 * But, allow_panic will be set FALSE when the update is less
	 * than the step threshold; so, subsequent panics will exit.
	 */
	if (fabs(fp_offset) > clock_panic && clock_panic > 0 &&
	    !allow_panic) {
		msyslog(LOG_ERR,
		    "time correction of %.0f seconds exceeds sanity limit (%.0f); set clock manually to the correct UTC time.",
		    fp_offset, clock_panic);
		return (-1);
	}

	/*
	 * If simulating ntpdate, set the clock directly, rather than
	 * using the discipline. The clock_max defines the step
	 * threshold, above which the clock will be stepped instead of
	 * slewed. The value defaults to 128 ms, but can be set to even
	 * unreasonable values. If set to zero, the clock will never be
	 * stepped. Note that a slew will persist beyond the life of
	 * this program.
	 *
	 * Note that if ntpdate is active, the terminal does not detach,
	 * so the termination comments print directly to the console.
	 */
	if (mode_ntpdate) {
		if (fabs(fp_offset) > clock_max && clock_max > 0) {
			step_systime(fp_offset);
			msyslog(LOG_NOTICE, "time reset %+.6f s",
	   		    fp_offset);
			printf("ntpd: time set %+.6fs\n", fp_offset);
		} else {
			adj_systime(fp_offset);
			msyslog(LOG_NOTICE, "time slew %+.6f s",
			    fp_offset);
			printf("ntpd: time slew %+.6fs\n", fp_offset);
		}
		record_loop_stats(fp_offset, drift_comp, clock_jitter,
		    clock_stability, sys_poll);
		exit (0);
	}

	/*
	 * The huff-n'-puff filter finds the lowest delay in the recent
	 * interval. This is used to correct the offset by one-half the
	 * difference between the sample delay and minimum delay. This
	 * is most effective if the delays are highly assymetric and
	 * clockhopping is avoided and the clock frequency wander is
	 * relatively small.
	 *
	 * Note either there is no prefer peer or this update is from
	 * the prefer peer.
	 */
	if (sys_huffpuff != NULL && (sys_prefer == NULL || sys_prefer ==
	    peer)) {
		if (peer->delay < sys_huffpuff[sys_huffptr])
			sys_huffpuff[sys_huffptr] = peer->delay;
		if (peer->delay < sys_mindly)
			sys_mindly = peer->delay;
		if (fp_offset > 0)
			dtemp = -(peer->delay - sys_mindly) / 2;
		else
			dtemp = (peer->delay - sys_mindly) / 2;
		fp_offset += dtemp;
#ifdef DEBUG
		if (debug)
			printf(
		    "local_clock: size %d mindly %.6f huffpuff %.6f\n",
			    sys_hufflen, sys_mindly, dtemp);
#endif
	}

	/*
	 * Clock state machine transition function. This is where the
	 * action is and defines how the system reacts to large phase
	 * and frequency errors. There are two main regimes: when the
	 * offset exceeds the step threshold and when it does not.
	 * However, if the step threshold is set to zero, a step will
	 * never occur. See the instruction manual for the details how
	 * these actions interact with the command line options.
	 *
	 * Note the system poll is set to minpoll only if the clock is
	 * stepped. 
	 */
	clock_frequency = flladj = plladj = 0;
	mu = peer->epoch - sys_clocktime;
	rval = 1;
	if (fabs(fp_offset) > clock_max && clock_max > 0) {
		switch (state) {

		/*
		 * In S_SYNC state we ignore the first outlyer amd
		 * switch to S_SPIK state.
		 */
		case S_SYNC:
			state = S_SPIK;
			return (0);

		/*
		 * In S_FREQ state we ignore outlyers and inlyers. At
		 * the first outlyer after the stepout threshold,
		 * compute the apparent frequency correction and step
		 * the phase.
		 */
		case S_FREQ:
			if (mu < clock_minstep)
				return (0);

			clock_frequency = (fp_offset - last_base -
			    clock_offset) / mu;

			/* fall through to S_SPIK */

		/*
		 * In S_SPIK state we ignore succeeding outlyers until
		 * either an inlyer is found or the stepout threshold is
		 * exceeded.
		 */
		case S_SPIK:
			if (mu < clock_minstep)
				return (0);

			/* fall through to default */

		/*
		 * We get here by default in S_NSET and S_FSET states
		 * and from above in S_FREQ or S_SPIK states.
		 *
		 * In S_NSET state an initial frequency correction is
		 * not available, usually because the frequency file has
		 * not yet been written. Since the time is outside the
		 * step threshold, the clock is stepped. The frequency
		 * will be set directly following the stepout interval.
		 *
		 * In S_FSET state the initial frequency has been set
		 * from the frequency file. Since the time is outside
		 * the step threshold, the clock is stepped immediately,
		 * rather than after the stepout interval. Guys get
		 * nervous if it takes 17 minutes to set the clock for
		 * the first time.
		 *
		 * In S_FREQ and S_SPIK states the stepout threshold has
		 * expired and the phase is still above the step
		 * threshold. Note that a single spike greater than the
		 * step threshold is always suppressed, even at the
		 * longer poll intervals.
		 */ 
		default:
			step_systime(fp_offset);
			msyslog(LOG_NOTICE, "time reset %+.6f s",
			    fp_offset);
			reinit_timer();
			tc_counter = 0;
			sys_poll = NTP_MINPOLL;
			sys_tai = 0;
			clock_jitter = LOGTOD(sys_precision);
			rval = 2;
			if (state == S_NSET) {
				rstclock(S_FREQ, peer->epoch, 0);
				return (rval);
			}
			break;
		}
		rstclock(S_SYNC, peer->epoch, 0);
	} else {

		/*
		 * The offset is less than the step threshold. Calculate
		 * the jitter as the exponentially weighted offset
		 * differences.
 	      	 */
		etemp = SQUARE(clock_jitter);
		dtemp = SQUARE(max(fabs(fp_offset - last_offset),
		    LOGTOD(sys_precision)));
		clock_jitter = SQRT(etemp + (dtemp - etemp) /
		    CLOCK_AVG);
		switch (state) {

		/*
		 * In S_NSET state this is the first update received and
		 * the frequency has not been initialized. The first
		 * thing to do is directly measure the frequency offset.
		 */
		case S_NSET:
			clock_offset = fp_offset;
			rstclock(S_FREQ, peer->epoch, fp_offset);
			return (0);

		/*
		 * In S_FSET state this is the first update and the
		 * frequency has been initialized. Adjust the phase, but
		 * don't adjust the frequency until the next update.
		 */
		case S_FSET:
			clock_offset = fp_offset;
			break;

		/*
		 * In S_FREQ state ignore updates until the stepout
		 * threshold. After that, correct the phase and
		 * frequency and switch to S_SYNC state.
		 */
		case S_FREQ:
			if (mu < clock_minstep)
				return (0);

			clock_frequency = (fp_offset - last_base -
			    clock_offset) / mu;
			break;

		/*
		 * We get here by default in S_SYNC and S_SPIK states.
		 * Here we compute the frequency update due to PLL and
		 * FLL contributions.
		 */
		default:
			allow_panic = FALSE;

			/*
			 * The FLL and PLL frequency gain constants
			 * depend on the poll interval and Allan
			 * intercept. The PLL is always used, but
			 * becomes ineffective above the Allan
			 * intercept. The FLL is not used below one-half
			 * the Allan intercept. Above that the loop gain
			 * increases in steps to 1 / CLOCK_AVG. 
			 */
			if (ULOGTOD(sys_poll) > allan_xpt / 2) {
				dtemp = CLOCK_FLL - sys_poll;
				flladj = (fp_offset - clock_offset) /
				    (max(mu, allan_xpt) * dtemp);
			}

			/*
			 * For the PLL the integration interval
			 * (numerator) is the minimum of the update
			 * interval and poll interval. This allows
			 * oversampling, but not undersampling.
			 */ 
			etemp = min(mu, (u_long)ULOGTOD(sys_poll));
			dtemp = 4 * CLOCK_PLL * ULOGTOD(sys_poll);
			plladj = fp_offset * etemp / (dtemp * dtemp);
			break;
		}
		rstclock(S_SYNC, peer->epoch, fp_offset);
	}

#ifdef OPENSSL
	/*
	 * Scan the loopsecond table to determine the TAI offset. If
	 * there is a scheduled leap in future, set the leap warning,
	 * but only if less than 30 days before the leap.
	 */
	tpt = (u_int32 *)tai_leap.ptr;
	len = ntohl(tai_leap.vallen) / sizeof(u_int32);
	if (tpt != NULL) {
		for (i = 0; i < len; i++) {
			togo = (long)ntohl(tpt[i]) -
			    (long)peer->rec.l_ui;
			if (togo > 0) {
				if (togo < CLOCK_JUNE)
					leap_next |= LEAP_ADDSECOND;
				break;
			}
		}
#if defined(STA_NANO) && NTP_API == 4
		if (pll_control && kern_enable && sys_tai == 0) {
			memset(&ntv, 0, sizeof(ntv));
			ntv.modes = MOD_TAI;
			ntv.constant = i + TAI_1972 - 1;
			ntp_adjtime(&ntv);
		}
#endif /* STA_NANO */
		sys_tai = i + TAI_1972 - 1;
	}
#endif /* OPENSSL */
#ifdef KERNEL_PLL
	/*
	 * This code segment works when clock adjustments are made using
	 * precision time kernel support and the ntp_adjtime() system
	 * call. This support is available in Solaris 2.6 and later,
	 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
	 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
	 * DECstation 5000/240 and Alpha AXP, additional kernel
	 * modifications provide a true microsecond clock and nanosecond
	 * clock, respectively.
	 *
	 * Important note: The kernel discipline is used only if the
	 * offset is less than 0.5 s, as anything higher can lead to
	 * overflow problems. This might occur if some misguided lad set
	 * the step threshold to something ridiculous. No problem; use
	 * the ntp discipline until the residual offset sinks beneath
	 * the waves.
	 */
	if (pll_control && kern_enable && fabs(clock_offset) < .5) {

		/*
		 * We initialize the structure for the ntp_adjtime()
		 * system call. We have to convert everything to
		 * microseconds or nanoseconds first. Do not update the
		 * system variables if the ext_enable flag is set. In
		 * this case, the external clock driver will update the
		 * variables, which will be read later by the local
		 * clock driver. Afterwards, remember the time and
		 * frequency offsets for jitter and stability values and
		 * to update the frequency file.
		 */
		memset(&ntv,  0, sizeof(ntv));
		if (ext_enable) {
			ntv.modes = MOD_STATUS;
		} else {
			struct tm *tm = NULL;
			time_t tstamp;

#ifdef STA_NANO
			ntv.modes = MOD_BITS | MOD_NANO;
#else /* STA_NANO */
			ntv.modes = MOD_BITS;
#endif /* STA_NANO */
			if (clock_offset < 0)
				dtemp = -.5;
			else
				dtemp = .5;
#ifdef STA_NANO
			ntv.offset = (int32)(clock_offset * 1e9 +
			    dtemp);
			ntv.constant = sys_poll;
#else /* STA_NANO */
			ntv.offset = (int32)(clock_offset * 1e6 +
			    dtemp);
			ntv.constant = sys_poll - 4;
#endif /* STA_NANO */

			/*
			 * The frequency is set directly only if
			 * clock_frequency is nonzero coming out of FREQ
			 * state.
			 */
			if (clock_frequency != 0) {
				ntv.modes |= MOD_FREQUENCY;
				ntv.freq = (int32)((clock_frequency +
				    drift_comp) * 65536e6);
			}
			ntv.esterror = (u_int32)(clock_jitter * 1e6);
			ntv.maxerror = (u_int32)((sys_rootdelay / 2 +
			    sys_rootdispersion) * 1e6);
			ntv.status = STA_PLL;

			/*
			 * Set the leap bits in the status word, but
			 * only on the last day of June or December.
			 */
			tstamp = peer->rec.l_ui - JAN_1970;
			tm = gmtime(&tstamp);
			if (tm != NULL) {
				if ((tm->tm_mon + 1 == 6 &&
				    tm->tm_mday == 30) || (tm->tm_mon +
				    1 == 12 && tm->tm_mday == 31)) {
					if (leap_next & LEAP_ADDSECOND)
						ntv.status |= STA_INS;
					else if (leap_next &
					    LEAP_DELSECOND)
						ntv.status |= STA_DEL;
				}
			}

			/*
			 * Switch to FLL mode if the poll interval is
			 * greater than MAXDPOLL, so that the kernel
			 * loop behaves as the daemon loop; viz.,
			 * selects the FLL when necessary, etc. For
			 * legacy only.
			 */
			if (sys_poll > NTP_MAXDPOLL)
				ntv.status |= STA_FLL;

			/*
			 * If the PPS signal is up and enabled, light
			 * the frequency bit. If the PPS driver is
			 * working, light the phase bit as well. If not,
			 * douse the lights, since somebody else may
			 * have left the switch on.
			 */
			if (pps_enable && pll_status & STA_PPSSIGNAL) {
				ntv.status |= STA_PPSFREQ;
				if (pps_stratum < STRATUM_UNSPEC)
					ntv.status |= STA_PPSTIME;
			} else {
				ntv.status &= ~(STA_PPSFREQ |
				    STA_PPSTIME);
			}
		}

		/*
		 * Pass the stuff to the kernel. If it squeals, turn off
		 * the pig. In any case, fetch the kernel offset and
		 * frequency and pretend we did it here.
		 */
		if (ntp_adjtime(&ntv) == TIME_ERROR) {
			if (ntv.status != pll_status)
				NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
				    msyslog(LOG_NOTICE,
				    "kernel time sync disabled %04x",
				    ntv.status);
			ntv.status &= ~(STA_PPSFREQ | STA_PPSTIME);
		} else {
			if (ntv.status != pll_status)
				NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
				    msyslog(LOG_NOTICE,
				    "kernel time sync enabled %04x",
				    ntv.status);
		}
		pll_status = ntv.status;
#ifdef STA_NANO
		clock_offset = ntv.offset / 1e9;
#else /* STA_NANO */
		clock_offset = ntv.offset / 1e6;
#endif /* STA_NANO */
		clock_frequency = ntv.freq / 65536e6;
		flladj = plladj = 0;

		/*
		 * If the kernel PPS is lit, monitor its performance.
		 */
		if (ntv.status & STA_PPSTIME) {
			pps_control = current_time;
#ifdef STA_NANO
			clock_jitter = ntv.jitter / 1e9;
#else /* STA_NANO */
			clock_jitter = ntv.jitter / 1e6;
#endif /* STA_NANO */
		}
	} else {
#endif /* KERNEL_PLL */
 
		/*
		 * We get here if the kernel discipline is not enabled.
		 * Adjust the clock frequency as the sum of the directly
		 * computed frequency (if measured) and the PLL and FLL
		 * increments.
		 */
		clock_frequency = drift_comp + clock_frequency +
		    flladj + plladj;
#ifdef KERNEL_PLL
	}
#endif /* KERNEL_PLL */

	/*
	 * Clamp the frequency within the tolerance range and calculate
	 * the frequency change since the last update.
	 */
	if (fabs(clock_frequency) > NTP_MAXFREQ)
		NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
		    msyslog(LOG_NOTICE,
		    "frequency error %.0f PPM exceeds tolerance %.0f PPM",
		    clock_frequency * 1e6, NTP_MAXFREQ * 1e6);
	dtemp = SQUARE(clock_frequency - drift_comp);
	if (clock_frequency > NTP_MAXFREQ)
		drift_comp = NTP_MAXFREQ;
	else if (clock_frequency < -NTP_MAXFREQ)
		drift_comp = -NTP_MAXFREQ;
	else
		drift_comp = clock_frequency;

	/*
	 * Calculate the wander as the exponentially weighted frequency
	 * differences.
	 */
	etemp = SQUARE(clock_stability);
	clock_stability = SQRT(etemp + (dtemp - etemp) / CLOCK_AVG);

	/*
	 * Here we adjust the poll interval by comparing the current
	 * offset with the clock jitter. If the offset is less than the
	 * clock jitter times a constant, then the averaging interval is
	 * increased, otherwise it is decreased. A bit of hysteresis
	 * helps calm the dance. Works best using burst mode.
	 */
	if (fabs(clock_offset) < CLOCK_PGATE * clock_jitter) {
		tc_counter += sys_poll;
		if (tc_counter > CLOCK_LIMIT) {
			tc_counter = CLOCK_LIMIT;
			if (sys_poll < peer->maxpoll) {
				tc_counter = 0;
				sys_poll++;
			}
		}
	} else {
		tc_counter -= sys_poll << 1;
		if (tc_counter < -CLOCK_LIMIT) {
			tc_counter = -CLOCK_LIMIT;
			if (sys_poll > peer->minpoll) {
				tc_counter = 0;
				sys_poll--;
			}
		}
	}

	/*
	 * Yibbidy, yibbbidy, yibbidy; that'h all folks.
	 */
	record_loop_stats(clock_offset, drift_comp, clock_jitter,
	    clock_stability, sys_poll);
#ifdef DEBUG
	if (debug)
		printf(
		    "local_clock: mu %lu jitr %.6f freq %.3f stab %.6f poll %d count %d\n",
		    mu, clock_jitter, drift_comp * 1e6,
		    clock_stability * 1e6, sys_poll, tc_counter);
#endif /* DEBUG */
	return (rval);
#endif /* LOCKCLOCK */
}


/*
 * adj_host_clock - Called once every second to update the local clock.
 *
 * LOCKCLOCK: The only thing this routine does is increment the
 * sys_rootdispersion variable.
 */
void
adj_host_clock(
	void
	)
{
	double	adjustment;

	/*
	 * Update the dispersion since the last update. In contrast to
	 * NTPv3, NTPv4 does not declare unsynchronized after one day,
	 * since the dispersion check serves this function. Also,
	 * since the poll interval can exceed one day, the old test
	 * would be counterproductive. Note we do this even with
	 * external clocks, since the clock driver will recompute the
	 * maximum error and the local clock driver will pick it up and
	 * pass to the common refclock routines. Very elegant.
	 */
	sys_rootdispersion += clock_phi;

#ifndef LOCKCLOCK
	/*
	 * Declare PPS kernel unsync if the pps signal has not been
	 * heard for a few minutes.
	 */
	if (pps_control && current_time - pps_control > PPS_MAXAGE) {
		if (pps_control)
			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
			    msyslog(LOG_NOTICE, "pps sync disabled");
		pps_control = 0;
	}

	/*
	 * If NTP is disabled or ntpdate mode enabled or the kernel
	 * discipline is enabled, we have no business going further.
	 */
	if (!ntp_enable || mode_ntpdate || (pll_control &&
	    kern_enable))
		return;

	/*
	 * Implement the phase and frequency adjustments. The gain
	 * factor (denominator) is not allowed to increase beyond the
	 * Allan intercept. It doesn't make sense to average phase noise
	 * beyond this point and it helps to damp residual offset at the
	 * longer poll intervals.
	 */
	adjustment = clock_offset / (CLOCK_PLL * min(ULOGTOD(sys_poll),
	    allan_xpt));
	clock_offset -= adjustment;
	adj_systime(adjustment + drift_comp);
#endif /* LOCKCLOCK */
}


/*
 * Clock state machine. Enter new state and set state variables. Note we
 * use the time of the last clock filter sample, which may be earlier
 * than the current time.
 */
static void
rstclock(
	int	trans,		/* new state */
	u_long	update,		/* new update time */
	double	offset		/* new offset */
	)
{
	state = trans;
	sys_clocktime = update;
	last_base = offset - clock_offset;
	last_offset = clock_offset = offset;
#ifdef DEBUG
	if (debug)
		printf("local_clock: time %lu base %.6f offset %.6f freq %.3f state %d\n",
		    sys_clocktime, last_base, last_offset, drift_comp *
		    1e6, trans);
#endif
}


/*
 * huff-n'-puff filter
 */
void
huffpuff()
{
	int i;

	if (sys_huffpuff == NULL)
		return;

	sys_huffptr = (sys_huffptr + 1) % sys_hufflen;
	sys_huffpuff[sys_huffptr] = 1e9;
	sys_mindly = 1e9;
	for (i = 0; i < sys_hufflen; i++) {
		if (sys_huffpuff[i] < sys_mindly)
			sys_mindly = sys_huffpuff[i];
	}
}


/*
 * loop_config - configure the loop filter
 *
 * LOCKCLOCK: The LOOP_DRIFTINIT and LOOP_DRIFTCOMP cases are no-ops.
 */
void
loop_config(
	int item,
	double freq
	)
{
	int i;

	switch (item) {

	case LOOP_DRIFTINIT:

#ifndef LOCKCLOCK
#ifdef KERNEL_PLL
		/*
		 * Assume the kernel supports the ntp_adjtime() syscall.
		 * If that syscall works, initialize the kernel time
 		 * variables. Otherwise, continue leaving no harm
		 * behind. While at it, ask to set nanosecond mode. If
		 * the kernel agrees, rejoice; othewise, it does only
		 * microseconds.
		 *
		 * Call out the safety patrol. If ntpdate mode or if the
		 * step threshold has been increased by the -x option or
		 * tinker command, kernel discipline is unsafe, so don't
		 * do any of this stuff. Otherwise, initialize the
		 * kernel to appear unsynchronized until the first
		 * update is received.
		 */
		if (mode_ntpdate || clock_max > CLOCK_MAX)
			break;

		pll_control = 1;
		memset(&ntv, 0, sizeof(ntv));
#ifdef STA_NANO
		ntv.modes = MOD_BITS | MOD_NANO;
#else /* STA_NANO */
		ntv.modes = MOD_BITS;
#endif /* STA_NANO */
		ntv.maxerror = MAXDISPERSE;
		ntv.esterror = MAXDISPERSE;
		ntv.status = STA_UNSYNC;
#ifdef SIGSYS
		/*
		 * Use sigsetjmp() to save state and then call
		 * ntp_adjtime(); if it fails, then siglongjmp() is used
		 * to return control
		 */
		newsigsys.sa_handler = pll_trap;
		newsigsys.sa_flags = 0;
		if (sigaction(SIGSYS, &newsigsys, &sigsys)) {
			msyslog(LOG_ERR,
			    "sigaction() fails to save SIGSYS trap: %m");
			pll_control = 0;
		}
		if (sigsetjmp(env, 1) == 0)
			ntp_adjtime(&ntv);
		if ((sigaction(SIGSYS, &sigsys,
		    (struct sigaction *)NULL))) {
			msyslog(LOG_ERR,
			    "sigaction() fails to restore SIGSYS trap: %m");
			pll_control = 0;
		}
#else /* SIGSYS */
		ntp_adjtime(&ntv);
#endif /* SIGSYS */

		/*
		 * Save the result status and light up an external clock
		 * if available.
		 */
		pll_status = ntv.status;
		if (pll_control) {
#ifdef STA_NANO
			if (pll_status & STA_CLK)
				ext_enable = 1;
#endif /* STA_NANO */
			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
			    msyslog(LOG_INFO,
		  	    "kernel time sync status %04x",
			    pll_status);
		}
#endif /* KERNEL_PLL */
#endif /* LOCKCLOCK */
		break;

	case LOOP_DRIFTCOMP:

#ifndef LOCKCLOCK
		/*
		 * If the frequency value is reasonable, set the initial
		 * frequency to the given value and the state to S_FSET.
		 * Otherwise, the drift file may be missing or broken,
		 * so set the frequency to zero. This erases past
		 * history should somebody break something.
		 */
		if (freq <= NTP_MAXFREQ && freq >= -NTP_MAXFREQ) {
			drift_comp = freq;
			rstclock(S_FSET, 0, 0);
		} else {
			drift_comp = 0;
		}

#ifdef KERNEL_PLL
		/*
		 * Sanity check. If the kernel is available, load the
		 * frequency and light up the loop. Make sure the offset
		 * is zero to cancel any previous nonsense. If you don't
		 * want this initialization, remove the ntp.drift file.
		 */
		if (pll_control && kern_enable) {
			memset((char *)&ntv, 0, sizeof(ntv));
			ntv.modes = MOD_FREQUENCY;
			ntv.freq = (int32)(drift_comp * 65536e6);
			ntp_adjtime(&ntv);
		}
#endif /* KERNEL_PLL */
#endif /* LOCKCLOCK */
		break;

	case LOOP_KERN_CLEAR:
#ifndef LOCKCLOCK
#ifdef KERNEL_PLL
		/* Completely turn off the kernel time adjustments. */
		if (pll_control) {
			memset((char *)&ntv, 0, sizeof(ntv));
			ntv.modes = MOD_BITS | MOD_FREQUENCY;
			ntv.status = STA_UNSYNC;
			ntp_adjtime(&ntv);
			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
			    msyslog(LOG_INFO,
		  	    "kernel time sync disabled %04x",
			    ntv.status);
		   }
#endif /* KERNEL_PLL */
#endif /* LOCKCLOCK */
		break;

	/*
	 * Special tinker variables for Ulrich Windl. Very dangerous.
	 */
	case LOOP_MAX:			/* step threshold */
		clock_max = freq;
		break;

	case LOOP_PANIC:		/* panic threshold */
		clock_panic = freq;
		break;

	case LOOP_PHI:			/* dispersion rate */
		clock_phi = freq;
		break;

	case LOOP_MINSTEP:		/* watchdog bark */
		clock_minstep = freq; 
		break;

	case LOOP_ALLAN:		/* Allan intercept */
		allan_xpt = freq;
		break;
	
	case LOOP_HUFFPUFF:		/* huff-n'-puff filter length */
		if (freq < HUFFPUFF)
			freq = HUFFPUFF;
		sys_hufflen = (int)(freq / HUFFPUFF);
		sys_huffpuff = (double *)emalloc(sizeof(double) *
		    sys_hufflen);
		for (i = 0; i < sys_hufflen; i++)
			sys_huffpuff[i] = 1e9;
		sys_mindly = 1e9;
		break;

	case LOOP_FREQ:			/* initial frequency */	
		drift_comp = freq / 1e6;
		rstclock(S_FSET, 0, 0);
		break;
	}
}


#if defined(KERNEL_PLL) && defined(SIGSYS)
/*
 * _trap - trap processor for undefined syscalls
 *
 * This nugget is called by the kernel when the SYS_ntp_adjtime()
 * syscall bombs because the silly thing has not been implemented in
 * the kernel. In this case the phase-lock loop is emulated by
 * the stock adjtime() syscall and a lot of indelicate abuse.
 */
static RETSIGTYPE
pll_trap(
	int arg
	)
{
	pll_control = 0;
	siglongjmp(env, 1);
}
#endif /* KERNEL_PLL && SIGSYS */