1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
|
/*
* ntp_loopfilter.c - implements the NTP loop filter algorithm
*
* ATTENTION: Get approval from Dave Mills on all changes to this file!
*
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_unixtime.h"
#include "ntp_stdlib.h"
#include <stdio.h>
#include <ctype.h>
#include <signal.h>
#include <setjmp.h>
#if defined(VMS) && defined(VMS_LOCALUNIT) /*wjm*/
#include "ntp_refclock.h"
#endif /* VMS */
#ifdef KERNEL_PLL
#include "ntp_syscall.h"
#endif /* KERNEL_PLL */
/*
* This is an implementation of the clock discipline algorithm described
* in UDel TR 97-4-3, as amended. It operates as an adaptive parameter,
* hybrid phase/frequency-lock loop. A number of sanity checks are
* included to protect against timewarps, timespikes and general mayhem.
* All units are in s and s/s, unless noted otherwise.
*/
#define CLOCK_MAX .128 /* default step threshold (s) */
#define CLOCK_MINSTEP 900. /* default stepout threshold (s) */
#define CLOCK_PANIC 1000. /* default panic threshold (s) */
#define CLOCK_PHI 15e-6 /* max frequency error (s/s) */
#define CLOCK_PLL 16. /* PLL loop gain (log2) */
#define CLOCK_AVG 8. /* parameter averaging constant */
#define CLOCK_FLL .25 /* FLL loop gain */
#define CLOCK_ALLAN 11 /* Allan intercept (log2 s) */
#define CLOCK_DAY 86400. /* one day in seconds (s) */
#define CLOCK_JUNE (CLOCK_DAY * 30) /* June in seconds (s) */
#define CLOCK_LIMIT 30 /* poll-adjust threshold */
#define CLOCK_PGATE 4. /* poll-adjust gate */
#define PPS_MAXAGE 120 /* kernel pps signal timeout (s) */
#define FREQTOD(x) ((x) / 65536e6) /* NTP to double */
#define DTOFREQ(x) ((int32)((x) * 65536e6)) /* double to NTP */
/*
* Clock discipline state machine. This is used to control the
* synchronization behavior during initialization and following a
* timewarp.
*
* State < step > step Comments
* ========================================================
* NSET FREQ step, FREQ freq not set
*
* FSET SYNC step, SYNC freq set
*
* FREQ if (mu < 900) if (mu < 900) set freq direct
* ignore ignore
* else else
* freq, SYNC freq, step, SYNC
*
* SYNC SYNC SPIK, ignore adjust phase/freq
*
* SPIK SYNC if (mu < 900) adjust phase/freq
* ignore
* step, SYNC
*/
/*
* Kernel PLL/PPS state machine. This is used with the kernel PLL
* modifications described in the documentation.
*
* If kernel support for the ntp_adjtime() system call is available, the
* ntp_control flag is set. The ntp_enable and kern_enable flags can be
* set at configuration time or run time using ntpdc. If ntp_enable is
* false, the discipline loop is unlocked and no corrections of any kind
* are made. If both ntp_control and kern_enable are set, the kernel
* support is used as described above; if false, the kernel is bypassed
* entirely and the daemon discipline used instead.
*
* There have been three versions of the kernel discipline code. The
* first (microkernel) now in Solaris discipilnes the microseconds. The
* second and third (nanokernel) disciplines the clock in nanoseconds.
* These versions are identifed if the symbol STA_PLL is present in the
* header file /usr/include/sys/timex.h. The third and current version
* includes TAI offset and is identified by the symbol NTP_API with
* value 4.
*
* Each PPS time/frequency discipline can be enabled by the atom driver
* or another driver. If enabled, the STA_PPSTIME and STA_FREQ bits are
* set in the kernel status word; otherwise, these bits are cleared.
* These bits are also cleard if the kernel reports an error.
*
* If an external clock is present, the clock driver sets STA_CLK in the
* status word. When the local clock driver sees this bit, it updates
* via this routine, which then calls ntp_adjtime() with the STA_PLL bit
* set to zero, in which case the system clock is not adjusted. This is
* also a signal for the external clock driver to discipline the system
* clock. Unless specified otherwise, all times are in seconds.
*/
/*
* Program variables that can be tinkered.
*/
double clock_max = CLOCK_MAX; /* step threshold */
double clock_minstep = CLOCK_MINSTEP; /* stepout threshold */
double clock_panic = CLOCK_PANIC; /* panic threshold */
double clock_phi = CLOCK_PHI; /* dispersion rate (s/s) */
u_char allan_xpt = CLOCK_ALLAN; /* Allan intercept (log2 s) */
/*
* Program variables
*/
static double clock_offset; /* offset */
double clock_jitter; /* offset jitter */
double drift_comp; /* frequency (s/s) */
double clock_stability; /* frequency stability (wander) (s/s) */
double clock_codec; /* audio codec frequency (samples/s) */
static u_long clock_epoch; /* last update */
u_int sys_tai; /* TAI offset from UTC */
static void rstclock (int, double); /* transition function */
static double direct_freq(double); /* direct set frequency */
static void set_freq(double); /* set frequency */
#ifdef KERNEL_PLL
static struct timex ntv; /* ntp_adjtime() parameters */
int pll_status; /* last kernel status bits */
int pll_nano; /* nanosecond kernel switch */
#if defined(STA_NANO) && NTP_API == 4
static u_int loop_tai; /* last TAI offset */
#endif /* STA_NANO */
#endif /* KERNEL_PLL */
/*
* Clock state machine control flags
*/
int ntp_enable = 1; /* clock discipline enabled */
int pll_control; /* kernel support available */
int kern_enable = 1; /* kernel support enabled */
int pps_enable; /* kernel PPS discipline enabled */
int ext_enable; /* external clock enabled */
int pps_stratum; /* pps stratum */
int allow_panic = FALSE; /* allow panic correction */
int mode_ntpdate = FALSE; /* exit on first clock set */
/*
* Clock state machine variables
*/
int state; /* clock discipline state */
u_char sys_poll; /* time constant/poll (log2 s) */
int tc_counter; /* jiggle counter */
double last_offset; /* last offset (s) */
static u_long last_step; /* last clock step */
/*
* Huff-n'-puff filter variables
*/
static double *sys_huffpuff; /* huff-n'-puff filter */
static int sys_hufflen; /* huff-n'-puff filter stages */
static int sys_huffptr; /* huff-n'-puff filter pointer */
static double sys_mindly; /* huff-n'-puff filter min delay */
#if defined(KERNEL_PLL)
/* Emacs cc-mode goes nuts if we split the next line... */
#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | \
MOD_STATUS | MOD_TIMECONST)
#ifdef SIGSYS
static void pll_trap (int); /* configuration trap */
static struct sigaction sigsys; /* current sigaction status */
static struct sigaction newsigsys; /* new sigaction status */
static sigjmp_buf env; /* environment var. for pll_trap() */
#endif /* SIGSYS */
#endif /* KERNEL_PLL */
/*
* init_loopfilter - initialize loop filter data
*/
void
init_loopfilter(void)
{
/*
* Initialize state variables.
*/
sys_poll = ntp_minpoll;
clock_jitter = LOGTOD(sys_precision);
}
/*
* local_clock - the NTP logical clock loop filter.
*
* Return codes:
* -1 update ignored: exceeds panic threshold
* 0 update ignored: popcorn or exceeds step threshold
* 1 clock was slewed
* 2 clock was stepped
*
* LOCKCLOCK: The only thing this routine does is set the
* sys_rootdisp variable equal to the peer dispersion.
*/
int
local_clock(
struct peer *peer, /* synch source peer structure */
double fp_offset /* clock offset (s) */
)
{
int rval; /* return code */
int osys_poll; /* old system poll */
double mu; /* interval since last update */
double clock_frequency; /* clock frequency */
double dtemp, etemp; /* double temps */
char tbuf[80]; /* report buffer */
/*
* If the loop is opened or the NIST LOCKCLOCK is in use,
* monitor and record the offsets anyway in order to determine
* the open-loop response and then go home.
*/
#ifdef LOCKCLOCK
return (0);
#else /* LOCKCLOCK */
if (!ntp_enable) {
record_loop_stats(fp_offset, drift_comp, clock_jitter,
clock_stability, sys_poll);
return (0);
}
/*
* If the clock is way off, panic is declared. The clock_panic
* defaults to 1000 s; if set to zero, the panic will never
* occur. The allow_panic defaults to FALSE, so the first panic
* will exit. It can be set TRUE by a command line option, in
* which case the clock will be set anyway and time marches on.
* But, allow_panic will be set FALSE when the update is less
* than the step threshold; so, subsequent panics will exit.
*/
if (fabs(fp_offset) > clock_panic && clock_panic > 0 &&
!allow_panic) {
snprintf(tbuf, sizeof(tbuf),
"%+.0f s; set clock manually within %.0f s.",
fp_offset, clock_panic);
report_event(EVNT_SYSFAULT, NULL, tbuf);
return (-1);
}
/*
* This section simulates ntpdate. If the offset exceeds the
* step threshold (128 ms), step the clock to that time and
* exit. Othewise, slew the clock to that time and exit. Note
* that the slew will persist and eventually complete beyond the
* life of this program. Note that while ntpdate is active, the
* terminal does not detach, so the termination message prints
* directly to the terminal.
*/
if (mode_ntpdate) {
if (fabs(fp_offset) > clock_max && clock_max > 0) {
step_systime(fp_offset);
msyslog(LOG_NOTICE, "ntpd: time set %+.6f s",
fp_offset);
printf("ntpd: time set %+.6fs\n", fp_offset);
} else {
adj_systime(fp_offset);
msyslog(LOG_NOTICE, "ntpd: time slew %+.6f s",
fp_offset);
printf("ntpd: time slew %+.6fs\n", fp_offset);
}
record_loop_stats(fp_offset, drift_comp, clock_jitter,
clock_stability, sys_poll);
exit (0);
}
/*
* The huff-n'-puff filter finds the lowest delay in the recent
* interval. This is used to correct the offset by one-half the
* difference between the sample delay and minimum delay. This
* is most effective if the delays are highly assymetric and
* clockhopping is avoided and the clock frequency wander is
* relatively small.
*/
if (sys_huffpuff != NULL) {
if (peer->delay < sys_huffpuff[sys_huffptr])
sys_huffpuff[sys_huffptr] = peer->delay;
if (peer->delay < sys_mindly)
sys_mindly = peer->delay;
if (fp_offset > 0)
dtemp = -(peer->delay - sys_mindly) / 2;
else
dtemp = (peer->delay - sys_mindly) / 2;
fp_offset += dtemp;
#ifdef DEBUG
if (debug)
printf(
"local_clock: size %d mindly %.6f huffpuff %.6f\n",
sys_hufflen, sys_mindly, dtemp);
#endif
}
/*
* Clock state machine transition function which defines how the
* system reacts to large phase and frequency excursion. There
* are two main regimes: when the offset exceeds the step
* threshold (128 ms) and when it does not. Under certain
* conditions updates are suspended until the stepout theshold
* (900 s) is exceeded. See the documentation on how these
* thresholds interact with commands and command line options.
*
* Note the kernel is disabled if step is disabled or greater
* than 0.5 s or in ntpdate mode.
*/
osys_poll = sys_poll;
if (sys_poll < peer->minpoll)
sys_poll = peer->minpoll;
if (sys_poll > peer->maxpoll)
sys_poll = peer->maxpoll;
mu = current_time - clock_epoch;
clock_frequency = drift_comp;
rval = 1;
if (fabs(fp_offset) > clock_max && clock_max > 0) {
switch (state) {
/*
* In SYNC state we ignore the first outlyer amd switch
* to SPIK state.
*/
case EVNT_SYNC:
snprintf(tbuf, sizeof(tbuf), "%+.6f s",
fp_offset);
report_event(EVNT_SPIK, NULL, tbuf);
state = EVNT_SPIK;
return (0);
/*
* In FREQ state we ignore outlyers and inlyers. At the
* first outlyer after the stepout threshold, compute
* the apparent frequency correction and step the phase.
*/
case EVNT_FREQ:
if (mu < clock_minstep)
return (0);
clock_frequency = direct_freq(fp_offset);
/* fall through to S_SPIK */
/*
* In SPIK state we ignore succeeding outlyers until
* either an inlyer is found or the stepout threshold is
* exceeded.
*/
case EVNT_SPIK:
if (mu < clock_minstep)
return (0);
/* fall through to default */
/*
* We get here by default in NSET and FSET states and
* from above in FREQ or SPIK states.
*
* In NSET state an initial frequency correction is not
* available, usually because the frequency file has not
* yet been written. Since the time is outside the step
* threshold, the clock is stepped. The frequency will
* be set directly following the stepout interval.
*
* In FSET state the initial frequency has been set from
* the frequency file. Since the time is outside the
* step threshold, the clock is stepped immediately,
* rather than after the stepout interval. Guys get
* nervous if it takes 15 minutes to set the clock for
* the first time.
*
* In FREQ and SPIK states the stepout threshold has
* expired and the phase is still above the step
* threshold. Note that a single spike greater than the
* step threshold is always suppressed, even with a
* long time constant.
*/
default:
snprintf(tbuf, sizeof(tbuf), "%+.6f s",
fp_offset);
report_event(EVNT_CLOCKRESET, NULL, tbuf);
step_systime(fp_offset);
reinit_timer();
allow_panic = FALSE;
tc_counter = 0;
clock_jitter = LOGTOD(sys_precision);
rval = 2;
if (state == EVNT_NSET || (current_time -
last_step) < clock_minstep * 2) {
rstclock(EVNT_FREQ, 0);
return (rval);
}
last_step = current_time;
break;
}
rstclock(EVNT_SYNC, 0);
} else {
/*
* The offset is less than the step threshold. Calculate
* the jitter as the exponentially weighted offset
* differences.
*/
etemp = SQUARE(clock_jitter);
dtemp = SQUARE(max(fabs(fp_offset - last_offset),
LOGTOD(sys_precision)));
clock_jitter = SQRT(etemp + (dtemp - etemp) /
CLOCK_AVG);
switch (state) {
/*
* In NSET state this is the first update received and
* the frequency has not been initialized. Adjust the
* phase, but do not adjust the frequency until after
* the stepout threshold.
*/
case EVNT_NSET:
rstclock(EVNT_FREQ, fp_offset);
break;
/*
* In FSET state this is the first update received and
* the frequency has been initialized. Adjust the phase,
* but do not adjust the frequency until the next
* update.
*/
case EVNT_FSET:
rstclock(EVNT_SYNC, fp_offset);
break;
/*
* In FREQ state ignore updates until the stepout
* threshold. After that, compute the new frequency, but
* do not adjust the phase or frequency until the next
* update.
*/
case EVNT_FREQ:
if (mu < clock_minstep)
return (0);
clock_frequency = direct_freq(fp_offset);
rstclock(EVNT_SYNC, 0);
break;
/*
* We get here by default in SYNC and SPIK states. Here
* we compute the frequency update due to PLL and FLL
* contributions.
*/
default:
allow_panic = FALSE;
/*
* The FLL and PLL frequency gain constants
* depend on the time constant and Allan
* intercept. The PLL is always used, but
* becomes ineffective above the Allan intercept
* where the FLL becomes effective.
*/
if (sys_poll >= allan_xpt)
clock_frequency += (fp_offset -
clock_offset) /
max(ULOGTOD(sys_poll), mu) *
CLOCK_FLL;
/*
* The PLL frequency gain (numerator) depends on
* the minimum of the update interval and Allan
* intercept. This reduces the PLL gain when the
* FLL becomes effective.
*/
etemp = min(ULOGTOD(allan_xpt), mu);
dtemp = 4 * CLOCK_PLL * ULOGTOD(sys_poll);
clock_frequency += fp_offset * etemp / (dtemp *
dtemp);
rstclock(EVNT_SYNC, fp_offset);
break;
}
}
#ifdef KERNEL_PLL
/*
* This code segment works when clock adjustments are made using
* precision time kernel support and the ntp_adjtime() system
* call. This support is available in Solaris 2.6 and later,
* Digital Unix 4.0 and later, FreeBSD, Linux and specially
* modified kernels for HP-UX 9 and Ultrix 4. In the case of the
* DECstation 5000/240 and Alpha AXP, additional kernel
* modifications provide a true microsecond clock and nanosecond
* clock, respectively.
*
* Important note: The kernel discipline is used only if the
* step threshold is less than 0.5 s, as anything higher can
* lead to overflow problems. This might occur if some misguided
* lad set the step threshold to something ridiculous.
*/
if (pll_control && kern_enable) {
/*
* We initialize the structure for the ntp_adjtime()
* system call. We have to convert everything to
* microseconds or nanoseconds first. Do not update the
* system variables if the ext_enable flag is set. In
* this case, the external clock driver will update the
* variables, which will be read later by the local
* clock driver. Afterwards, remember the time and
* frequency offsets for jitter and stability values and
* to update the frequency file.
*/
memset(&ntv, 0, sizeof(ntv));
if (ext_enable) {
ntv.modes = MOD_STATUS;
} else {
if (pll_nano)
ntv.modes = MOD_BITS | MOD_NANO;
else
ntv.modes = MOD_BITS;
if (clock_offset < 0)
dtemp = -.5;
else
dtemp = .5;
if (pll_nano) {
ntv.offset = (int32)(clock_offset * 1e9 +
dtemp);
ntv.constant = sys_poll;
} else {
ntv.offset = (int32)(clock_offset * 1e6 +
dtemp);
ntv.constant = sys_poll - 4;
}
ntv.esterror = (u_int32)(clock_jitter * 1e6);
ntv.maxerror = (u_int32)((sys_rootdelay / 2 +
sys_rootdisp) * 1e6);
ntv.status = STA_PLL;
/*
* Enable/disable the PPS if requested.
*/
if (pps_enable) {
if (!(pll_status & STA_PPSTIME))
report_event(EVNT_KERN,
NULL, "PPS enabled");
ntv.status |= STA_PPSTIME | STA_PPSFREQ;
} else {
if (pll_status & STA_PPSTIME)
report_event(EVNT_KERN,
NULL, "PPS disabled");
ntv.status &= ~(STA_PPSTIME |
STA_PPSFREQ);
}
if (sys_leap == LEAP_ADDSECOND)
ntv.status |= STA_INS;
else if (sys_leap == LEAP_DELSECOND)
ntv.status |= STA_DEL;
}
/*
* Pass the stuff to the kernel. If it squeals, turn off
* the pps. In any case, fetch the kernel offset,
* frequency and jitter.
*/
if (ntp_adjtime(&ntv) == TIME_ERROR) {
if (!(ntv.status & STA_PPSSIGNAL))
report_event(EVNT_KERN, NULL,
"PPS no signal");
}
pll_status = ntv.status;
if (pll_nano)
clock_offset = ntv.offset / 1e9;
else
clock_offset = ntv.offset / 1e6;
clock_frequency = FREQTOD(ntv.freq);
/*
* If the kernel PPS is lit, monitor its performance.
*/
if (ntv.status & STA_PPSTIME) {
if (pll_nano)
clock_jitter = ntv.jitter / 1e9;
else
clock_jitter = ntv.jitter / 1e6;
}
#if defined(STA_NANO) && NTP_API == 4
/*
* If the TAI changes, update the kernel TAI.
*/
if (loop_tai != sys_tai) {
loop_tai = sys_tai;
ntv.modes = MOD_TAI;
ntv.constant = sys_tai;
ntp_adjtime(&ntv);
}
#endif /* STA_NANO */
}
#endif /* KERNEL_PLL */
/*
* Clamp the frequency within the tolerance range and calculate
* the frequency difference since the last update.
*/
if (fabs(clock_frequency) > NTP_MAXFREQ)
msyslog(LOG_NOTICE,
"frequency error %.0f PPM exceeds tolerance %.0f PPM",
clock_frequency * 1e6, NTP_MAXFREQ * 1e6);
dtemp = SQUARE(clock_frequency - drift_comp);
if (clock_frequency > NTP_MAXFREQ)
drift_comp = NTP_MAXFREQ;
else if (clock_frequency < -NTP_MAXFREQ)
drift_comp = -NTP_MAXFREQ;
else
drift_comp = clock_frequency;
/*
* Calculate the wander as the exponentially weighted RMS
* frequency differences. Record the change for the frequency
* file update.
*/
etemp = SQUARE(clock_stability);
clock_stability = SQRT(etemp + (dtemp - etemp) / CLOCK_AVG);
drift_file_sw = TRUE;
/*
* Here we adjust the timeconstan by comparing the current
* offset with the clock jitter. If the offset is less than the
* clock jitter times a constant, then the averaging interval is
* increased, otherwise it is decreased. A bit of hysteresis
* helps calm the dance. Works best using burst mode.
*/
if (fabs(clock_offset) < CLOCK_PGATE * clock_jitter) {
tc_counter += sys_poll;
if (tc_counter > CLOCK_LIMIT) {
tc_counter = CLOCK_LIMIT;
if (sys_poll < peer->maxpoll) {
tc_counter = 0;
sys_poll++;
}
}
} else {
tc_counter -= sys_poll << 1;
if (tc_counter < -CLOCK_LIMIT) {
tc_counter = -CLOCK_LIMIT;
if (sys_poll > peer->minpoll) {
tc_counter = 0;
sys_poll--;
}
}
}
/*
* If the time constant has changed, update the poll variables.
*/
if (osys_poll != sys_poll)
poll_update(peer, sys_poll);
/*
* Yibbidy, yibbbidy, yibbidy; that'h all folks.
*/
record_loop_stats(clock_offset, drift_comp, clock_jitter,
clock_stability, sys_poll);
#ifdef DEBUG
if (debug)
printf(
"local_clock: offset %.9f jit %.9f freq %.3f stab %.3f poll %d\n",
clock_offset, clock_jitter, drift_comp * 1e6,
clock_stability * 1e6, sys_poll);
#endif /* DEBUG */
return (rval);
#endif /* LOCKCLOCK */
}
/*
* adj_host_clock - Called once every second to update the local clock.
*
* LOCKCLOCK: The only thing this routine does is increment the
* sys_rootdisp variable.
*/
void
adj_host_clock(
void
)
{
double adjustment;
/*
* Update the dispersion since the last update. In contrast to
* NTPv3, NTPv4 does not declare unsynchronized after one day,
* since the dispersion check serves this function. Also,
* since the poll interval can exceed one day, the old test
* would be counterproductive.
*/
sys_rootdisp += clock_phi;
#ifndef LOCKCLOCK
/*
* If clock discipline is disabled or if the kernel is enabled,
* get out of Dodge quick.
*/
if (!ntp_enable || mode_ntpdate || (pll_control &&
kern_enable))
return;
/*
* Implement the phase and frequency adjustments. The gain
* factor (denominator) increases with poll interval, so is
* dominated by the FLL above the Allan intercept.
*/
adjustment = clock_offset / (CLOCK_PLL * ULOGTOD(sys_poll));
clock_offset -= adjustment;
adj_systime(adjustment + drift_comp);
#endif /* LOCKCLOCK */
}
/*
* Clock state machine. Enter new state and set state variables.
*/
static void
rstclock(
int trans, /* new state */
double offset /* new offset */
)
{
#ifdef DEBUG
if (debug > 1)
printf("local_clock: mu %lu state %d poll %d count %d\n",
current_time - clock_epoch, trans, sys_poll,
tc_counter);
#endif
if (trans != state && trans != EVNT_FSET)
report_event(trans, NULL, NULL);
state = trans;
last_offset = clock_offset = offset;
clock_epoch = current_time;
}
/*
* calc_freq - calculate frequency directly
*
* This is very carefully done. When the offset is first computed at the
* first update, a residual frequency component results. Subsequently,
* updates are suppresed until the end of the measurement interval while
* the offset is amortized. At the end of the interval the frequency is
* calculated from the current offset, residual offset, length of the
* interval and residual frequency component. At the same time the
* frequenchy file is armed for update at the next hourly stats.
*/
static double
direct_freq(
double fp_offset
)
{
#ifdef KERNEL_PLL
/*
* If the kernel is enabled, we need the residual offset to
* calculate the frequency correction.
*/
if (pll_control && kern_enable) {
memset(&ntv, 0, sizeof(ntv));
ntp_adjtime(&ntv);
if (pll_nano)
clock_offset = ntv.offset / 1e9;
else
clock_offset = ntv.offset / 1e6;
drift_comp = FREQTOD(ntv.freq);
}
#endif /* KERNEL_PLL */
set_freq((fp_offset - clock_offset) / (current_time -
clock_epoch) + drift_comp);
wander_resid = 0;
return (drift_comp);
}
/*
* set_freq - set clock frequency
*/
static void
set_freq(
double freq /* frequency update */
)
{
char tbuf[80];
drift_comp = freq;
#ifdef KERNEL_PLL
/*
* If the kernel is enabled, update the kernel frequency.
*/
if (pll_control && kern_enable) {
memset(&ntv, 0, sizeof(ntv));
ntv.modes = MOD_FREQUENCY;
ntv.freq = DTOFREQ(drift_comp);
ntp_adjtime(&ntv);
snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM",
drift_comp * 1e6);
report_event(EVNT_FSET, NULL, tbuf);
} else {
snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM",
drift_comp * 1e6);
report_event(EVNT_FSET, NULL, tbuf);
}
#else /* KERNEL_PLL */
snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp *
1e6);
report_event(EVNT_FSET, NULL, tbuf);
#endif /* KERNEL_PLL */
}
/*
* huff-n'-puff filter
*/
void
huffpuff()
{
int i;
if (sys_huffpuff == NULL)
return;
sys_huffptr = (sys_huffptr + 1) % sys_hufflen;
sys_huffpuff[sys_huffptr] = 1e9;
sys_mindly = 1e9;
for (i = 0; i < sys_hufflen; i++) {
if (sys_huffpuff[i] < sys_mindly)
sys_mindly = sys_huffpuff[i];
}
}
/*
* loop_config - configure the loop filter
*
* LOCKCLOCK: The LOOP_DRIFTINIT and LOOP_DRIFTCOMP cases are no-ops.
*/
void
loop_config(
int item,
double freq
)
{
int i;
#ifdef DEBUG
if (debug > 1)
printf("loop_config: item %d freq %f\n", item, freq);
#endif
switch (item) {
/*
* We first assume the kernel supports the ntp_adjtime()
* syscall. If that syscall works, initialize the kernel time
* variables. Otherwise, continue leaving no harm behind.
*/
case LOOP_DRIFTINIT:
#ifndef LOCKCLOCK
#ifdef KERNEL_PLL
if (mode_ntpdate)
break;
pll_control = 1;
memset(&ntv, 0, sizeof(ntv));
ntv.modes = MOD_BITS;
ntv.status = STA_PLL;
ntv.maxerror = MAXDISPERSE;
ntv.esterror = MAXDISPERSE;
ntv.constant = sys_poll;
#ifdef SIGSYS
/*
* Use sigsetjmp() to save state and then call
* ntp_adjtime(); if it fails, then siglongjmp() is used
* to return control
*/
newsigsys.sa_handler = pll_trap;
newsigsys.sa_flags = 0;
if (sigaction(SIGSYS, &newsigsys, &sigsys)) {
msyslog(LOG_ERR,
"sigaction() fails to save SIGSYS trap: %m");
pll_control = 0;
}
if (sigsetjmp(env, 1) == 0)
ntp_adjtime(&ntv);
if ((sigaction(SIGSYS, &sigsys,
(struct sigaction *)NULL))) {
msyslog(LOG_ERR,
"sigaction() fails to restore SIGSYS trap: %m");
pll_control = 0;
}
#else /* SIGSYS */
ntp_adjtime(&ntv);
#endif /* SIGSYS */
/*
* Save the result status and light up an external clock
* if available.
*/
pll_status = ntv.status;
if (pll_control) {
#ifdef STA_NANO
if (pll_status & STA_NANO)
pll_nano = 1;
if (pll_status & STA_CLK)
ext_enable = 1;
#endif /* STA_NANO */
report_event(EVNT_KERN, NULL,
"kernel time sync enabled");
}
#endif /* KERNEL_PLL */
#endif /* LOCKCLOCK */
break;
/*
* Initialize the frequency. If the frequency file is missing or
* broken, set the initial frequency to zero and set the state
* to NSET. Otherwise, set the initial frequency to the given
* value and the state to FSET.
*/
case LOOP_DRIFTCOMP:
#ifndef LOCKCLOCK
if (freq > NTP_MAXFREQ || freq < -NTP_MAXFREQ) {
set_freq(0);
rstclock(EVNT_NSET, 0);
} else {
set_freq(freq);
rstclock(EVNT_FSET, 0);
}
#endif /* LOCKCLOCK */
break;
/*
* Disable the kernel at shutdown. The microkernel just abandons
* ship. The nanokernel carefully cleans up so applications can
* see this. Note the last programmed offset and frequency are
* left in place.
*/
case LOOP_KERN_CLEAR:
#ifndef LOCKCLOCK
#ifdef KERNEL_PLL
if (pll_control && kern_enable) {
memset((char *)&ntv, 0, sizeof(ntv));
ntv.modes = MOD_STATUS;
ntv.status = STA_UNSYNC;
ntp_adjtime(&ntv);
report_event(EVNT_KERN, NULL,
"kernel time sync disabledx");
}
#endif /* KERNEL_PLL */
#endif /* LOCKCLOCK */
break;
/*
* Tinker command variables for Ulrich Windl. Very dangerous.
*/
case LOOP_ALLAN: /* Allan intercept (log2) (allan) */
allan_xpt = (u_char)freq;
break;
case LOOP_CODEC: /* audio codec frequency (codec) */
clock_codec = freq / 1e6;
break;
case LOOP_PHI: /* dispersion threshold (dispersion) */
clock_phi = freq / 1e6;
break;
case LOOP_FREQ: /* initial frequency (freq) */
set_freq(freq / 1e6);
rstclock(EVNT_FSET, 0);
break;
case LOOP_HUFFPUFF: /* huff-n'-puff length (huffpuff) */
if (freq < HUFFPUFF)
freq = HUFFPUFF;
sys_hufflen = (int)(freq / HUFFPUFF);
sys_huffpuff = (double *)emalloc(sizeof(double) *
sys_hufflen);
for (i = 0; i < sys_hufflen; i++)
sys_huffpuff[i] = 1e9;
sys_mindly = 1e9;
break;
case LOOP_PANIC: /* panic threshold (panic) */
clock_panic = freq;
break;
case LOOP_MAX: /* step threshold (step) */
clock_max = freq;
if (clock_max == 0 || clock_max > 0.5)
kern_enable = 0;
break;
case LOOP_MINSTEP: /* stepout threshold (stepout) */
clock_minstep = freq;
break;
case LOOP_LEAP: /* not used */
default:
msyslog(LOG_NOTICE,
"loop_config: unsupported option %d", item);
}
}
#if defined(KERNEL_PLL) && defined(SIGSYS)
/*
* _trap - trap processor for undefined syscalls
*
* This nugget is called by the kernel when the SYS_ntp_adjtime()
* syscall bombs because the silly thing has not been implemented in
* the kernel. In this case the phase-lock loop is emulated by
* the stock adjtime() syscall and a lot of indelicate abuse.
*/
static RETSIGTYPE
pll_trap(
int arg
)
{
pll_control = 0;
siglongjmp(env, 1);
}
#endif /* KERNEL_PLL && SIGSYS */
|