File: numpy-1-24-pr8691.patch

package info (click to toggle)
numba 0.56.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,672 kB
  • sloc: python: 183,651; ansic: 15,370; cpp: 2,259; javascript: 424; sh: 308; makefile: 174
file content (423 lines) | stat: -rw-r--r-- 17,393 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
From 9a6554a1b6cfeeb27c58fc3bc9ec72be03a6a1cf Mon Sep 17 00:00:00 2001
From: Graham Markall <gmarkall@nvidia.com>
Date: Thu, 24 Nov 2022 15:41:24 +0000
Subject: [PATCH 01/13] CUDA intrinsics tests: correct np.float -> np.float16

I believe this was written in error and should always have been float16.
---
 numba/cuda/tests/cudapy/test_intrinsics.py | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

--- a/numba/cuda/tests/cudapy/test_intrinsics.py
+++ b/numba/cuda/tests/cudapy/test_intrinsics.py
@@ -619,7 +619,7 @@
         arg2 = np.float16(4.)
         compiled[1, 1](ary, arg1, arg2)
         np.testing.assert_allclose(ary[0], arg2)
-        arg1 = np.float(5.)
+        arg1 = np.float16(5.)
         compiled[1, 1](ary, arg1, arg2)
         np.testing.assert_allclose(ary[0], arg1)
 
@@ -631,7 +631,7 @@
         arg2 = np.float16(4.)
         compiled[1, 1](ary, arg1, arg2)
         np.testing.assert_allclose(ary[0], arg1)
-        arg1 = np.float(5.)
+        arg1 = np.float16(5.)
         compiled[1, 1](ary, arg1, arg2)
         np.testing.assert_allclose(ary[0], arg2)
 
--- a/numba/tests/test_linalg.py
+++ b/numba/tests/test_linalg.py
@@ -1122,6 +1122,32 @@
     Tests for np.linalg.svd.
     """
 
+    # This checks that A ~= U*S*V**H, i.e. SV decomposition ties out.  This is
+    # required as NumPy uses only double precision LAPACK routines and
+    # computation of SVD is numerically sensitive. Numba uses type-specific
+    # routines and therefore sometimes comes out with a different answer to
+    # NumPy (orthonormal bases are not unique, etc.).
+
+    def check_reconstruction(self, a, got, expected):
+        u, sv, vt = got
+
+        # Check they are dimensionally correct
+        for k in range(len(expected)):
+            self.assertEqual(got[k].shape, expected[k].shape)
+
+        # Columns in u and rows in vt dictates the working size of s
+        s = np.zeros((u.shape[1], vt.shape[0]))
+        np.fill_diagonal(s, sv)
+
+        rec = np.dot(np.dot(u, s), vt)
+        resolution = np.finfo(a.dtype).resolution
+        np.testing.assert_allclose(
+            a,
+            rec,
+            rtol=10 * resolution,
+            atol=100 * resolution  # zeros tend to be fuzzy
+        )
+
     @needs_lapack
     def test_linalg_svd(self):
         """
@@ -1150,34 +1176,8 @@
                     # plain match failed, test by reconstruction
                     use_reconstruction = True
 
-            # if plain match fails then reconstruction is used.
-            # this checks that A ~= U*S*V**H
-            # i.e. SV decomposition ties out
-            # this is required as numpy uses only double precision lapack
-            # routines and computation of svd is numerically
-            # sensitive, numba using the type specific routines therefore
-            # sometimes comes out with a different answer (orthonormal bases
-            # are not unique etc.).
             if use_reconstruction:
-                u, sv, vt = got
-
-                # check they are dimensionally correct
-                for k in range(len(expected)):
-                    self.assertEqual(got[k].shape, expected[k].shape)
-
-                # regardless of full_matrices cols in u and rows in vt
-                # dictates the working size of s
-                s = np.zeros((u.shape[1], vt.shape[0]))
-                np.fill_diagonal(s, sv)
-
-                rec = np.dot(np.dot(u, s), vt)
-                resolution = np.finfo(a.dtype).resolution
-                np.testing.assert_allclose(
-                    a,
-                    rec,
-                    rtol=10 * resolution,
-                    atol=100 * resolution  # zeros tend to be fuzzy
-                )
+                self.check_reconstruction(a, got, expected)
 
             # Ensure proper resource management
             with self.assertNoNRTLeak():
@@ -1238,8 +1238,11 @@
         got = func(X, False)
         np.testing.assert_allclose(X, X_orig)
 
-        for e_a, g_a in zip(expected, got):
-            np.testing.assert_allclose(e_a, g_a)
+        try:
+            for e_a, g_a in zip(expected, got):
+                np.testing.assert_allclose(e_a, g_a)
+        except AssertionError:
+            self.check_reconstruction(X, got, expected)
 
 
 class TestLinalgQr(TestLinalgBase):
--- a/numba/tests/test_comprehension.py
+++ b/numba/tests/test_comprehension.py
@@ -11,6 +11,7 @@
 from numba.core import types, utils
 from numba.core.errors import TypingError, LoweringError
 from numba.core.types.functions import _header_lead
+from numba.np.numpy_support import numpy_version
 from numba.tests.support import tag, _32bit, captured_stdout
 
 
@@ -360,6 +361,7 @@
         self.check(comp_nest_with_array_conditional, 5,
                    assert_allocate_list=True)
 
+    @unittest.skipUnless(numpy_version < (1, 24), 'Removed in NumPy 1.24')
     def test_comp_nest_with_dependency(self):
         def comp_nest_with_dependency(n):
             l = np.array([[i * j for j in range(i+1)] for i in range(n)])
--- a/numba/stencils/stencilparfor.py
+++ b/numba/stencils/stencilparfor.py
@@ -21,6 +21,7 @@
                             find_callname, require, find_const, GuardException)
 from numba.core.errors import NumbaValueError
 from numba.core.utils import OPERATORS_TO_BUILTINS
+from numba.np import numpy_support
 
 
 def _compute_last_ind(dim_size, index_const):
@@ -264,7 +265,11 @@
             dtype_g_np_assign = ir.Assign(dtype_g_np, dtype_g_np_var, loc)
             init_block.body.append(dtype_g_np_assign)
 
-            dtype_np_attr_call = ir.Expr.getattr(dtype_g_np_var, return_type.dtype.name, loc)
+            return_type_name = numpy_support.as_dtype(
+                               return_type.dtype).type.__name__
+            if return_type_name == 'bool':
+                return_type_name = 'bool_'
+            dtype_np_attr_call = ir.Expr.getattr(dtype_g_np_var, return_type_name, loc)
             dtype_attr_var = ir.Var(scope, mk_unique_var("$np_attr_attr"), loc)
             self.typemap[dtype_attr_var.name] = types.functions.NumberClass(return_type.dtype)
             dtype_attr_assign = ir.Assign(dtype_np_attr_call, dtype_attr_var, loc)
--- a/numba/tests/test_mathlib.py
+++ b/numba/tests/test_mathlib.py
@@ -516,7 +516,7 @@
             with warnings.catch_warnings():
                 warnings.simplefilter("error", RuntimeWarning)
                 self.assertRaisesRegexp(RuntimeWarning,
-                                        'overflow encountered in .*_scalars',
+                                        'overflow encountered in .*scalar',
                                         naive_hypot, val, val)
 
     def test_hypot_npm(self):
--- a/numba/tests/test_array_methods.py
+++ b/numba/tests/test_array_methods.py
@@ -1193,7 +1193,7 @@
         pyfunc = array_sum_dtype_kws
         cfunc = jit(nopython=True)(pyfunc)
         all_dtypes = [np.float64, np.float32, np.int64, np.int32, np.uint32,
-                      np.uint64, np.complex64, np.complex128, TIMEDELTA_M]
+                      np.uint64, np.complex64, np.complex128]
         all_test_arrays = [
             [np.ones((7, 6, 5, 4, 3), arr_dtype),
              np.ones(1, arr_dtype),
@@ -1207,8 +1207,7 @@
                       np.dtype('uint32'): [np.float64, np.int64, np.float32],
                       np.dtype('uint64'): [np.float64, np.int64],
                       np.dtype('complex64'): [np.complex64, np.complex128],
-                      np.dtype('complex128'): [np.complex128],
-                      np.dtype(TIMEDELTA_M): [np.dtype(TIMEDELTA_M)]}
+                      np.dtype('complex128'): [np.complex128]}
 
         for arr_list in all_test_arrays:
             for arr in arr_list:
@@ -1216,15 +1215,15 @@
                     subtest_str = ("Testing np.sum with {} input and {} output"
                                    .format(arr.dtype, out_dtype))
                     with self.subTest(subtest_str):
-                        self.assertPreciseEqual(pyfunc(arr, dtype=out_dtype),
-                                                cfunc(arr, dtype=out_dtype))
+                            self.assertPreciseEqual(pyfunc(arr, dtype=out_dtype),
+                                                    cfunc(arr, dtype=out_dtype))
 
     def test_sum_axis_dtype_kws(self):
         """ test sum with axis and dtype parameters over a whole range of dtypes """
         pyfunc = array_sum_axis_dtype_kws
         cfunc = jit(nopython=True)(pyfunc)
         all_dtypes = [np.float64, np.float32, np.int64, np.int32, np.uint32,
-                      np.uint64, np.complex64, np.complex128, TIMEDELTA_M]
+                      np.uint64, np.complex64, np.complex128]
         all_test_arrays = [
             [np.ones((7, 6, 5, 4, 3), arr_dtype),
              np.ones(1, arr_dtype),
@@ -1238,9 +1237,7 @@
                       np.dtype('uint32'): [np.float64, np.int64, np.float32],
                       np.dtype('uint64'): [np.float64, np.uint64],
                       np.dtype('complex64'): [np.complex64, np.complex128],
-                      np.dtype('complex128'): [np.complex128],
-                      np.dtype(TIMEDELTA_M): [np.dtype(TIMEDELTA_M)],
-                      np.dtype(TIMEDELTA_Y): [np.dtype(TIMEDELTA_Y)]}
+                      np.dtype('complex128'): [np.complex128]}
 
         for arr_list in all_test_arrays:
             for arr in arr_list:
--- a/numba/tests/test_np_functions.py
+++ b/numba/tests/test_np_functions.py
@@ -932,11 +932,11 @@
             yield np.inf, None
             yield np.PINF, None
             yield np.asarray([-np.inf, 0., np.inf]), None
-            yield np.NINF, np.zeros(1, dtype=np.bool)
-            yield np.inf, np.zeros(1, dtype=np.bool)
-            yield np.PINF, np.zeros(1, dtype=np.bool)
+            yield np.NINF, np.zeros(1, dtype=np.bool_)
+            yield np.inf, np.zeros(1, dtype=np.bool_)
+            yield np.PINF, np.zeros(1, dtype=np.bool_)
             yield np.NINF, np.empty(12)
-            yield np.asarray([-np.inf, 0., np.inf]), np.zeros(3, dtype=np.bool)
+            yield np.asarray([-np.inf, 0., np.inf]), np.zeros(3, dtype=np.bool_)
 
         pyfuncs = [isneginf, isposinf]
         for pyfunc in pyfuncs:
@@ -4775,6 +4775,7 @@
         eval(compile(funcstr, '<string>', 'exec'))
         return locals()['foo']
 
+    @unittest.skipIf(numpy_version >= (1, 24), "NumPy < 1.24 required")
     def test_MachAr(self):
         attrs = ('ibeta', 'it', 'machep', 'eps', 'negep', 'epsneg', 'iexp',
                  'minexp', 'xmin', 'maxexp', 'xmax', 'irnd', 'ngrd',
@@ -4817,7 +4818,8 @@
             cfunc = jit(nopython=True)(iinfo)
             cfunc(np.float64(7))
 
-    @unittest.skipUnless(numpy_version >= (1, 22), "Needs NumPy >= 1.22")
+    @unittest.skipUnless((1, 22) <= numpy_version < (1, 24),
+                         "Needs NumPy >= 1.22, < 1.24")
     @TestCase.run_test_in_subprocess
     def test_np_MachAr_deprecation_np122(self):
         # Tests that Numba is replaying the NumPy 1.22 deprecation warning
--- a/numba/np/arraymath.py
+++ b/numba/np/arraymath.py
@@ -4177,6 +4177,10 @@
 # This module is imported under the compiler lock which should deal with the
 # lack of thread safety in the warning filter.
 def _gen_np_machar():
+    # NumPy 1.24 removed np.MachAr
+    if numpy_version >= (1, 24):
+        return
+
     np122plus = numpy_version >= (1, 22)
     w = None
     with warnings.catch_warnings(record=True) as w:
--- a/numba/np/ufunc/_internal.c
+++ b/numba/np/ufunc/_internal.c
@@ -285,9 +285,7 @@
     PyCFunctionWithKeywords ufunc_accumulate;
     PyCFunctionWithKeywords ufunc_reduceat;
     PyCFunctionWithKeywords ufunc_outer;
-#if NPY_API_VERSION >= 0x00000008
     PyCFunction ufunc_at;
-#endif
 } ufunc_dispatch;
 
 static int
@@ -303,10 +301,8 @@
             if (strncmp(crnt_name, "accumulate", 11) == 0) {
                 ufunc_dispatch.ufunc_accumulate =
                     (PyCFunctionWithKeywords)crnt->ml_meth;
-#if NPY_API_VERSION >= 0x00000008
             } else if (strncmp(crnt_name, "at", 3) == 0) {
                 ufunc_dispatch.ufunc_at = crnt->ml_meth;
-#endif
             } else {
                 result = -1;
             }
@@ -326,10 +322,15 @@
             } else if (strncmp(crnt_name, "reduceat", 9) == 0) {
                 ufunc_dispatch.ufunc_reduceat =
                     (PyCFunctionWithKeywords)crnt->ml_meth;
+            } else if (strncmp(crnt_name, "resolve_dtypes", 15) == 0) {
+              /* Ignored */
             } else {
                 result = -1;
             }
             break;
+        case '_':
+            // We ignore private methods
+            break;
         default:
             result = -1; /* Unknown method */
         }
@@ -341,6 +342,8 @@
                 *numpy_uses_fastcall = crnt->ml_flags & METH_FASTCALL;
             }
             else if (*numpy_uses_fastcall != (crnt->ml_flags & METH_FASTCALL)) {
+                PyErr_SetString(PyExc_RuntimeError,
+                    "ufunc.at() flags do not match numpy_uses_fastcall");
                 return -1;
             }
         }
@@ -351,11 +354,13 @@
                   && (ufunc_dispatch.ufunc_accumulate != NULL)
                   && (ufunc_dispatch.ufunc_reduceat != NULL)
                   && (ufunc_dispatch.ufunc_outer != NULL)
-#if NPY_API_VERSION >= 0x00000008
                   && (ufunc_dispatch.ufunc_at != NULL)
-#endif
                   );
+    } else {
+        char const * const fmt = "Unexpected ufunc method %s()";
+        PyErr_Format(PyExc_RuntimeError, fmt, crnt_name);
     }
+
     return result;
 }
 
@@ -425,13 +430,11 @@
 }
 
 
-#if NPY_API_VERSION >= 0x00000008
 static PyObject *
 dufunc_at(PyDUFuncObject * self, PyObject * args)
 {
     return ufunc_dispatch.ufunc_at((PyObject*)self->ufunc, args);
 }
-#endif
 
 static PyObject *
 dufunc__compile_for_args(PyDUFuncObject * self, PyObject * args,
@@ -609,11 +612,9 @@
     {"outer",
         (PyCFunction)dufunc_outer,
         METH_VARARGS | METH_KEYWORDS, NULL},
-#if NPY_API_VERSION >= 0x00000008
     {"at",
         (PyCFunction)dufunc_at,
         METH_VARARGS, NULL},
-#endif
     {"_compile_for_args",
         (PyCFunction)dufunc__compile_for_args,
         METH_VARARGS | METH_KEYWORDS,
@@ -643,11 +644,9 @@
     {"outer",
         (PyCFunction)dufunc_outer_fast,
         METH_FASTCALL | METH_KEYWORDS, NULL},
-#if NPY_API_VERSION >= 0x00000008
     {"at",
         (PyCFunction)dufunc_at,
         METH_VARARGS, NULL},
-#endif
     {"_compile_for_args",
         (PyCFunction)dufunc__compile_for_args,
         METH_VARARGS | METH_KEYWORDS,
@@ -791,9 +790,7 @@
     if (PyModule_AddIntMacro(m, PyUFunc_One)
         || PyModule_AddIntMacro(m, PyUFunc_Zero)
         || PyModule_AddIntMacro(m, PyUFunc_None)
-#if NPY_API_VERSION >= 0x00000007
         || PyModule_AddIntMacro(m, PyUFunc_ReorderableNone)
-#endif
         )
         return MOD_ERROR_VAL;
 
--- a/docs/source/user/installing.rst
+++ b/docs/source/user/installing.rst
@@ -5,7 +5,7 @@
 Compatibility
 -------------
 
-Numba is compatible with Python 3.7--3.10, and Numpy versions 1.18 up to 1.23.
+Numba is compatible with Python 3.7--3.10, and Numpy versions 1.21--1.24.
 
 Our supported platforms are:
 
@@ -276,7 +276,7 @@
 +----------++--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+
 | Numba     | Release date | Python                    | NumPy                      | llvmlite                     | LLVM              | TBB                         |
 +===========+==============+===========================+============================+==============================+===================+=============================+
-| 0.57.x    | TBC          | 3.8.x <= version < 3.12   | 1.19 <= version < 1.24     | 0.40.x                       | 11.x              | 2021.x                      |
+| 0.57.0    | TBC          | 3.8.x <= version < 3.12   | 1.21 <= version < 1.24     | 0.40.x                       | 11.x              | 2021.x                      |
 +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+
 | 0.56.4    | 2022-11-03   | 3.7.x <= version < 3.11   | 1.18 <= version < 1.24     | 0.39.x                       | 11.x              | 2021.x                      |
 +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+
--- a/setup.py
+++ b/setup.py
@@ -24,7 +24,7 @@
 max_python_version = "3.11"  # exclusive
 min_numpy_build_version = "1.11"
 min_numpy_run_version = "1.18"
-max_numpy_run_version = "1.24"
+max_numpy_run_version = "1.25"
 min_llvmlite_version = "0.39.0dev0"
 max_llvmlite_version = "0.40"
 
--- a/numba/__init__.py
+++ b/numba/__init__.py
@@ -147,8 +147,8 @@
 
     if numpy_version < (1, 18):
         raise ImportError("Numba needs NumPy 1.18 or greater")
-    elif numpy_version > (1, 23):
-        raise ImportError("Numba needs NumPy 1.23 or less")
+    elif numpy_version > (1, 24):
+        raise ImportError("Numba needs NumPy 1.24 or less")
 
     try:
         import scipy