1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
CUDA Kernel API
===============
.. cuda-deprecated::
Kernel declaration
------------------
The ``@cuda.jit`` decorator is used to create a CUDA dispatcher object that can
be configured and launched:
.. autofunction:: numba.cuda.jit
Dispatcher objects
------------------
The usual syntax for configuring a Dispatcher with a launch configuration uses
subscripting, with the arguments being as in the following:
.. code-block:: python
# func is some function decorated with @cuda.jit
func[griddim, blockdim, stream, sharedmem]
The ``griddim`` and ``blockdim`` arguments specify the size of the grid and
thread blocks, and may be either integers or tuples of length up to 3. The
``stream`` parameter is an optional stream on which the kernel will be launched,
and the ``sharedmem`` parameter specifies the size of dynamic shared memory in
bytes.
Subscripting the Dispatcher returns a configuration object that can be called
with the kernel arguments:
.. code-block:: python
configured = func[griddim, blockdim, stream, sharedmem]
configured(x, y, z)
However, it is more idiomatic to configure and call the kernel within a single
statement:
.. code-block:: python
func[griddim, blockdim, stream, sharedmem](x, y, z)
This is similar to launch configuration in CUDA C/C++:
.. code-block:: cuda
func<<<griddim, blockdim, sharedmem, stream>>>(x, y, z)
.. note:: The order of ``stream`` and ``sharedmem`` are reversed in Numba
compared to in CUDA C/C++.
Dispatcher objects also provide several utility methods for inspection and
creating a specialized instance:
.. autoclass:: numba.cuda.dispatcher.CUDADispatcher
:members: inspect_asm, inspect_llvm, inspect_sass, inspect_types,
get_regs_per_thread, specialize, specialized, extensions, forall,
get_shared_mem_per_block, get_max_threads_per_block,
get_const_mem_size, get_local_mem_per_thread
Intrinsic Attributes and Functions
----------------------------------
The remainder of the attributes and functions in this section may only be called
from within a CUDA Kernel.
Thread Indexing
~~~~~~~~~~~~~~~
.. attribute:: numba.cuda.threadIdx
The thread indices in the current thread block, accessed through the
attributes ``x``, ``y``, and ``z``. Each index is an integer spanning the
range from 0 inclusive to the corresponding value of the attribute in
:attr:`numba.cuda.blockDim` exclusive.
.. attribute:: numba.cuda.blockIdx
The block indices in the grid of thread blocks, accessed through the
attributes ``x``, ``y``, and ``z``. Each index is an integer spanning the
range from 0 inclusive to the corresponding value of the attribute in
:attr:`numba.cuda.gridDim` exclusive.
.. attribute:: numba.cuda.blockDim
The shape of a block of threads, as declared when instantiating the
kernel. This value is the same for all threads in a given kernel, even
if they belong to different blocks (i.e. each block is "full").
.. attribute:: numba.cuda.gridDim
The shape of the grid of blocks, accessed through the attributes ``x``,
``y``, and ``z``.
.. attribute:: numba.cuda.laneid
The thread index in the current warp, as an integer spanning the range
from 0 inclusive to the :attr:`numba.cuda.warpsize` exclusive.
.. attribute:: numba.cuda.warpsize
The size in threads of a warp on the GPU. Currently this is always 32.
.. function:: numba.cuda.grid(ndim)
Return the absolute position of the current thread in the entire
grid of blocks. *ndim* should correspond to the number of dimensions
declared when instantiating the kernel. If *ndim* is 1, a single integer
is returned. If *ndim* is 2 or 3, a tuple of the given number of
integers is returned.
Computation of the first integer is as follows::
cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
and is similar for the other two indices, but using the ``y`` and ``z``
attributes.
.. function:: numba.cuda.gridsize(ndim)
Return the absolute size (or shape) in threads of the entire grid of
blocks. *ndim* should correspond to the number of dimensions declared when
instantiating the kernel.
Computation of the first integer is as follows::
cuda.blockDim.x * cuda.gridDim.x
and is similar for the other two indices, but using the ``y`` and ``z``
attributes.
Memory Management
~~~~~~~~~~~~~~~~~
.. function:: numba.cuda.shared.array(shape, dtype)
Creates an array in the local memory space of the CUDA kernel with
the given ``shape`` and ``dtype``.
Returns an array with its content uninitialized.
.. note:: All threads in the same thread block sees the same array.
.. function:: numba.cuda.local.array(shape, dtype)
Creates an array in the local memory space of the CUDA kernel with the
given ``shape`` and ``dtype``.
Returns an array with its content uninitialized.
.. note:: Each thread sees a unique array.
.. function:: numba.cuda.const.array_like(ary)
Copies the ``ary`` into constant memory space on the CUDA kernel at compile
time.
Returns an array like the ``ary`` argument.
.. note:: All threads and blocks see the same array.
Synchronization and Atomic Operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. function:: numba.cuda.atomic.add(array, idx, value)
Perform ``array[idx] += value``. Support int32, int64, float32 and
float64 only. The ``idx`` argument can be an integer or a tuple of integer
indices for indexing into multiple dimensional arrays. The number of element
in ``idx`` must match the number of dimension of ``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic load.
.. function:: numba.cuda.atomic.sub(array, idx, value)
Perform ``array[idx] -= value``. Supports int32, int64, float32 and
float64 only. The ``idx`` argument can be an integer or a tuple of integer
indices for indexing into multi-dimensional arrays. The number of elements
in ``idx`` must match the number of dimensions of ``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic load.
.. function:: numba.cuda.atomic.and_(array, idx, value)
Perform ``array[idx] &= value``. Supports int32, uint32, int64,
and uint64 only. The ``idx`` argument can be an integer or a tuple of
integer indices for indexing into multi-dimensional arrays. The number
of elements in ``idx`` must match the number of dimensions of ``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic load.
.. function:: numba.cuda.atomic.or_(array, idx, value)
Perform ``array[idx] |= value``. Supports int32, uint32, int64,
and uint64 only. The ``idx`` argument can be an integer or a tuple of
integer indices for indexing into multi-dimensional arrays. The number
of elements in ``idx`` must match the number of dimensions of ``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic load.
.. function:: numba.cuda.atomic.xor(array, idx, value)
Perform ``array[idx] ^= value``. Supports int32, uint32, int64,
and uint64 only. The ``idx`` argument can be an integer or a tuple of
integer indices for indexing into multi-dimensional arrays. The number
of elements in ``idx`` must match the number of dimensions of ``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic load.
.. function:: numba.cuda.atomic.exch(array, idx, value)
Perform ``array[idx] = value``. Supports int32, uint32, int64,
and uint64 only. The ``idx`` argument can be an integer or a tuple of
integer indices for indexing into multi-dimensional arrays. The number
of elements in ``idx`` must match the number of dimensions of ``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic load.
.. function:: numba.cuda.atomic.inc(array, idx, value)
Perform ``array[idx] = (0 if array[idx] >= value else array[idx] + 1)``.
Supports uint32, and uint64 only. The ``idx`` argument can be an integer
or a tuple of integer indices for indexing into multi-dimensional arrays.
The number of elements in ``idx`` must match the number of dimensions of
``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic load.
.. function:: numba.cuda.atomic.dec(array, idx, value)
Perform ``array[idx] =
(value if (array[idx] == 0) or (array[idx] > value) else array[idx] - 1)``.
Supports uint32, and uint64 only. The ``idx`` argument can be an integer
or a tuple of integer indices for indexing into multi-dimensional arrays.
The number of elements in ``idx`` must match the number of dimensions of
``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic load.
.. function:: numba.cuda.atomic.max(array, idx, value)
Perform ``array[idx] = max(array[idx], value)``. Support int32, int64,
float32 and float64 only. The ``idx`` argument can be an integer or a
tuple of integer indices for indexing into multiple dimensional arrays.
The number of element in ``idx`` must match the number of dimension of
``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic load.
.. function:: numba.cuda.atomic.cas(array, idx, old, value)
Perform ``if array[idx] == old: array[idx] = value``. Supports int32,
int64, uint32, uint64 indexes only. The ``idx`` argument can be an integer
or a tuple of integer indices for indexing into multi-dimensional arrays.
The number of elements in ``idx`` must match the number of dimensions of
``array``.
Returns the value of ``array[idx]`` before storing the new value.
Behaves like an atomic compare and swap.
.. function:: numba.cuda.syncthreads
Synchronize all threads in the same thread block. This function implements
the same pattern as barriers in traditional multi-threaded programming: this
function waits until all threads in the block call it, at which point it
returns control to all its callers.
.. function:: numba.cuda.syncthreads_count(predicate)
An extension to :attr:`numba.cuda.syncthreads` where the return value is a count
of the threads where ``predicate`` is true.
.. function:: numba.cuda.syncthreads_and(predicate)
An extension to :attr:`numba.cuda.syncthreads` where 1 is returned if ``predicate`` is
true for all threads or 0 otherwise.
.. function:: numba.cuda.syncthreads_or(predicate)
An extension to :attr:`numba.cuda.syncthreads` where 1 is returned if ``predicate`` is
true for any thread or 0 otherwise.
.. warning:: All syncthreads functions must be called by every thread in the
thread-block. Falling to do so may result in undefined behavior.
Cooperative Groups
~~~~~~~~~~~~~~~~~~
.. function:: numba.cuda.cg.this_grid()
Get the current grid group.
:return: The current grid group
:rtype: numba.cuda.cg.GridGroup
.. class:: numba.cuda.cg.GridGroup
A grid group. Users should not construct a GridGroup directly - instead, get
the current grid group using :func:`cg.this_grid() <numba.cuda.cg.this_grid>`.
.. method:: sync()
Synchronize the current grid group.
Memory Fences
~~~~~~~~~~~~~
The memory fences are used to guarantee the effect of memory operations
are visible by other threads within the same thread-block, the same GPU device,
and the same system (across GPUs on global memory). Memory loads and stores
are guaranteed to not move across the memory fences by optimization passes.
.. warning:: The memory fences are considered to be advanced API and most
usercases should use the thread barrier (e.g. ``syncthreads()``).
.. function:: numba.cuda.threadfence
A memory fence at device level (within the GPU).
.. function:: numba.cuda.threadfence_block
A memory fence at thread block level.
.. function:: numba.cuda.threadfence_system
A memory fence at system level (across GPUs).
Warp Intrinsics
~~~~~~~~~~~~~~~
The argument ``membermask`` is a 32 bit integer mask with each bit
corresponding to a thread in the warp, with 1 meaning the thread is in the
subset of threads within the function call. The ``membermask`` must be all 1 if
the GPU compute capability is below 7.x.
.. function:: numba.cuda.syncwarp(membermask)
Synchronize a masked subset of the threads in a warp.
.. function:: numba.cuda.all_sync(membermask, predicate)
If the ``predicate`` is true for all threads in the masked warp, then
a non-zero value is returned, otherwise 0 is returned.
.. function:: numba.cuda.any_sync(membermask, predicate)
If the ``predicate`` is true for any thread in the masked warp, then
a non-zero value is returned, otherwise 0 is returned.
.. function:: numba.cuda.eq_sync(membermask, predicate)
If the boolean ``predicate`` is the same for all threads in the masked warp,
then a non-zero value is returned, otherwise 0 is returned.
.. function:: numba.cuda.ballot_sync(membermask, predicate)
Returns a mask of all threads in the warp whose ``predicate`` is true,
and are within the given mask.
.. function:: numba.cuda.shfl_sync(membermask, value, src_lane)
Shuffles ``value`` across the masked warp and returns the ``value``
from ``src_lane``. If this is outside the warp, then the
given ``value`` is returned.
.. function:: numba.cuda.shfl_up_sync(membermask, value, delta)
Shuffles ``value`` across the masked warp and returns the ``value``
from ``laneid - delta``. If this is outside the warp, then the
given ``value`` is returned.
.. function:: numba.cuda.shfl_down_sync(membermask, value, delta)
Shuffles ``value`` across the masked warp and returns the ``value``
from ``laneid + delta``. If this is outside the warp, then the
given ``value`` is returned.
.. function:: numba.cuda.shfl_xor_sync(membermask, value, lane_mask)
Shuffles ``value`` across the masked warp and returns the ``value``
from ``laneid ^ lane_mask``.
.. function:: numba.cuda.match_any_sync(membermask, value, lane_mask)
Returns a mask of threads that have same ``value`` as the given ``value``
from within the masked warp.
.. function:: numba.cuda.match_all_sync(membermask, value, lane_mask)
Returns a tuple of (mask, pred), where mask is a mask of threads that have
same ``value`` as the given ``value`` from within the masked warp, if they
all have the same value, otherwise it is 0. And pred is a boolean of whether
or not all threads in the mask warp have the same warp.
.. function:: numba.cuda.activemask()
Returns a 32-bit integer mask of all currently active threads in the
calling warp. The Nth bit is set if the Nth lane in the warp is active when
activemask() is called. Inactive threads are represented by 0 bits in the
returned mask. Threads which have exited the kernel are always marked as
inactive.
.. function:: numba.cuda.lanemask_lt()
Returns a 32-bit integer mask of all lanes (including inactive ones) with
ID less than the current lane.
Integer Intrinsics
~~~~~~~~~~~~~~~~~~
A subset of the CUDA Math API's integer intrinsics are available. For further
documentation, including semantics, please refer to the `CUDA Toolkit
documentation
<https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__INT.html>`_.
.. function:: numba.cuda.popc(x)
Returns the number of bits set in ``x``.
.. function:: numba.cuda.brev(x)
Returns the reverse of the bit pattern of ``x``. For example, ``0b10110110``
becomes ``0b01101101``.
.. function:: numba.cuda.clz(x)
Returns the number of leading zeros in ``x``.
.. function:: numba.cuda.ffs(x)
Returns the position of the first (least significant) bit set to 1 in ``x``,
where the least significant bit position is 1. ``ffs(0)`` returns 0.
Floating Point Intrinsics
~~~~~~~~~~~~~~~~~~~~~~~~~
A subset of the CUDA Math API's floating point intrinsics are available. For further
documentation, including semantics, please refer to the `single
<https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html>`_ and
`double <https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__DOUBLE.html>`_
precision parts of the CUDA Toolkit documentation.
.. function:: numba.cuda.fma
Perform the fused multiply-add operation. Named after the ``fma`` and ``fmaf`` in
the C api, but maps to the ``fma.rn.f32`` and ``fma.rn.f64`` (round-to-nearest-even)
PTX instructions.
.. function:: numba.cuda.cbrt (x)
Perform the cube root operation, x ** (1/3). Named after the functions
``cbrt`` and ``cbrtf`` in the C api. Supports float32, and float64 arguments
only.
16-bit Floating Point Intrinsics
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The functions in the ``cuda.fp16`` module are used to operate on 16-bit
floating point operands. These functions return a 16-bit floating point result.
To determine whether Numba supports compiling code that uses the ``float16``
type in the current configuration, use:
.. function:: numba.cuda.is_float16_supported ()
Return ``True`` if 16-bit floats are supported, ``False`` otherwise.
To check whether a device supports ``float16``, use its
:attr:`supports_float16 <numba.cuda.cudadrv.driver.Device.supports_float16>`
attribute.
.. function:: numba.cuda.fp16.hfma (a, b, c)
Perform the fused multiply-add operation ``(a * b) + c`` on 16-bit
floating point arguments in round to nearest mode. Maps to the ``fma.rn.f16``
PTX instruction.
Returns the 16-bit floating point result of the fused multiply-add.
.. function:: numba.cuda.fp16.hadd (a, b)
Perform the add operation ``a + b`` on 16-bit floating point arguments in
round to nearest mode. Maps to the ``add.f16`` PTX instruction.
Returns the 16-bit floating point result of the addition.
.. function:: numba.cuda.fp16.hsub (a, b)
Perform the subtract operation ``a - b`` on 16-bit floating point arguments in
round to nearest mode. Maps to the ``sub.f16`` PTX instruction.
Returns the 16-bit floating point result of the subtraction.
.. function:: numba.cuda.fp16.hmul (a, b)
Perform the multiply operation ``a * b`` on 16-bit floating point arguments in
round to nearest mode. Maps to the ``mul.f16`` PTX instruction.
Returns the 16-bit floating point result of the multiplication.
.. function:: numba.cuda.fp16.hdiv (a, b)
Perform the divide operation ``a / b`` on 16-bit floating point arguments in
round to nearest mode.
Returns the 16-bit floating point result of the division.
.. function:: numba.cuda.fp16.hneg (a)
Perform the negation operation ``-a`` on the 16-bit floating point argument.
Maps to the ``neg.f16`` PTX instruction.
Returns the 16-bit floating point result of the negation.
.. function:: numba.cuda.fp16.habs (a)
Perform the absolute value operation ``|a|`` on the 16-bit floating point argument.
Returns the 16-bit floating point result of the absolute value operation.
.. function:: numba.cuda.fp16.hsin (a)
Calculates the trigonometry sine function of the 16-bit floating point argument.
Returns the 16-bit floating point result of the sine operation.
.. function:: numba.cuda.fp16.hcos (a)
Calculates the trigonometry cosine function of the 16-bit floating point argument.
Returns the 16-bit floating point result of the cosine operation.
.. function:: numba.cuda.fp16.hlog (a)
Calculates the natural logarithm of the 16-bit floating point argument.
Returns the 16-bit floating point result of the natural log operation.
.. function:: numba.cuda.fp16.hlog10 (a)
Calculates the base 10 logarithm of the 16-bit floating point argument.
Returns the 16-bit floating point result of the log base 10 operation.
.. function:: numba.cuda.fp16.hlog2 (a)
Calculates the base 2 logarithm on the 16-bit floating point argument.
Returns the 16-bit floating point result of the log base 2 operation.
.. function:: numba.cuda.fp16.hexp (a)
Calculates the natural exponential operation of the 16-bit floating point argument.
Returns the 16-bit floating point result of the exponential operation.
.. function:: numba.cuda.fp16.hexp10 (a)
Calculates the base 10 exponential of the 16-bit floating point argument.
Returns the 16-bit floating point result of the exponential operation.
.. function:: numba.cuda.fp16.hexp2 (a)
Calculates the base 2 exponential of the 16-bit floating point argument.
Returns the 16-bit floating point result of the exponential operation.
.. function:: numba.cuda.fp16.hfloor (a)
Calculates the floor operation, the largest integer less than or equal to ``a``,
on the 16-bit floating point argument.
Returns the 16-bit floating point result of the floor operation.
.. function:: numba.cuda.fp16.hceil (a)
Calculates the ceiling operation, the smallest integer greater than or equal to ``a``,
on the 16-bit floating point argument.
Returns the 16-bit floating point result of the ceil operation.
.. function:: numba.cuda.fp16.hsqrt (a)
Calculates the square root operation of the 16-bit floating point argument.
Returns the 16-bit floating point result of the square root operation.
.. function:: numba.cuda.fp16.hrsqrt (a)
Calculates the reciprocal of the square root of the 16-bit floating point argument.
Returns the 16-bit floating point result of the reciprocal square root operation.
.. function:: numba.cuda.fp16.hrcp (a)
Calculates the reciprocal of the 16-bit floating point argument.
Returns the 16-bit floating point result of the reciprocal.
.. function:: numba.cuda.fp16.hrint (a)
Round the input 16-bit floating point argument to nearest integer value.
Returns the 16-bit floating point result of the rounding.
.. function:: numba.cuda.fp16.htrunc (a)
Truncate the input 16-bit floating point argument to the nearest integer
that does not exceed the input argument in magnitude.
Returns the 16-bit floating point result of the truncation.
.. function:: numba.cuda.fp16.heq (a, b)
Perform the comparison operation ``a == b`` on 16-bit floating point arguments.
Returns a boolean.
.. function:: numba.cuda.fp16.hne (a, b)
Perform the comparison operation ``a != b`` on 16-bit floating point arguments.
Returns a boolean.
.. function:: numba.cuda.fp16.hgt (a, b)
Perform the comparison operation ``a > b`` on 16-bit floating point arguments.
Returns a boolean.
.. function:: numba.cuda.fp16.hge (a, b)
Perform the comparison operation ``a >= b`` on 16-bit floating point arguments.
Returns a boolean.
.. function:: numba.cuda.fp16.hlt (a, b)
Perform the comparison operation ``a < b`` on 16-bit floating point arguments.
Returns a boolean.
.. function:: numba.cuda.fp16.hle (a, b)
Perform the comparison operation ``a <= b`` on 16-bit floating point arguments.
Returns a boolean.
.. function:: numba.cuda.fp16.hmax (a, b)
Perform the operation ``a if a > b else b.``
Returns a 16-bit floating point value.
.. function:: numba.cuda.fp16.hmin (a, b)
Perform the operation ``a if a < b else b.``
Returns a 16-bit floating point value.
Control Flow Instructions
~~~~~~~~~~~~~~~~~~~~~~~~~
A subset of the CUDA's control flow instructions are directly available as
intrinsics. Avoiding branches is a key way to improve CUDA performance, and
using these intrinsics mean you don't have to rely on the ``nvcc`` optimizer
identifying and removing branches. For further documentation, including
semantics, please refer to the `relevant CUDA Toolkit documentation
<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#comparison-and-selection-instructions>`_.
.. function:: numba.cuda.selp
Select between two expressions, depending on the value of the first
argument. Similar to LLVM's ``select`` instruction.
Timer Intrinsics
~~~~~~~~~~~~~~~~
.. function:: numba.cuda.nanosleep(ns)
Suspends the thread for a sleep duration approximately close to the delay
``ns``, specified in nanoseconds.
|