1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
|
Version 0.57.1 (21 June, 2023)
------------------------------
Pull-Requests:
* PR `#8964 <https://github.com/numba/numba/pull/8964>`_: fix missing nopython keyword in cuda random module (`esc <https://github.com/esc>`_)
* PR `#8965 <https://github.com/numba/numba/pull/8965>`_: fix return dtype for np.angle (`guilhermeleobas <https://github.com/guilhermeleobas>`_ `esc <https://github.com/esc>`_)
* PR `#8982 <https://github.com/numba/numba/pull/8982>`_: Don't do the parfor diagnostics pass for the parfor gufunc. (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8996 <https://github.com/numba/numba/pull/8996>`_: adding a test for 8940 (`esc <https://github.com/esc>`_)
* PR `#8958 <https://github.com/numba/numba/pull/8958>`_: resurrect the import, this time in the registry initialization (`esc <https://github.com/esc>`_)
* PR `#8947 <https://github.com/numba/numba/pull/8947>`_: Introduce internal _isinstance_no_warn (`guilhermeleobas <https://github.com/guilhermeleobas>`_ `esc <https://github.com/esc>`_)
* PR `#8998 <https://github.com/numba/numba/pull/8998>`_: Fix 8939 (second attempt) (`esc <https://github.com/esc>`_)
* PR `#8978 <https://github.com/numba/numba/pull/8978>`_: Import MVC packages when using MVCLinker. (`bdice <https://github.com/bdice>`_)
* PR `#8895 <https://github.com/numba/numba/pull/8895>`_: CUDA: Enable caching functions that use CG (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8976 <https://github.com/numba/numba/pull/8976>`_: Fix index URL for ptxcompiler/cubinlinker packages. (`bdice <https://github.com/bdice>`_)
* PR `#9004 <https://github.com/numba/numba/pull/9004>`_: Skip MVC test when libraries unavailable (`gmarkall <https://github.com/gmarkall>`_ `esc <https://github.com/esc>`_)
* PR `#9006 <https://github.com/numba/numba/pull/9006>`_: link to version support table instead of using explicit versions (`esc <https://github.com/esc>`_)
* PR `#9005 <https://github.com/numba/numba/pull/9005>`_: Fix: Issue #8923 - avoid spurious device-to-host transfers in CUDA ufuncs (`gmarkall <https://github.com/gmarkall>`_)
Authors:
* `bdice <https://github.com/bdice>`_
* `DrTodd13 <https://github.com/DrTodd13>`_
* `esc <https://github.com/esc>`_
* `gmarkall <https://github.com/gmarkall>`_
Version 0.57.0 (1 May, 2023)
----------------------------
This release continues to add new features, bug fixes and stability improvements
to Numba. Please note that this release contains a significant number of both
deprecation and pending-deprecation notices with view of making it easier to
develop new technology for Numba in the future. Also note that this will be the
last release to support Windows 32-bit packages produced by the Numba team.
Highlights of core dependency upgrades:
* Support for Python 3.11 (minimum is moved to 3.8)
* Support for NumPy 1.24 (minimum is moved to 1.21)
Python language support enhancements:
* Exception classes now support arguments that are not compile time constant.
* The built-in functions ``hasattr`` and ``getattr`` are supported for compile
time constant attributes.
* The built-in functions ``str`` and ``repr`` are now implemented similarly to
their Python implementations. Custom ``__str__`` and ``__repr__``
functions can be associated with types and work as expected.
* Numba's unicode functionality in ``str.startswith`` now supports kwargs
``start`` and ``end``.
* ``min`` and ``max`` now support boolean types.
* Support is added for the ``dict(iterable)`` constructor.
NumPy features/enhancements:
* The largest set of new features is within the ``numpy.random.Generator``
support, the vast majority of commonly used distributions are now supported.
Namely:
* ``Generator.beta``
* ``Generator.chisquare``
* ``Generator.exponential``
* ``Generator.f``
* ``Generator.gamma``
* ``Generator.geometric``
* ``Generator.integers``
* ``Generator.laplace``
* ``Generator.logistic``
* ``Generator.lognormal``
* ``Generator.logseries``
* ``Generator.negative_binomial``
* ``Generator.noncentral_chisquare``
* ``Generator.noncentral_f``
* ``Generator.normal``
* ``Generator.pareto``
* ``Generator.permutation``
* ``Generator.poisson``
* ``Generator.power``
* ``Generator.random``
* ``Generator.rayleigh``
* ``Generator.shuffle``
* ``Generator.standard_cauchy``
* ``Generator.standard_exponential``
* ``Generator.standard_gamma``
* ``Generator.standard_normal``
* ``Generator.standard_t``
* ``Generator.triangular``
* ``Generator.uniform``
* ``Generator.wald``
* ``Generator.weibull``
* ``Generator.zipf``
* The ``nbytes`` property on NumPy ``ndarray`` types is implemented.
* Nesting of nested-array types is now supported.
* ``datetime`` and ``timedelta`` types can be cast to ``int``.
* ``F``-order iteration is supported in ``ufunc`` generation for increased
performance when using combinations of predominantly ``F``-order arrays.
* The following functions are also now supported:
* ``np.argpartition``
* ``np.isclose``
* ``np.nan_to_num``
* ``np.new_axis``
* ``np.union1d``
Highlights of core changes:
* A large amount of refactoring has taken place to convert many of Numba's
internal implementations, of both Python and NumPy functions, from the
low-level extension API to the high-level extension API (``numba.extending``).
* The ``__repr__`` method is supported for Numba types.
* The default ``target`` for applicable functions in the extension API
(``numba.extending``) is now ``"generic"``. This means that ``@overload*`` and
``@intrinsic`` functions will by default be accepted by both the CPU and CUDA
targets.
* The use of ``__getitem__`` on Numba types is now supported in compiled code.
i.e. ``types.float64[:, ::1]`` is now compilable.
Performance:
* The performance of ``str.find()`` and ``str.rfind()`` has been improved.
* Unicode support for ``__getitem__`` now avoids allocation and returns a view.
* The ``numba.typed.Dict`` dictionary now accepts an ``n_keys`` option to enable
allocating the dictionary instance to a predetermined initial size (useful to
avoid resizes!).
* The Numba Run-time (NRT) has been improved in terms of performance and safety:
* The NRT internal statistics counters are now off by default (removes atomic
lock contentions).
* Debug cache line filling is off by default.
* The NRT is only compiled once a compilation starts opposed to at function
decoration time, this improves import speed.
* The NRT allocation calls are all made through a "checked" layer by default.
CUDA:
* New NVIDIA hardware and software compatibility / support:
* Toolkits: CUDA 11.8 and 12, with Minor Version Compatibility for 11.x.
* Packaging: NVIDIA-packaged CUDA toolkit conda packages.
* Hardware: Hopper, Ada Lovelace, and AGX Orin.
* ``float16`` support:
* Arithmetic operations are now fully supported.
* A new method, ``is_fp16_supported()``, and device property,
``supports_float16``, for checking the availability of ``float16`` support.
* Functionality:
* The high-level extension API is now fully-supported in the CUDA target.
* Eager compilation of multiple signatures, multiple outputs from generalized
ufuncs, and specifying the return type of ufuncs are now supported.
* A limited set of NumPy ufuncs (trigonometric functions) can now be called
inside kernels.
* Lineinfo quality improvement: enabling lineinfo no longer results in any
changes to generated code.
Deprecations:
* The ``numba.pycc`` module and everything in it is now pending deprecation.
* The long awaited full deprecation of ``object mode`` `fall-back` is
underway. This change means ``@jit`` with no keyword arguments will eventually
alias ``@njit``.
* The ``@generated_jit`` decorator is deprecated as the Numba extension API
provides a better supported superset of the same functionality, particularly
through ``@numba.extending.overload``.
Version support/dependency changes:
* The ``setuptools`` package is now an optional run-time dependency opposed to a
required run-time dependency.
* The TBB threading-layer now requires version 2021.6 or later.
* LLVM 14 is now supported on all platforms via ``llvmlite``.
Pull-Requests:
* PR `#5113 <https://github.com/numba/numba/pull/5113>`_: Fix error handling in the Interval extending example (`esc <https://github.com/esc>`_ `eric-wieser <https://github.com/eric-wieser>`_)
* PR `#5544 <https://github.com/numba/numba/pull/5544>`_: Add support for np.union1d (`shangbol <https://github.com/shangbol>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#7009 <https://github.com/numba/numba/pull/7009>`_: Add writable args (`dmbelov <https://github.com/dmbelov>`_)
* PR `#7067 <https://github.com/numba/numba/pull/7067>`_: Implement np.isclose (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#7255 <https://github.com/numba/numba/pull/7255>`_: CUDA: Support CUDA Toolkit conda packages from NVIDIA (`gmarkall <https://github.com/gmarkall>`_)
* PR `#7622 <https://github.com/numba/numba/pull/7622>`_: Support fortran loop ordering for ufunc generation (`sklam <https://github.com/sklam>`_)
* PR `#7733 <https://github.com/numba/numba/pull/7733>`_: fix for /tmp/tmp access issues (`ChiCheng45 <https://github.com/ChiCheng45>`_)
* PR `#7884 <https://github.com/numba/numba/pull/7884>`_: Implement getattr builtin. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7885 <https://github.com/numba/numba/pull/7885>`_: Adds CUDA FP16 arithmetic operators (`testhound <https://github.com/testhound>`_)
* PR `#7920 <https://github.com/numba/numba/pull/7920>`_: Drop pre-3.7 code path (CPU only) (`sklam <https://github.com/sklam>`_)
* PR `#8001 <https://github.com/numba/numba/pull/8001>`_: CUDA fp16 math functions (`testhound <https://github.com/testhound>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8010 <https://github.com/numba/numba/pull/8010>`_: Add support for fp16 comparison native operators (`testhound <https://github.com/testhound>`_)
* PR `#8024 <https://github.com/numba/numba/pull/8024>`_: Allow converting NumPy datetimes to int (`apmasell <https://github.com/apmasell>`_)
* PR `#8038 <https://github.com/numba/numba/pull/8038>`_: Support for Numpy BitGenerators PR#2: Standard Distributions support (`kc611 <https://github.com/kc611>`_)
* PR `#8040 <https://github.com/numba/numba/pull/8040>`_: Support for Numpy BitGenerators PR#3: Advanced Distributions Support. (`kc611 <https://github.com/kc611>`_)
* PR `#8041 <https://github.com/numba/numba/pull/8041>`_: Support for Numpy BitGenerators PR#4: Generator().integers() Support. (`kc611 <https://github.com/kc611>`_)
* PR `#8042 <https://github.com/numba/numba/pull/8042>`_: Support for NumPy BitGenerators PR#5: Generator Shuffling Methods. (`kc611 <https://github.com/kc611>`_)
* PR `#8061 <https://github.com/numba/numba/pull/8061>`_: Migrate random ``glue_lowering`` to ``overload`` where easy (`apmasell <https://github.com/apmasell>`_)
* PR `#8106 <https://github.com/numba/numba/pull/8106>`_: Remove injection of atomic JIT functions into NRT memsys. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8120 <https://github.com/numba/numba/pull/8120>`_: Support nesting of nested array types (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8134 <https://github.com/numba/numba/pull/8134>`_: Support non-constant exception values in JIT (`guilhermeleobas <https://github.com/guilhermeleobas>`_ `sklam <https://github.com/sklam>`_)
* PR `#8147 <https://github.com/numba/numba/pull/8147>`_: Adds size variable at runtime for arrays that cannot be inferred (`njriasan <https://github.com/njriasan>`_)
* PR `#8154 <https://github.com/numba/numba/pull/8154>`_: Testhound/native cast 8138 (`testhound <https://github.com/testhound>`_)
* PR `#8158 <https://github.com/numba/numba/pull/8158>`_: adding -pthread for linux-ppc64le in setup.py (`esc <https://github.com/esc>`_)
* PR `#8164 <https://github.com/numba/numba/pull/8164>`_: remove myself from automatic reviewer assignment (`esc <https://github.com/esc>`_)
* PR `#8167 <https://github.com/numba/numba/pull/8167>`_: CUDA: Facilitate and document passing arrays / pointers to foreign functions (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8180 <https://github.com/numba/numba/pull/8180>`_: CUDA: Initial support for Minor Version Compatibility (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8183 <https://github.com/numba/numba/pull/8183>`_: Add ``n_keys`` option to Dict.empty() (`stefanfed <https://github.com/stefanfed>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8198 <https://github.com/numba/numba/pull/8198>`_: Update the release template to include updating the version table. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8200 <https://github.com/numba/numba/pull/8200>`_: Make the NRT use the "unsafe" allocation API by default. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8201 <https://github.com/numba/numba/pull/8201>`_: Bump llvmlite dependency to 0.40.dev0 for Numba 0.57.0dev0 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8207 <https://github.com/numba/numba/pull/8207>`_: development tag should be in monofont (`esc <https://github.com/esc>`_)
* PR `#8212 <https://github.com/numba/numba/pull/8212>`_: release checklist: include a note to ping @RC_testers on discourse (`esc <https://github.com/esc>`_)
* PR `#8216 <https://github.com/numba/numba/pull/8216>`_: chore: Set permissions for GitHub actions (`naveensrinivasan <https://github.com/naveensrinivasan>`_)
* PR `#8217 <https://github.com/numba/numba/pull/8217>`_: Fix syntax in docs (`jorgepiloto <https://github.com/jorgepiloto>`_)
* PR `#8220 <https://github.com/numba/numba/pull/8220>`_: Added the interval example as doctest (`kc611 <https://github.com/kc611>`_)
* PR `#8221 <https://github.com/numba/numba/pull/8221>`_: CUDA stubs docstring: Replace illegal escape sequence (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8228 <https://github.com/numba/numba/pull/8228>`_: Fix typo in @vectorize docstring and a NumPy spelling. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8229 <https://github.com/numba/numba/pull/8229>`_: Remove ``mk_unique_var`` in ``inline_closurecall.py`` (`sklam <https://github.com/sklam>`_)
* PR `#8234 <https://github.com/numba/numba/pull/8234>`_: Replace @overload_glue by @overload for 20 NumPy functions (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8235 <https://github.com/numba/numba/pull/8235>`_: Make the NRT stats counters optional. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8238 <https://github.com/numba/numba/pull/8238>`_: Advanced Indexing Support #1 (`kc611 <https://github.com/kc611>`_)
* PR `#8240 <https://github.com/numba/numba/pull/8240>`_: Add get_shared_mem_per_block method to Dispatcher (`testhound <https://github.com/testhound>`_)
* PR `#8241 <https://github.com/numba/numba/pull/8241>`_: Reorder typeof checks to avoid infinite loops on StructrefProxy __hash__ (`DannyWeitekamp <https://github.com/DannyWeitekamp>`_)
* PR `#8243 <https://github.com/numba/numba/pull/8243>`_: Add a note to ``reference/numpysupported.rst`` ()
* PR `#8245 <https://github.com/numba/numba/pull/8245>`_: Fix links in ``CONTRIBUTING.md`` ()
* PR `#8247 <https://github.com/numba/numba/pull/8247>`_: Fix issue 8127 (`bszollosinagy <https://github.com/bszollosinagy>`_)
* PR `#8250 <https://github.com/numba/numba/pull/8250>`_: Fix issue 8161 (`bszollosinagy <https://github.com/bszollosinagy>`_)
* PR `#8253 <https://github.com/numba/numba/pull/8253>`_: CUDA: Verify NVVM IR prior to compilation (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8255 <https://github.com/numba/numba/pull/8255>`_: CUDA: Make numba.cuda.tests.doc_examples.ffi a module to fix #8252 (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8256 <https://github.com/numba/numba/pull/8256>`_: Migrate linear algebra functions from glue_lowering (`apmasell <https://github.com/apmasell>`_)
* PR `#8258 <https://github.com/numba/numba/pull/8258>`_: refactor np.where to use overload (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8259 <https://github.com/numba/numba/pull/8259>`_: Add ``np.broadcast_to(scalar_array, ())`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8264 <https://github.com/numba/numba/pull/8264>`_: remove ``mk_unique_var`` from ``parfor_lowering_utils.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8265 <https://github.com/numba/numba/pull/8265>`_: Remove ``mk_unique_var`` from ``array_analysis.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8266 <https://github.com/numba/numba/pull/8266>`_: Remove ``mk_unique_var`` in ``untyped_passes.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8267 <https://github.com/numba/numba/pull/8267>`_: Fix segfault for invalid axes in np.split (`aseyboldt <https://github.com/aseyboldt>`_)
* PR `#8271 <https://github.com/numba/numba/pull/8271>`_: Implement some CUDA intrinsics with ``@overload``, ``@overload_attribute``, and ``@intrinsic`` (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8274 <https://github.com/numba/numba/pull/8274>`_: Update version support table doc for 0.56. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8275 <https://github.com/numba/numba/pull/8275>`_: Update CHANGE_LOG for 0.56.0 final (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8283 <https://github.com/numba/numba/pull/8283>`_: Clean up / remove support for old NumPy versions (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8287 <https://github.com/numba/numba/pull/8287>`_: Drop CUDA 10.2 (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8289 <https://github.com/numba/numba/pull/8289>`_: Revert #8265. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8290 <https://github.com/numba/numba/pull/8290>`_: CUDA: Replace use of deprecated NVVM IR features, questionable constructs (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8292 <https://github.com/numba/numba/pull/8292>`_: update checklist (`esc <https://github.com/esc>`_)
* PR `#8294 <https://github.com/numba/numba/pull/8294>`_: CUDA: Add trig ufunc support (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8295 <https://github.com/numba/numba/pull/8295>`_: Add get_const_mem_size method to Dispatcher (`testhound <https://github.com/testhound>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8297 <https://github.com/numba/numba/pull/8297>`_: Add __name__ attribute to CUDAUFuncDispatcher and test case (`testhound <https://github.com/testhound>`_)
* PR `#8299 <https://github.com/numba/numba/pull/8299>`_: Fix build for mingw toolchain (`Biswa96 <https://github.com/Biswa96>`_)
* PR `#8302 <https://github.com/numba/numba/pull/8302>`_: CUDA: Revert numba_nvvm intrinsic name workaround (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8308 <https://github.com/numba/numba/pull/8308>`_: CUDA: Support for multiple signatures (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8315 <https://github.com/numba/numba/pull/8315>`_: Add get_local_mem_per_thread method to Dispatcher (`testhound <https://github.com/testhound>`_)
* PR `#8319 <https://github.com/numba/numba/pull/8319>`_: Bump minimum supported Python version to 3.8 (`esc <https://github.com/esc>`_ `stuartarchibald <https://github.com/stuartarchibald>`_ `jamesobutler <https://github.com/jamesobutler>`_)
* PR `#8320 <https://github.com/numba/numba/pull/8320>`_: Add __name__ support for GUFuncs (`testhound <https://github.com/testhound>`_)
* PR `#8321 <https://github.com/numba/numba/pull/8321>`_: Fix literal_unroll pass erroneously exiting on non-conformant loop. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8325 <https://github.com/numba/numba/pull/8325>`_: Remove use of mk_unique_var in stencil.py (`bszollosinagy <https://github.com/bszollosinagy>`_)
* PR `#8326 <https://github.com/numba/numba/pull/8326>`_: Remove ``mk_unique_var`` from ``parfor_lowering.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8331 <https://github.com/numba/numba/pull/8331>`_: Extend docs with info on how to call C functions from Numba (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8334 <https://github.com/numba/numba/pull/8334>`_: Add dict(\*iterable) constructor (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8335 <https://github.com/numba/numba/pull/8335>`_: Remove deprecated pycc script and related source. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8336 <https://github.com/numba/numba/pull/8336>`_: Fix typos of "Generalized" in GUFunc-related code (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8338 <https://github.com/numba/numba/pull/8338>`_: Calculate reductions before fusion so that use of reduction vars can stop fusion. (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8339 <https://github.com/numba/numba/pull/8339>`_: Fix #8291 parfor leak of redtoset variable (`sklam <https://github.com/sklam>`_)
* PR `#8341 <https://github.com/numba/numba/pull/8341>`_: CUDA: Support multiple outputs for Generalized Ufuncs (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8343 <https://github.com/numba/numba/pull/8343>`_: Eliminate references to type annotation in compile_ptx (`testhound <https://github.com/testhound>`_)
* PR `#8348 <https://github.com/numba/numba/pull/8348>`_: Add get_max_threads_per_block method to Dispatcher (`testhound <https://github.com/testhound>`_)
* PR `#8354 <https://github.com/numba/numba/pull/8354>`_: pin setuptools to < 65 and switch from mamba to conda on RTD (`esc <https://github.com/esc>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8357 <https://github.com/numba/numba/pull/8357>`_: Clean up the buildscripts directory. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8359 <https://github.com/numba/numba/pull/8359>`_: adding warnings about cache behaviour (`luk-f-a <https://github.com/luk-f-a>`_)
* PR `#8368 <https://github.com/numba/numba/pull/8368>`_: Remove ``glue_lowering`` in random math that requires IR (`apmasell <https://github.com/apmasell>`_)
* PR `#8376 <https://github.com/numba/numba/pull/8376>`_: Fix issue 8370 (`bszollosinagy <https://github.com/bszollosinagy>`_)
* PR `#8387 <https://github.com/numba/numba/pull/8387>`_: Add support for compute capability in IR Lowering (`testhound <https://github.com/testhound>`_)
* PR `#8388 <https://github.com/numba/numba/pull/8388>`_: Remove more references to the pycc binary. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8389 <https://github.com/numba/numba/pull/8389>`_: Make C++ extensions compile with correct compiler (`apmasell <https://github.com/apmasell>`_)
* PR `#8390 <https://github.com/numba/numba/pull/8390>`_: Use NumPy logic for lessthan in sort to move NaNs to the back. (`sklam <https://github.com/sklam>`_)
* PR `#8401 <https://github.com/numba/numba/pull/8401>`_: Remove Cuda toolkit version check (`testhound <https://github.com/testhound>`_)
* PR `#8415 <https://github.com/numba/numba/pull/8415>`_: Refactor ``numba.np.arraymath`` methods from lower_builtins to overloads (`kc611 <https://github.com/kc611>`_)
* PR `#8418 <https://github.com/numba/numba/pull/8418>`_: Fixes ravel failure on 1d arrays (#5229) (`cako <https://github.com/cako>`_)
* PR `#8421 <https://github.com/numba/numba/pull/8421>`_: Update release checklist: add a task to check dependency pinnings on subsequent releases (e.g. PATCH) (`esc <https://github.com/esc>`_)
* PR `#8422 <https://github.com/numba/numba/pull/8422>`_: Switch public CI builds to use gdb from conda packages. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8423 <https://github.com/numba/numba/pull/8423>`_: Remove public facing and CI references to 32 bit linux support. (`stuartarchibald <https://github.com/stuartarchibald>`_,
in addition, we are grateful for the contribution of `jamesobutler <https://github.com/jamesobutler>`_ towards a similar goal in PR `#8319 <https://github.com/numba/numba/pull/8319>`_)
* PR `#8425 <https://github.com/numba/numba/pull/8425>`_: Post 0.56.2 cleanup (`esc <https://github.com/esc>`_)
* PR `#8427 <https://github.com/numba/numba/pull/8427>`_: Shorten the time to verify test discovery. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8429 <https://github.com/numba/numba/pull/8429>`_: changelog generator script (`esc <https://github.com/esc>`_)
* PR `#8431 <https://github.com/numba/numba/pull/8431>`_: Replace ``@overload_glue`` by ``@overload`` for ``np.linspace`` and ``np.take`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8432 <https://github.com/numba/numba/pull/8432>`_: Refactor carray/farray to use @overload (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8435 <https://github.com/numba/numba/pull/8435>`_: Migrate ``np.atleast_?`` functions from ``glue_lowering`` to ``overload`` (`apmasell <https://github.com/apmasell>`_)
* PR `#8438 <https://github.com/numba/numba/pull/8438>`_: Make the initialisation of the NRT more lazy for the njit decorator. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8439 <https://github.com/numba/numba/pull/8439>`_: Update the contributing docs to include a policy on formatting changes. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8440 <https://github.com/numba/numba/pull/8440>`_: [DOC]: Replaces icc_rt with intel-cmplr-lib-rt (`oleksandr-pavlyk <https://github.com/oleksandr-pavlyk>`_)
* PR `#8442 <https://github.com/numba/numba/pull/8442>`_: Implement hasattr(), str() and repr(). (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8446 <https://github.com/numba/numba/pull/8446>`_: add version info in ImportError's (`raybellwaves <https://github.com/raybellwaves>`_)
* PR `#8450 <https://github.com/numba/numba/pull/8450>`_: remove GitHub username from changelog generation script (`esc <https://github.com/esc>`_)
* PR `#8467 <https://github.com/numba/numba/pull/8467>`_: Convert implementations using generated_jit to overload (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8468 <https://github.com/numba/numba/pull/8468>`_: Reference test suite in installation documentation (`apmasell <https://github.com/apmasell>`_)
* PR `#8469 <https://github.com/numba/numba/pull/8469>`_: Correctly handle optional types in parfors lowering (`apmasell <https://github.com/apmasell>`_)
* PR `#8473 <https://github.com/numba/numba/pull/8473>`_: change the include style in _pymodule.h and remove unused or duplicate headers in two header files ()
* PR `#8476 <https://github.com/numba/numba/pull/8476>`_: Make setuptools optional at runtime. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8490 <https://github.com/numba/numba/pull/8490>`_: Restore installing SciPy from defaults instead of conda-forge on public CI (`esc <https://github.com/esc>`_)
* PR `#8494 <https://github.com/numba/numba/pull/8494>`_: Remove ``context.compile_internal`` where easy on ``numba/cpython/cmathimpl.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8495 <https://github.com/numba/numba/pull/8495>`_: Removes context.compile_internal where easy on ``numba/cpython/listobj.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8496 <https://github.com/numba/numba/pull/8496>`_: Rewrite most of the set API to use overloads (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8499 <https://github.com/numba/numba/pull/8499>`_: Deprecate numba.generated_jit (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8508 <https://github.com/numba/numba/pull/8508>`_: This updates the release checklists to capture some more checks. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8513 <https://github.com/numba/numba/pull/8513>`_: Added support for numpy.newaxis (`kc611 <https://github.com/kc611>`_)
* PR `#8517 <https://github.com/numba/numba/pull/8517>`_: make some typedlist C-APIs public ()
* PR `#8518 <https://github.com/numba/numba/pull/8518>`_: Adjust stencil tests to use hardcoded python source opposed to AST. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8520 <https://github.com/numba/numba/pull/8520>`_: Added noncentral-chisquared, noncentral-f and logseries distributions (`kc611 <https://github.com/kc611>`_)
* PR `#8522 <https://github.com/numba/numba/pull/8522>`_: Import jitclass from numba.experimental in jitclass documentation (`armgabrielyan <https://github.com/armgabrielyan>`_)
* PR `#8524 <https://github.com/numba/numba/pull/8524>`_: Fix grammar in stencil.rst (`armgabrielyan <https://github.com/armgabrielyan>`_)
* PR `#8525 <https://github.com/numba/numba/pull/8525>`_: Making CUDA specific datamodel manager (`sklam <https://github.com/sklam>`_)
* PR `#8526 <https://github.com/numba/numba/pull/8526>`_: Fix broken url (`Nimrod0901 <https://github.com/Nimrod0901>`_)
* PR `#8527 <https://github.com/numba/numba/pull/8527>`_: Fix grammar in troubleshoot.rst (`armgabrielyan <https://github.com/armgabrielyan>`_)
* PR `#8532 <https://github.com/numba/numba/pull/8532>`_: Vary NumPy version on gpuCI (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8535 <https://github.com/numba/numba/pull/8535>`_: LLVM14 (`apmasell <https://github.com/apmasell>`_)
* PR `#8536 <https://github.com/numba/numba/pull/8536>`_: Fix fusion bug. (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8539 <https://github.com/numba/numba/pull/8539>`_: Fix #8534, np.broadcast_to should update array size attr. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8541 <https://github.com/numba/numba/pull/8541>`_: Remove restoration of "free" channel in Azure CI windows builds. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8542 <https://github.com/numba/numba/pull/8542>`_: CUDA: Make arg optional for Stream.add_callback() (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8544 <https://github.com/numba/numba/pull/8544>`_: Remove reliance on npy_<impl> ufunc loops. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8545 <https://github.com/numba/numba/pull/8545>`_: Py3.11 basic support (`esc <https://github.com/esc>`_ `sklam <https://github.com/sklam>`_)
* PR `#8547 <https://github.com/numba/numba/pull/8547>`_: [Unicode] Add more string view usages for unicode operations ()
* PR `#8549 <https://github.com/numba/numba/pull/8549>`_: Fix rstcheck in Azure CI builds, update sphinx dep and docs to match (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8550 <https://github.com/numba/numba/pull/8550>`_: Changes how tests are split between test instances (`apmasell <https://github.com/apmasell>`_)
* PR `#8554 <https://github.com/numba/numba/pull/8554>`_: Make target for ``@overload`` have 'generic' as default. (`stuartarchibald <https://github.com/stuartarchibald>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8557 <https://github.com/numba/numba/pull/8557>`_: [Unicode] support startswith with args, start and end. ()
* PR `#8566 <https://github.com/numba/numba/pull/8566>`_: Update workqueue abort message on concurrent access. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8572 <https://github.com/numba/numba/pull/8572>`_: CUDA: Reduce memory pressure from local memory tests (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8579 <https://github.com/numba/numba/pull/8579>`_: CUDA: Add CUDA 11.8 / Hopper support and required fixes (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8580 <https://github.com/numba/numba/pull/8580>`_: adding note about doing a wheel test build prior to tagging (`esc <https://github.com/esc>`_)
* PR `#8583 <https://github.com/numba/numba/pull/8583>`_: Skip tests that contribute to M1 RuntimeDyLd Assertion error (`sklam <https://github.com/sklam>`_)
* PR `#8587 <https://github.com/numba/numba/pull/8587>`_: Remove unused refcount removal code, clean ``core/cpu.py`` module. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8588 <https://github.com/numba/numba/pull/8588>`_: Remove lowering extension hooks, replace with pass infrastructure. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8590 <https://github.com/numba/numba/pull/8590>`_: Py3.11 support continues (`sklam <https://github.com/sklam>`_)
* PR `#8592 <https://github.com/numba/numba/pull/8592>`_: fix failure of test_cache_invalidate due to read-only install (`tpwrules <https://github.com/tpwrules>`_)
* PR `#8593 <https://github.com/numba/numba/pull/8593>`_: Adjusted ULP precesion for noncentral distribution test (`kc611 <https://github.com/kc611>`_)
* PR `#8594 <https://github.com/numba/numba/pull/8594>`_: Fix various CUDA lineinfo issues (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8597 <https://github.com/numba/numba/pull/8597>`_: Prevent use of NumPy's MaskedArray. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8598 <https://github.com/numba/numba/pull/8598>`_: Setup Azure CI to test py3.11 (`sklam <https://github.com/sklam>`_)
* PR `#8600 <https://github.com/numba/numba/pull/8600>`_: Chrome trace timestamp should be in microseconds not seconds. (`sklam <https://github.com/sklam>`_)
* PR `#8602 <https://github.com/numba/numba/pull/8602>`_: Throw error for unsupported dunder methods (`apmasell <https://github.com/apmasell>`_)
* PR `#8605 <https://github.com/numba/numba/pull/8605>`_: Support for CUDA fp16 math functions (part 1) (`testhound <https://github.com/testhound>`_)
* PR `#8606 <https://github.com/numba/numba/pull/8606>`_: [Doc] Make the RewriteArrayExprs doc more precise ()
* PR `#8619 <https://github.com/numba/numba/pull/8619>`_: Added flat iteration logic for random distributions (`kc611 <https://github.com/kc611>`_)
* PR `#8623 <https://github.com/numba/numba/pull/8623>`_: Adds support for np.nan_to_num (`thomasjpfan <https://github.com/thomasjpfan>`_)
* PR `#8624 <https://github.com/numba/numba/pull/8624>`_: DOC: Add guvectorize scalar return example (`Matt711 <https://github.com/Matt711>`_)
* PR `#8625 <https://github.com/numba/numba/pull/8625>`_: Refactor ``test_ufuncs`` (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8626 <https://github.com/numba/numba/pull/8626>`_: [unicode-PERF]: use optmized BM algorithm to replace the brute-force finder (`dlee992 <https://github.com/dlee992>`_)
* PR `#8630 <https://github.com/numba/numba/pull/8630>`_: Fix #8628: Don't test math.trunc with non-float64 NumPy scalars (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8634 <https://github.com/numba/numba/pull/8634>`_: Add new method is_fp16_supported (`testhound <https://github.com/testhound>`_)
* PR `#8636 <https://github.com/numba/numba/pull/8636>`_: CUDA: Skip ``test_ptds`` on Windows (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8639 <https://github.com/numba/numba/pull/8639>`_: Python 3.11 - fix majority of remaining test failures. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8644 <https://github.com/numba/numba/pull/8644>`_: Fix bare reraise support (`sklam <https://github.com/sklam>`_)
* PR `#8649 <https://github.com/numba/numba/pull/8649>`_: Remove ``numba.core.overload_glue`` module. (`apmasell <https://github.com/apmasell>`_)
* PR `#8659 <https://github.com/numba/numba/pull/8659>`_: Preserve module name of jitted class (`neilflood <https://github.com/neilflood>`_)
* PR `#8661 <https://github.com/numba/numba/pull/8661>`_: Make external compiler discovery lazy in the test suite. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8662 <https://github.com/numba/numba/pull/8662>`_: Add support for ``.nbytes`` accessor for numpy arrays (`alanhdu <https://github.com/alanhdu>`_)
* PR `#8666 <https://github.com/numba/numba/pull/8666>`_: Updates for Python 3.8 baseline/Python 3.11 migration (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8673 <https://github.com/numba/numba/pull/8673>`_: Enable the CUDA simulator tests on Windows builds in Azure CI. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8675 <https://github.com/numba/numba/pull/8675>`_: Make ``always_run`` test decorator a tag and improve shard tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8677 <https://github.com/numba/numba/pull/8677>`_: Add support for min and max on boolean types. (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8680 <https://github.com/numba/numba/pull/8680>`_: Adjust flake8 config to be compatible with flake8=6.0.0 (`thomasjpfan <https://github.com/thomasjpfan>`_)
* PR `#8685 <https://github.com/numba/numba/pull/8685>`_: Implement ``__repr__`` for numba types (`luk-f-a <https://github.com/luk-f-a>`_)
* PR `#8691 <https://github.com/numba/numba/pull/8691>`_: NumPy 1.24 (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8697 <https://github.com/numba/numba/pull/8697>`_: Close stale issues after 7 days (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8701 <https://github.com/numba/numba/pull/8701>`_: Relaxed ULP testing precision for NumPy Generator tests across all systems (`kc611 <https://github.com/kc611>`_)
* PR `#8702 <https://github.com/numba/numba/pull/8702>`_: Supply concrete timeline for objmode fallback deprecation/removal. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8706 <https://github.com/numba/numba/pull/8706>`_: Fix doctest for ``@vectorize`` (`sklam <https://github.com/sklam>`_)
* PR `#8711 <https://github.com/numba/numba/pull/8711>`_: Python 3.11 tracing support (continuation of #8670). (`AndrewVallette <https://github.com/AndrewVallette>`_ `sklam <https://github.com/sklam>`_)
* PR `#8716 <https://github.com/numba/numba/pull/8716>`_: CI: Use ``set -e`` in "Before Install" step and fix install (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8720 <https://github.com/numba/numba/pull/8720>`_: Enable coverage for subprocess testing (`sklam <https://github.com/sklam>`_)
* PR `#8723 <https://github.com/numba/numba/pull/8723>`_: Check for void return type in ``cuda.compile_ptx`` (`brandonwillard <https://github.com/brandonwillard>`_)
* PR `#8726 <https://github.com/numba/numba/pull/8726>`_: Make Numba dependency check run ahead of Numba internal imports. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8728 <https://github.com/numba/numba/pull/8728>`_: Fix flake8 checks since upgrade to flake8=6.x (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8729 <https://github.com/numba/numba/pull/8729>`_: Run flake8 CI step in multiple processes. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8732 <https://github.com/numba/numba/pull/8732>`_: Add numpy argpartition function support ()
* PR `#8735 <https://github.com/numba/numba/pull/8735>`_: Update bot to close PRs waiting on authors for more than 3 months (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8736 <https://github.com/numba/numba/pull/8736>`_: Implement np.lib.stride_tricks.sliding_window_view ()
* PR `#8744 <https://github.com/numba/numba/pull/8744>`_: Update CtypesLinker::add_cu error message to include fp16 usage (`testhound <https://github.com/testhound>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8746 <https://github.com/numba/numba/pull/8746>`_: Fix failing test_dispatcher test case (`testhound <https://github.com/testhound>`_)
* PR `#8748 <https://github.com/numba/numba/pull/8748>`_: Suppress known test failures for py3.11 (`sklam <https://github.com/sklam>`_)
* PR `#8751 <https://github.com/numba/numba/pull/8751>`_: Recycle test runners more aggressively (`apmasell <https://github.com/apmasell>`_)
* PR `#8752 <https://github.com/numba/numba/pull/8752>`_: Flake8 fixes for py311 branch (`esc <https://github.com/esc>`_ `sklam <https://github.com/sklam>`_)
* PR `#8760 <https://github.com/numba/numba/pull/8760>`_: Bump llvmlite PR in py3.11 branch testing (`sklam <https://github.com/sklam>`_)
* PR `#8764 <https://github.com/numba/numba/pull/8764>`_: CUDA tidy-up: remove some unneeded methods (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8765 <https://github.com/numba/numba/pull/8765>`_: BLD: remove distutils (`fangchenli <https://github.com/fangchenli>`_)
* PR `#8766 <https://github.com/numba/numba/pull/8766>`_: Stale bot: Use ``abandoned - stale`` label for closed PRs (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8771 <https://github.com/numba/numba/pull/8771>`_: Update vendored Versioneer from 0.14 to 0.28 (`oscargus <https://github.com/oscargus>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8775 <https://github.com/numba/numba/pull/8775>`_: Revert PR#8751 for buildfarm stability (`sklam <https://github.com/sklam>`_)
* PR `#8780 <https://github.com/numba/numba/pull/8780>`_: Improved documentation for Atomic CAS (`MiloniAtal <https://github.com/MiloniAtal>`_)
* PR `#8781 <https://github.com/numba/numba/pull/8781>`_: Ensure gc.collect() is called before checking refcount in tests. (`sklam <https://github.com/sklam>`_)
* PR `#8782 <https://github.com/numba/numba/pull/8782>`_: Changed wording of the escape error (`MiloniAtal <https://github.com/MiloniAtal>`_)
* PR `#8786 <https://github.com/numba/numba/pull/8786>`_: Upgrade stale GitHub action (`apmasell <https://github.com/apmasell>`_)
* PR `#8788 <https://github.com/numba/numba/pull/8788>`_: CUDA: Fix returned dtype of vectorized functions (Issue #8400) (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8790 <https://github.com/numba/numba/pull/8790>`_: CUDA compare and swap with index (`ianthomas23 <https://github.com/ianthomas23>`_)
* PR `#8795 <https://github.com/numba/numba/pull/8795>`_: Add pending-deprecation warnings for ``numba.pycc`` (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8802 <https://github.com/numba/numba/pull/8802>`_: Move the minimum supported NumPy version to 1.21 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8803 <https://github.com/numba/numba/pull/8803>`_: Attempted fix to #8789 by changing ``compile_ptx`` to accept a signature instead of argument tuple (`KyanCheung <https://github.com/KyanCheung>`_)
* PR `#8804 <https://github.com/numba/numba/pull/8804>`_: Split parfor pass into 3 parts (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8809 <https://github.com/numba/numba/pull/8809>`_: Update LLVM versions for 0.57 release (`apmasell <https://github.com/apmasell>`_)
* PR `#8810 <https://github.com/numba/numba/pull/8810>`_: Fix llvmlite dependency in meta.yaml (`sklam <https://github.com/sklam>`_)
* PR `#8816 <https://github.com/numba/numba/pull/8816>`_: Fix some buildfarm test failures (`sklam <https://github.com/sklam>`_)
* PR `#8819 <https://github.com/numba/numba/pull/8819>`_: Support "static" __getitem__ on Numba types in ``@njit`` code. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8822 <https://github.com/numba/numba/pull/8822>`_: Merge py3.11 branch to main (`esc <https://github.com/esc>`_ `AndrewVallette <https://github.com/AndrewVallette>`_ `stuartarchibald <https://github.com/stuartarchibald>`_ `sklam <https://github.com/sklam>`_)
* PR `#8826 <https://github.com/numba/numba/pull/8826>`_: CUDA CFFI test: conditionally require cffi module (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8831 <https://github.com/numba/numba/pull/8831>`_: Redo py3.11 sync branch with main (`sklam <https://github.com/sklam>`_)
* PR `#8833 <https://github.com/numba/numba/pull/8833>`_: Fix typeguard import hook location. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8836 <https://github.com/numba/numba/pull/8836>`_: Fix failing typeguard test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8837 <https://github.com/numba/numba/pull/8837>`_: Update AzureCI matrix for Python 3.11/NumPy 1.21..1.24 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8839 <https://github.com/numba/numba/pull/8839>`_: Add Dynamic Shared Memory example. (`k1m190r <https://github.com/k1m190r>`_)
* PR `#8842 <https://github.com/numba/numba/pull/8842>`_: Fix buildscripts, setup.py, docs for setuptools becoming optional. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8843 <https://github.com/numba/numba/pull/8843>`_: Pin typeguard to 3.0.1 in AzureCI. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8848 <https://github.com/numba/numba/pull/8848>`_: added lifted loops to glossary term (`cherieliu <https://github.com/cherieliu>`_)
* PR `#8852 <https://github.com/numba/numba/pull/8852>`_: Disable SLP vectorisation due to miscompilations. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8855 <https://github.com/numba/numba/pull/8855>`_: DOC: ``pip`` into double backticks in installing.rst (`F3eQnxN3RriK <https://github.com/F3eQnxN3RriK>`_)
* PR `#8856 <https://github.com/numba/numba/pull/8856>`_: Update TBB to use >= 2021.6 by default. (`kozlov-alexey <https://github.com/kozlov-alexey>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8858 <https://github.com/numba/numba/pull/8858>`_: Update deprecation notice for objmode fallback RE ``@jit`` use. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8864 <https://github.com/numba/numba/pull/8864>`_: Remove obsolete deprecation notices (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8866 <https://github.com/numba/numba/pull/8866>`_: Revise CUDA deprecation notices (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8869 <https://github.com/numba/numba/pull/8869>`_: Update CHANGE_LOG for 0.57.0rc1 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8870 <https://github.com/numba/numba/pull/8870>`_: Fix opcode "spelling" change since Python 3.11 in CUDA debug test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8879 <https://github.com/numba/numba/pull/8879>`_: Remove use of ``compile_isolated`` from generator tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8880 <https://github.com/numba/numba/pull/8880>`_: Fix missing dependency guard on pyyaml in ``test_azure_config``. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8881 <https://github.com/numba/numba/pull/8881>`_: Replace use of compile_isolated in test_obj_lifetime (`sklam <https://github.com/sklam>`_)
* PR `#8884 <https://github.com/numba/numba/pull/8884>`_: Pin llvmlite and NumPy on release branch (`sklam <https://github.com/sklam>`_)
* PR `#8887 <https://github.com/numba/numba/pull/8887>`_: Update PyPI supported version tags (`bryant1410 <https://github.com/bryant1410>`_)
* PR `#8896 <https://github.com/numba/numba/pull/8896>`_: Remove codecov install (now deleted from PyPI) (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8902 <https://github.com/numba/numba/pull/8902>`_: Enable CALL_FUNCTION_EX fix for py3.11 (`sklam <https://github.com/sklam>`_)
* PR `#8907 <https://github.com/numba/numba/pull/8907>`_: Work around issue #8898. Defer ``exp2`` (and ``log2``) calls to Numba internal symbols. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8909 <https://github.com/numba/numba/pull/8909>`_: Fix #8903. ``NumbaDeprecationWarning``s raised from ``@{gu,}vectorize``. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8929 <https://github.com/numba/numba/pull/8929>`_: Update CHANGE_LOG for 0.57.0 final. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8930 <https://github.com/numba/numba/pull/8930>`_: Fix year in change log (`jtilly <https://github.com/jtilly>`_)
* PR `#8932 <https://github.com/numba/numba/pull/8932>`_: Fix 0.57 release changelog (`sklam <https://github.com/sklam>`_)
Authors:
* `alanhdu <https://github.com/alanhdu>`_
* `AndrewVallette <https://github.com/AndrewVallette>`_
* `apmasell <https://github.com/apmasell>`_
* `armgabrielyan <https://github.com/armgabrielyan>`_
* `aseyboldt <https://github.com/aseyboldt>`_
* `Biswa96 <https://github.com/Biswa96>`_
* `brandonwillard <https://github.com/brandonwillard>`_
* `bryant1410 <https://github.com/bryant1410>`_
* `bszollosinagy <https://github.com/bszollosinagy>`_
* `cako <https://github.com/cako>`_
* `cherieliu <https://github.com/cherieliu>`_
* `ChiCheng45 <https://github.com/ChiCheng45>`_
* `DannyWeitekamp <https://github.com/DannyWeitekamp>`_
* `dlee992 <https://github.com/dlee992>`_
* `dmbelov <https://github.com/dmbelov>`_
* `DrTodd13 <https://github.com/DrTodd13>`_
* `eric-wieser <https://github.com/eric-wieser>`_
* `esc <https://github.com/esc>`_
* `F3eQnxN3RriK <https://github.com/F3eQnxN3RriK>`_
* `fangchenli <https://github.com/fangchenli>`_
* `gmarkall <https://github.com/gmarkall>`_
* `guilhermeleobas <https://github.com/guilhermeleobas>`_
* `ianthomas23 <https://github.com/ianthomas23>`_
* `jamesobutler <https://github.com/jamesobutler>`_
* `jorgepiloto <https://github.com/jorgepiloto>`_
* `jtilly <https://github.com/jtilly>`_
* `k1m190r <https://github.com/k1m190r>`_
* `kc611 <https://github.com/kc611>`_
* `kozlov-alexey <https://github.com/kozlov-alexey>`_
* `KyanCheung <https://github.com/KyanCheung>`_
* `luk-f-a <https://github.com/luk-f-a>`_
* `Matt711 <https://github.com/Matt711>`_
* `MiloniAtal <https://github.com/MiloniAtal>`_
* `naveensrinivasan <https://github.com/naveensrinivasan>`_
* `neilflood <https://github.com/neilflood>`_
* `Nimrod0901 <https://github.com/Nimrod0901>`_
* `njriasan <https://github.com/njriasan>`_
* `oleksandr-pavlyk <https://github.com/oleksandr-pavlyk>`_
* `oscargus <https://github.com/oscargus>`_
* `raybellwaves <https://github.com/raybellwaves>`_
* `shangbol <https://github.com/shangbol>`_
* `sklam <https://github.com/sklam>`_
* `stefanfed <https://github.com/stefanfed>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
* `testhound <https://github.com/testhound>`_
* `thomasjpfan <https://github.com/thomasjpfan>`_
* `tpwrules <https://github.com/tpwrules>`_
Version 0.56.4 (3 November, 2022)
---------------------------------
This is a bugfix release to fix a regression in the CUDA target in relation to
the ``.view()`` method on CUDA device arrays that is present when using NumPy
version 1.23.0 or later.
Pull-Requests:
* PR `#8537 <https://github.com/numba/numba/pull/8537>`_: Make ol_compatible_view accessible on all targets (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8552 <https://github.com/numba/numba/pull/8552>`_: Update version support table for 0.56.4. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8553 <https://github.com/numba/numba/pull/8553>`_: Update CHANGE_LOG for 0.56.4 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8570 <https://github.com/numba/numba/pull/8570>`_: Release 0.56 branch: Fix overloads with ``target="generic"`` for CUDA (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8571 <https://github.com/numba/numba/pull/8571>`_: Additional update to CHANGE_LOG for 0.56.4 (`stuartarchibald <https://github.com/stuartarchibald>`_)
Authors:
* `gmarkall <https://github.com/gmarkall>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
Version 0.56.3 (13 October, 2022)
---------------------------------
This is a bugfix release to remove the version restriction applied to the
``setuptools`` package and to fix a bug in the CUDA target in relation to
copying zero length device arrays to zero length host arrays.
Pull-Requests:
* PR `#8475 <https://github.com/numba/numba/pull/8475>`_: Remove setuptools version pin (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8482 <https://github.com/numba/numba/pull/8482>`_: Fix #8477: Allow copies with different strides for 0-length data (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8486 <https://github.com/numba/numba/pull/8486>`_: Restrict the TBB development package to supported version in Azure. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8503 <https://github.com/numba/numba/pull/8503>`_: Update version support table for 0.56.3 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8504 <https://github.com/numba/numba/pull/8504>`_: Update CHANGE_LOG for 0.56.3 (`stuartarchibald <https://github.com/stuartarchibald>`_)
Authors:
* `gmarkall <https://github.com/gmarkall>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
Version 0.56.2 (1 September, 2022)
----------------------------------
This is a bugfix release that supports NumPy 1.23 and fixes CUDA function
caching.
Pull-Requests:
* PR `#8239 <https://github.com/numba/numba/pull/8239>`_: Add decorator to run a test in a subprocess (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8276 <https://github.com/numba/numba/pull/8276>`_: Move Azure to use macos-11 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8310 <https://github.com/numba/numba/pull/8310>`_: CUDA: Fix Issue #8309 - atomics don't work on complex components (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8342 <https://github.com/numba/numba/pull/8342>`_: Upgrade to ubuntu-20.04 for azure pipeline CI (`jamesobutler <https://github.com/jamesobutler>`_)
* PR `#8356 <https://github.com/numba/numba/pull/8356>`_: Update setup.py, buildscripts, CI and docs to require setuptools<60 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8374 <https://github.com/numba/numba/pull/8374>`_: Don't pickle LLVM IR for CUDA code libraries (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8377 <https://github.com/numba/numba/pull/8377>`_: Add support for NumPy 1.23 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8384 <https://github.com/numba/numba/pull/8384>`_: Move strace() check into tests that actually need it (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8386 <https://github.com/numba/numba/pull/8386>`_: Fix the docs for numba.get_thread_id (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8407 <https://github.com/numba/numba/pull/8407>`_: Pin NumPy version to 1.18-1.24 (`Andre Masella <https://github.com/apmasell>`_)
* PR `#8411 <https://github.com/numba/numba/pull/8411>`_: update version support table for 0.56.1 (`esc <https://github.com/esc>`_)
* PR `#8412 <https://github.com/numba/numba/pull/8412>`_: Create changelog for 0.56.1 (`Andre Masella <https://github.com/apmasell>`_)
* PR `#8413 <https://github.com/numba/numba/pull/8413>`_: Fix Azure CI for NumPy 1.23 and use conda-forge scipy (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8414 <https://github.com/numba/numba/pull/8413>`_: Hotfix for 0.56.2 (`Siu Kwan Lam <https://github.com/sklam>`_)
Authors:
* `Andre Masella <https://github.com/apmasell>`_
* `esc <https://github.com/esc>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `jamesobutler <https://github.com/jamesobutler>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
Version 0.56.1 (NO RELEASE)
---------------------------
The release was skipped due to issues during the release process.
Version 0.56.0 (25 July, 2022)
------------------------------
This release continues to add new features, bug fixes and stability improvements
to Numba. Please note that this will be the last release that has support for
Python 3.7 as the next release series (Numba 0.57) will support Python 3.11!
Also note that, this will be the last release to support linux-32 packages
produced by the Numba team.
Python language support enhancements:
* Previously missing support for large, in-line dictionaries and internal calls
to functions with large numbers of keyword arguments in Python 3.10 has been
added.
* ``operator.mul`` now works for ``list`` s.
* Literal slices, e.g. ``slice(1, 10, 2)`` can be returned from ``nopython``
mode functions.
* The ``len`` function now works on ``dict_keys``, ``dict_values`` and
``dict_items`` .
* Numba's ``set`` implementation now supports reference counted items e.g.
strings.
Numba specific feature enhancements:
* The experimental ``jitclass`` feature gains support for a large number of
``builtin`` methods e.g. declaring ``__hash__`` or ``__getitem__`` for a
``jitclass`` type.
* It's now possible to use ``@vectorize`` on an already ``@jit`` family
decorated function.
* Name mangling has been updated to emit compiled function names that exactly
match the function name in Python. This means debuggers, like GDB, can be set
to break directly on Python function names.
* A GDB "pretty printing" support module has been added, when loaded into GDB
Numba's internal representations of Python/NumPy types are rendered inside GDB
as they would be in Python.
* An experimental option is added to the ``@jit`` family decorators to entirely
turn off LLVM's optimisation passes for a given function (see
``_dbg_optnone`` kwarg in the ``@jit`` decorator family).
* A new environment variable is added ``NUMBA_EXTEND_VARIABLE_LIFETIMES``, which
if set will extend the lifetime of variables to the end of their basic block,
this to permit a debugging experience in GDB similar to that found in compiled
C/C++/Fortran code.
NumPy features/enhancements:
* Initial support for passing, using and returning ``numpy.random.Generator``
instances has been added, this currently includes support for the ``random``
distribution.
* The broadcasting functions ``np.broadcast_shapes`` and ``np.broadcast_arrays``
are now supported.
* The ``min`` and ``max`` functions now work with ``np.timedelta64`` and
``np.datetime64`` types.
* Sorting multi-dimensional arrays along the last axis is now supported in
``np.sort()``.
* The ``np.clip`` function is updated to accept NumPy arrays for the ``a_min``
and ``a_max`` arguments.
* The NumPy allocation routines (``np.empty`` , ``np.ones`` etc.) support shape
arguments specified using members of ``enum.IntEnum`` s.
* The function ``np.random.noncentral_chisquare`` is now supported.
* The performance of functions ``np.full`` and ``np.ones`` has been improved.
Parallel Accelerator enhancements:
* The ``parallel=True`` functionality is enhanced through the addition of the
functions ``numba.set_parallel_chunksize`` and
``numba.get_parallel_chunksize`` to permit a more fine grained scheduling of
work defined in a parallel region. There is also support for adjusting the
``chunksize`` via a context manager.
* The ``ID`` of a thread is now defined to be predictable and within a known
range, it is available through calling the function ``numba.get_thread_id``.
* The performance of ``@stencil`` s has been improved in both serial and
parallel execution.
CUDA enhancements:
* New functionality:
* Self-recursive device functions.
* Vector type support (``float4``, ``int2``, etc.).
* Shared / local arrays of extension types can now be created.
* Support for linking CUDA C / C++ device functions into Python kernels.
* PTX generation for Compute Capabilities 8.6 and 8.7 - e.g. RTX A series,
GTX 3000 series.
* Comparison operations for ``float16`` types.
* Performance improvements:
* Context queries are no longer made during launch configuration.
* Launch configurations are now LRU cached.
* On-disk caching of CUDA kernels is now supported.
* Documentation: many new examples added.
Docs:
* Numba now has an official "mission statement".
* There's now a "version support table" in the documentation to act as an easy
to use, single reference point, for looking up information about Numba
releases and their required/supported dependencies.
General Enhancements:
* Numba imports more quickly in environments with large numbers of packages as
it now uses ``importlib-metadata`` for querying other packages.
* Emission of chrome tracing output is now supported for the internal
compilation event handling system.
* This release is tested and known to work when using the
`Pyston <https://www.pyston.org/>`_ Python interpreter.
Pull-Requests:
* PR `#5209 <https://github.com/numba/numba/pull/5209>`_: Use importlib to load numba extensions (`Stepan Rakitin <https://github.com/svrakitin>`_ `Graham Markall <https://github.com/gmarkall>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#5877 <https://github.com/numba/numba/pull/5877>`_: Jitclass builtin methods (`Ethan Pronovost <https://github.com/EPronovost>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#6490 <https://github.com/numba/numba/pull/6490>`_: Stencil output allocated with np.empty now and new code to initialize the borders. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7005 <https://github.com/numba/numba/pull/7005>`_: Make `numpy.searchsorted` match NumPy when first argument is unsorted (`Brandon T. Willard <https://github.com/brandonwillard>`_)
* PR `#7363 <https://github.com/numba/numba/pull/7363>`_: Update cuda.local.array to clarify "simple constant expression" (e.g. no NumPy ints) (`Sterling Baird <https://github.com/sgbaird>`_)
* PR `#7364 <https://github.com/numba/numba/pull/7364>`_: Removes an instance of signed integer overflow undefined behaviour. (`Tobias Sargeant <https://github.com/folded>`_)
* PR `#7537 <https://github.com/numba/numba/pull/7537>`_: Add chrome tracing (`Hadia Ahmed <https://github.com/hadia206>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7556 <https://github.com/numba/numba/pull/7556>`_: Testhound/fp16 comparison (`Michael Collison <https://github.com/testhound>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7586 <https://github.com/numba/numba/pull/7586>`_: Support for len on dict.keys, dict.values, and dict.items (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7617 <https://github.com/numba/numba/pull/7617>`_: Numba gdb-python extension for printing (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7619 <https://github.com/numba/numba/pull/7619>`_: CUDA: Fix linking with PTX when compiling lazily (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7621 <https://github.com/numba/numba/pull/7621>`_: Add support for linking CUDA C / C++ with `@cuda.jit` kernels (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7625 <https://github.com/numba/numba/pull/7625>`_: Combined parfor chunking and caching PRs. (`stuartarchibald <https://github.com/stuartarchibald>`_ `Todd A. Anderson <https://github.com/DrTodd13>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7651 <https://github.com/numba/numba/pull/7651>`_: DOC: pypi and conda-forge badges (`Ray Bell <https://github.com/raybellwaves>`_)
* PR `#7660 <https://github.com/numba/numba/pull/7660>`_: Add support for np.broadcast_arrays (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#7664 <https://github.com/numba/numba/pull/7664>`_: Flatten mangling dicts into a single dict (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7680 <https://github.com/numba/numba/pull/7680>`_: CUDA Docs: include example calling slow matmul (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7682 <https://github.com/numba/numba/pull/7682>`_: performance improvements to np.full and np.ones (`Rishi Kulkarni <https://github.com/rishi-kulkarni>`_)
* PR `#7684 <https://github.com/numba/numba/pull/7684>`_: DOC: remove incorrect warning in np.random reference (`Rishi Kulkarni <https://github.com/rishi-kulkarni>`_)
* PR `#7685 <https://github.com/numba/numba/pull/7685>`_: Don't convert setitems that have dimension mismatches to parfors. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7690 <https://github.com/numba/numba/pull/7690>`_: Implemented np.random.noncentral_chisquare for all size arguments (`Rishi Kulkarni <https://github.com/rishi-kulkarni>`_)
* PR `#7695 <https://github.com/numba/numba/pull/7695>`_: `IntEnumMember` support for `np.empty`, `np.zeros`, and `np.ones` (`Benjamin Graham <https://github.com/benwilliamgraham>`_)
* PR `#7699 <https://github.com/numba/numba/pull/7699>`_: CUDA: Provide helpful error if the return type is missing for `declare_device` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7700 <https://github.com/numba/numba/pull/7700>`_: Support for scalar arguments in Np.ascontiguousarray (`Dhruv Patel <https://github.com/DhruvPatel01>`_)
* PR `#7703 <https://github.com/numba/numba/pull/7703>`_: Ignore unsupported types in `ShapeEquivSet._getnames()` (`Benjamin Graham <https://github.com/benwilliamgraham>`_)
* PR `#7704 <https://github.com/numba/numba/pull/7704>`_: Move the type annotation pass to post legalization. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7709 <https://github.com/numba/numba/pull/7709>`_: CUDA: Fixes missing type annotation pass following #7704 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7712 <https://github.com/numba/numba/pull/7712>`_: Fixing issue 7693 (`stuartarchibald <https://github.com/stuartarchibald>`_ `Graham Markall <https://github.com/gmarkall>`_ `luk-f-a <https://github.com/luk-f-a>`_)
* PR `#7714 <https://github.com/numba/numba/pull/7714>`_: Support for boxing SliceLiteral type (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7718 <https://github.com/numba/numba/pull/7718>`_: Bump llvmlite dependency to 0.39.0dev0 for Numba 0.56.0dev0 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7724 <https://github.com/numba/numba/pull/7724>`_: Update URLs in error messages to refer to RTD docs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7728 <https://github.com/numba/numba/pull/7728>`_: Document that AOT-compiled functions do not check arg types (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7729 <https://github.com/numba/numba/pull/7729>`_: Handle Omitted/OmittedArgDataModel in DI generation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7732 <https://github.com/numba/numba/pull/7732>`_: update release checklist following 0.55.0 RC1 (`esc <https://github.com/esc>`_)
* PR `#7736 <https://github.com/numba/numba/pull/7736>`_: Update CHANGE_LOG for 0.55.0 final. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7740 <https://github.com/numba/numba/pull/7740>`_: CUDA Python 11.6 support (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7744 <https://github.com/numba/numba/pull/7744>`_: Fix issues with locating/parsing source during DebugInfo emission. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7745 <https://github.com/numba/numba/pull/7745>`_: Fix the release year for Numba 0.55 change log entry. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7748 <https://github.com/numba/numba/pull/7748>`_: Fix #7713: Ensure _prng_random_hash return has correct bitwidth (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7749 <https://github.com/numba/numba/pull/7749>`_: Refactor threading layer priority tests to not use stdout/stderr (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7752 <https://github.com/numba/numba/pull/7752>`_: Fix #7751: Use original filename for array exprs (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7755 <https://github.com/numba/numba/pull/7755>`_: CUDA: Deprecate support for CC < 5.3 and CTK < 10.2 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7763 <https://github.com/numba/numba/pull/7763>`_: Update Read the Docs configuration (automatic) (`readthedocs-assistant <https://github.com/readthedocs-assistant>`_)
* PR `#7764 <https://github.com/numba/numba/pull/7764>`_: Add dbg_optnone and dbg_extend_lifetimes flags (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7771 <https://github.com/numba/numba/pull/7771>`_: Move function unique ID to abi-tags (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7772 <https://github.com/numba/numba/pull/7772>`_: CUDA: Add Support to Creating `StructModel` Array (`Michael Wang <https://github.com/isVoid>`_)
* PR `#7776 <https://github.com/numba/numba/pull/7776>`_: Updates coverage.py config (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7777 <https://github.com/numba/numba/pull/7777>`_: Remove reference existing issue from GH template. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7778 <https://github.com/numba/numba/pull/7778>`_: Remove long deprecated flags from the CLI. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7780 <https://github.com/numba/numba/pull/7780>`_: Fix sets with reference counted items (`Benjamin Graham <https://github.com/benwilliamgraham>`_)
* PR `#7782 <https://github.com/numba/numba/pull/7782>`_: adding reminder to check on deprecations (`esc <https://github.com/esc>`_)
* PR `#7783 <https://github.com/numba/numba/pull/7783>`_: remove upper limit on Python version (`esc <https://github.com/esc>`_)
* PR `#7786 <https://github.com/numba/numba/pull/7786>`_: Remove dependency on intel-openmp for OSX (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7788 <https://github.com/numba/numba/pull/7788>`_: Avoid issue with DI gen for arrayexprs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7796 <https://github.com/numba/numba/pull/7796>`_: update change-log for 0.55.1 (`esc <https://github.com/esc>`_)
* PR `#7797 <https://github.com/numba/numba/pull/7797>`_: prune README (`esc <https://github.com/esc>`_)
* PR `#7799 <https://github.com/numba/numba/pull/7799>`_: update the release checklist post 0.55.1 (`esc <https://github.com/esc>`_)
* PR `#7801 <https://github.com/numba/numba/pull/7801>`_: add sdist command and umask reminder (`esc <https://github.com/esc>`_)
* PR `#7804 <https://github.com/numba/numba/pull/7804>`_: update local references from master -> main (`esc <https://github.com/esc>`_)
* PR `#7805 <https://github.com/numba/numba/pull/7805>`_: Enhance source line finding logic for debuginfo (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7809 <https://github.com/numba/numba/pull/7809>`_: Updates the gdb configuration to accept a binary name or a path. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7813 <https://github.com/numba/numba/pull/7813>`_: Extend parfors test timeout for aarch64. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7814 <https://github.com/numba/numba/pull/7814>`_: CUDA Dispatcher refactor (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7815 <https://github.com/numba/numba/pull/7815>`_: CUDA Dispatcher refactor 2: inherit from `dispatcher.Dispatcher` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7817 <https://github.com/numba/numba/pull/7817>`_: Update intersphinx URLs for NumPy and llvmlite. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7823 <https://github.com/numba/numba/pull/7823>`_: Add renamed vars to callee scope such that it is self consistent. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7829 <https://github.com/numba/numba/pull/7829>`_: CUDA: Support `Enum/IntEnum` in Kernel (`Michael Wang <https://github.com/isVoid>`_)
* PR `#7833 <https://github.com/numba/numba/pull/7833>`_: Add version support information table to docs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7835 <https://github.com/numba/numba/pull/7835>`_: Fix pickling error when module cannot be imported (`idorrington <https://github.com/idorrington>`_)
* PR `#7836 <https://github.com/numba/numba/pull/7836>`_: min() and max() support for np.datetime and np.timedelta (`Benjamin Graham <https://github.com/benwilliamgraham>`_)
* PR `#7837 <https://github.com/numba/numba/pull/7837>`_: Initial refactoring of parfor reduction lowering (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7845 <https://github.com/numba/numba/pull/7845>`_: change time.time() to time.perf_counter() in docs (`Nopileos2 <https://github.com/Nopileos2>`_)
* PR `#7846 <https://github.com/numba/numba/pull/7846>`_: Fix CUDA enum vectorize test on Windows (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7848 <https://github.com/numba/numba/pull/7848>`_: Support for int * list (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7850 <https://github.com/numba/numba/pull/7850>`_: CUDA: Pass `fastmath` compiler flag down to `compile_ptx` and `compile_device`; Improve `fastmath` tests (`Michael Wang <https://github.com/isVoid>`_)
* PR `#7855 <https://github.com/numba/numba/pull/7855>`_: Ensure np.argmin/no.argmax return type is intp (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7858 <https://github.com/numba/numba/pull/7858>`_: CUDA: Deprecate `ptx` Attribute and Update Tests (`Graham Markall <https://github.com/gmarkall>`_ `Michael Wang <https://github.com/isVoid>`_)
* PR `#7861 <https://github.com/numba/numba/pull/7861>`_: Fix a spelling mistake in README (`Zizheng Guo <https://github.com/gzz2000>`_)
* PR `#7864 <https://github.com/numba/numba/pull/7864>`_: Fix cross_iter_dep check. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7865 <https://github.com/numba/numba/pull/7865>`_: Remove add_user_function (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7866 <https://github.com/numba/numba/pull/7866>`_: Support for large numbers of args/kws with Python 3.10 (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7878 <https://github.com/numba/numba/pull/7878>`_: CUDA: Remove some deprecated support, add CC 8.6 and 8.7 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7893 <https://github.com/numba/numba/pull/7893>`_: Use uuid.uuid4() as the key in serialization. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7895 <https://github.com/numba/numba/pull/7895>`_: Remove use of `llvmlite.llvmpy` (`Andre Masella <https://github.com/apmasell>`_)
* PR `#7898 <https://github.com/numba/numba/pull/7898>`_: Skip test_ptds under cuda-memcheck (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7901 <https://github.com/numba/numba/pull/7901>`_: Pyston compatibility for the test suite (`Kevin Modzelewski <https://github.com/kmod>`_)
* PR `#7904 <https://github.com/numba/numba/pull/7904>`_: Support m1 (`esc <https://github.com/esc>`_)
* PR `#7911 <https://github.com/numba/numba/pull/7911>`_: added sys import (`Nightfurex <https://github.com/Nightfurex>`_)
* PR `#7915 <https://github.com/numba/numba/pull/7915>`_: CUDA: Fix test checking debug info rendering. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7918 <https://github.com/numba/numba/pull/7918>`_: Add JIT examples to CUDA docs (`brandon-b-miller <https://github.com/brandon-b-miller>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7919 <https://github.com/numba/numba/pull/7919>`_: Disallow //= reductions in pranges. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7924 <https://github.com/numba/numba/pull/7924>`_: Retain non-modified index tuple components. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7939 <https://github.com/numba/numba/pull/7939>`_: Fix rendering in feature request template. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7940 <https://github.com/numba/numba/pull/7940>`_: Implemented `np.allclose` in `numba/np/arraymath.py` (`Gagandeep Singh <https://github.com/czgdp1807>`_)
* PR `#7941 <https://github.com/numba/numba/pull/7941>`_: Remove debug dump output from closure inlining pass. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7946 <https://github.com/numba/numba/pull/7946>`_: instructions for creating a build environment were outdated (`esc <https://github.com/esc>`_)
* PR `#7949 <https://github.com/numba/numba/pull/7949>`_: Add Cuda Vector Types (`Michael Wang <https://github.com/isVoid>`_)
* PR `#7950 <https://github.com/numba/numba/pull/7950>`_: mission statement (`esc <https://github.com/esc>`_)
* PR `#7956 <https://github.com/numba/numba/pull/7956>`_: Stop using pip for 3.10 on public ci (Revert "start testing Python 3.10 on public CI") (`esc <https://github.com/esc>`_)
* PR `#7957 <https://github.com/numba/numba/pull/7957>`_: Use cloudpickle for disk caches (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7958 <https://github.com/numba/numba/pull/7958>`_: `numpy.clip` accept `numpy.array` for `a_min`, `a_max` (`Gagandeep Singh <https://github.com/czgdp1807>`_)
* PR `#7959 <https://github.com/numba/numba/pull/7959>`_: Permit a new array model to have a super set of array model fields. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7961 <https://github.com/numba/numba/pull/7961>`_: `numba.typed.typeddict.Dict.get` uses `castedkey` to avoid returning default value even if the key is present (`Gagandeep Singh <https://github.com/czgdp1807>`_)
* PR `#7963 <https://github.com/numba/numba/pull/7963>`_: remove the roadmap from the sphinx based docs (`esc <https://github.com/esc>`_)
* PR `#7964 <https://github.com/numba/numba/pull/7964>`_: Support for large constant dictionaries in Python 3.10 (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7965 <https://github.com/numba/numba/pull/7965>`_: Use uuid4 instead of PID in cache temp name to prevent collisions. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7971 <https://github.com/numba/numba/pull/7971>`_: lru cache for configure call (`Tingkai Liu <https://github.com/TK-21st>`_)
* PR `#7972 <https://github.com/numba/numba/pull/7972>`_: Fix fp16 support for cuda shared array (`Michael Collison <https://github.com/testhound>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7986 <https://github.com/numba/numba/pull/7986>`_: Small caching refactor to support target cache implementations (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7994 <https://github.com/numba/numba/pull/7994>`_: Supporting multidimensional arrays in quick sort (`Gagandeep Singh <https://github.com/czgdp1807>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7996 <https://github.com/numba/numba/pull/7996>`_: Fix binding logic in `@overload_glue`. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7999 <https://github.com/numba/numba/pull/7999>`_: Remove `@overload_glue` for NumPy allocators. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8003 <https://github.com/numba/numba/pull/8003>`_: Add np.broadcast_shapes (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#8004 <https://github.com/numba/numba/pull/8004>`_: CUDA fixes for Windows (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8014 <https://github.com/numba/numba/pull/8014>`_: Fix support for {real,imag} array attrs in Parfors. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8016 <https://github.com/numba/numba/pull/8016>`_: [Docs] [Very Minor] Make `numba.jit` boundscheck doc line consistent (`Kyle Martin <https://github.com/martinky24>`_)
* PR `#8017 <https://github.com/numba/numba/pull/8017>`_: Update FAQ to include details about using debug-only option (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#8027 <https://github.com/numba/numba/pull/8027>`_: Support for NumPy 1.22 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8031 <https://github.com/numba/numba/pull/8031>`_: Support for Numpy BitGenerators PR#1 - Core Generator Support (`Kaustubh <https://github.com/kc611>`_)
* PR `#8035 <https://github.com/numba/numba/pull/8035>`_: Fix a couple of typos RE implementation (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8037 <https://github.com/numba/numba/pull/8037>`_: CUDA self-recursion tests (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8044 <https://github.com/numba/numba/pull/8044>`_: Make Python 3.10 kwarg peephole less restrictive (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#8046 <https://github.com/numba/numba/pull/8046>`_: Fix caching test failures (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8049 <https://github.com/numba/numba/pull/8049>`_: support str(bool) syntax (`LI Da <https://github.com/dlee992>`_)
* PR `#8052 <https://github.com/numba/numba/pull/8052>`_: Ensure pthread is linked in when building for ppc64le. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8056 <https://github.com/numba/numba/pull/8056>`_: Move caching tests from test_dispatcher to test_caching (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8057 <https://github.com/numba/numba/pull/8057>`_: Fix coverage checking (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8064 <https://github.com/numba/numba/pull/8064>`_: Rename "nb:run_pass" to "numba:run_pass" and document it. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8065 <https://github.com/numba/numba/pull/8065>`_: Fix PyLowering mishandling starargs (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8068 <https://github.com/numba/numba/pull/8068>`_: update changelog for 0.55.2 (`esc <https://github.com/esc>`_)
* PR `#8077 <https://github.com/numba/numba/pull/8077>`_: change return type of np.broadcast_shapes to a tuple (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#8080 <https://github.com/numba/numba/pull/8080>`_: Fix windows test failure due to timeout when the machine is slow poss… (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8081 <https://github.com/numba/numba/pull/8081>`_: Fix erroneous array count in parallel gufunc kernel generation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8089 <https://github.com/numba/numba/pull/8089>`_: Support on-disk caching in the CUDA target (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8097 <https://github.com/numba/numba/pull/8097>`_: Exclude libopenblas 0.3.20 on osx-arm64 (`esc <https://github.com/esc>`_)
* PR `#8099 <https://github.com/numba/numba/pull/8099>`_: Fix Py_DECREF use in case of error state (for devicearray). (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8102 <https://github.com/numba/numba/pull/8102>`_: Combine numpy run_constrained in meta.yaml to the run requirements (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8109 <https://github.com/numba/numba/pull/8109>`_: Pin TBB support with respect to incompatible 2021.6 API. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8118 <https://github.com/numba/numba/pull/8118>`_: Update release checklists post 0.55.2 (`esc <https://github.com/esc>`_)
* PR `#8123 <https://github.com/numba/numba/pull/8123>`_: Fix CUDA print tests on Windows (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8124 <https://github.com/numba/numba/pull/8124>`_: Add explicit checks to all allocators in the NRT. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8126 <https://github.com/numba/numba/pull/8126>`_: Mark gufuncs as having mutable outputs (`Andre Masella <https://github.com/apmasell>`_)
* PR `#8133 <https://github.com/numba/numba/pull/8133>`_: Fix #8132. Regression in Record.make_c_struct for handling nestedarray (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8137 <https://github.com/numba/numba/pull/8137>`_: CUDA: Fix #7806, Division by zero stops the kernel (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8142 <https://github.com/numba/numba/pull/8142>`_: CUDA: Fix some missed changes from dropping 9.2 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8144 <https://github.com/numba/numba/pull/8144>`_: Fix NumPy capitalisation in docs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8145 <https://github.com/numba/numba/pull/8145>`_: Allow ufunc builder to use previously JITed function (`Andre Masella <https://github.com/apmasell>`_)
* PR `#8151 <https://github.com/numba/numba/pull/8151>`_: pin NumPy to build 0 of 1.19.2 on public CI (`esc <https://github.com/esc>`_)
* PR `#8163 <https://github.com/numba/numba/pull/8163>`_: CUDA: Remove context query in launch config (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8165 <https://github.com/numba/numba/pull/8165>`_: Restrict strace based tests to be linux only via support feature. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8170 <https://github.com/numba/numba/pull/8170>`_: CUDA: Fix missing space in low occupancy warning (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8175 <https://github.com/numba/numba/pull/8175>`_: make build and upload order consistent (`esc <https://github.com/esc>`_)
* PR `#8181 <https://github.com/numba/numba/pull/8181>`_: Fix various typos (`luzpaz <https://github.com/luzpaz>`_)
* PR `#8187 <https://github.com/numba/numba/pull/8187>`_: Update CHANGE_LOG for 0.55.2 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_)
* PR `#8189 <https://github.com/numba/numba/pull/8189>`_: updated version support information for 0.55.2/0.57 (`esc <https://github.com/esc>`_)
* PR `#8191 <https://github.com/numba/numba/pull/8191>`_: CUDA: Update deprecation notes for 0.56. (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8192 <https://github.com/numba/numba/pull/8192>`_: Update CHANGE_LOG for 0.56.0 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8195 <https://github.com/numba/numba/pull/8195>`_: Make the workqueue threading backend once again fork safe. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8196 <https://github.com/numba/numba/pull/8196>`_: Fix numerical tolerance in parfors caching test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8197 <https://github.com/numba/numba/pull/8197>`_: Fix `isinstance` warning check test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8203 <https://github.com/numba/numba/pull/8203>`_: pin llvmlite 0.39 for public CI builds (`esc <https://github.com/esc>`_)
* PR `#8255 <https://github.com/numba/numba/pull/8255>`_: CUDA: Make numba.cuda.tests.doc_examples.ffi a module to fix #8252 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8274 <https://github.com/numba/numba/pull/8274>`_: Update version support table doc for 0.56. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8275 <https://github.com/numba/numba/pull/8275>`_: Update CHANGE_LOG for 0.56.0 final (`stuartarchibald <https://github.com/stuartarchibald>`_)
Authors:
* `Andre Masella <https://github.com/apmasell>`_
* `Benjamin Graham <https://github.com/benwilliamgraham>`_
* `brandon-b-miller <https://github.com/brandon-b-miller>`_
* `Brandon T. Willard <https://github.com/brandonwillard>`_
* `Gagandeep Singh <https://github.com/czgdp1807>`_
* `Dhruv Patel <https://github.com/DhruvPatel01>`_
* `LI Da <https://github.com/dlee992>`_
* `Todd A. Anderson <https://github.com/DrTodd13>`_
* `Ethan Pronovost <https://github.com/EPronovost>`_
* `esc <https://github.com/esc>`_
* `Tobias Sargeant <https://github.com/folded>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `Guilherme Leobas <https://github.com/guilhermeleobas>`_
* `Zizheng Guo <https://github.com/gzz2000>`_
* `Hadia Ahmed <https://github.com/hadia206>`_
* `idorrington <https://github.com/idorrington>`_
* `Michael Wang <https://github.com/isVoid>`_
* `Kaustubh <https://github.com/kc611>`_
* `Kevin Modzelewski <https://github.com/kmod>`_
* `luk-f-a <https://github.com/luk-f-a>`_
* `luzpaz <https://github.com/luzpaz>`_
* `Kyle Martin <https://github.com/martinky24>`_
* `Nightfurex <https://github.com/Nightfurex>`_
* `Nick Riasanovsky <https://github.com/njriasan>`_
* `Nopileos2 <https://github.com/Nopileos2>`_
* `Ray Bell <https://github.com/raybellwaves>`_
* `readthedocs-assistant <https://github.com/readthedocs-assistant>`_
* `Rishi Kulkarni <https://github.com/rishi-kulkarni>`_
* `Sterling Baird <https://github.com/sgbaird>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
* `Stepan Rakitin <https://github.com/svrakitin>`_
* `Michael Collison <https://github.com/testhound>`_
* `Tingkai Liu <https://github.com/TK-21st>`_
Version 0.55.2 (25 May, 2022)
-----------------------------
This is a maintenance release to support NumPy 1.22 and Apple M1.
Pull-Requests:
* PR `#8067 <https://github.com/numba/numba/pull/8067>`_: Backport #8027: Support for NumPy 1.22 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8069 <https://github.com/numba/numba/pull/8069>`_: Install llvmlite 0.38 for Numba 0.55.* (`esc <https://github.com/esc>`_)
* PR `#8075 <https://github.com/numba/numba/pull/8075>`_: update max NumPy for 0.55.2 (`esc <https://github.com/esc>`_)
* PR `#8078 <https://github.com/numba/numba/pull/8078>`_: Backport #7804: update local references from master -> main (`esc <https://github.com/esc>`_)
* PR `#8082 <https://github.com/numba/numba/pull/8082>`_: Backport #8080: fix windows failure due to timeout (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8084 <https://github.com/numba/numba/pull/8084>`_: Pin meta.yaml to llvmlite 0.38 series (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8093 <https://github.com/numba/numba/pull/8093>`_: Backport #7904: Support m1 (`esc <https://github.com/esc>`_)
* PR `#8094 <https://github.com/numba/numba/pull/8094>`_: Backport #8052 Ensure pthread is linked in when building for ppc64le. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8098 <https://github.com/numba/numba/pull/8098>`_: Backport #8097: Exclude libopenblas 0.3.20 on osx-arm64 (`esc <https://github.com/esc>`_)
* PR `#8100 <https://github.com/numba/numba/pull/8100>`_: Backport #7786 for 0.55.2: Remove dependency on intel-openmp for OSX (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8103 <https://github.com/numba/numba/pull/8103>`_: Backport #8102 to fix numpy requirements (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8114 <https://github.com/numba/numba/pull/8114>`_: Backport #8109 Pin TBB support with respect to incompatible 2021.6 API. (`stuartarchibald <https://github.com/stuartarchibald>`_)
Total PRs: 12
Authors:
* `esc <https://github.com/esc>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
Total authors: 3
Version 0.55.1 (27 January, 2022)
---------------------------------
This is a bugfix release that closes all the remaining issues from the
accelerated release of 0.55.0 and also any release critical regressions
discovered since then.
CUDA target deprecation notices:
* Support for CUDA toolkits < 10.2 is deprecated and will be removed in Numba
0.56.
* Support for devices with Compute Capability < 5.3 is deprecated and will be
removed in Numba 0.56.
Pull-Requests:
* PR `#7755 <https://github.com/numba/numba/pull/7755>`_: CUDA: Deprecate support for CC < 5.3 and CTK < 10.2 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7749 <https://github.com/numba/numba/pull/7749>`_: Refactor threading layer priority tests to not use stdout/stderr (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7744 <https://github.com/numba/numba/pull/7744>`_: Fix issues with locating/parsing source during DebugInfo emission. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7712 <https://github.com/numba/numba/pull/7712>`_: Fixing issue 7693 (`Graham Markall <https://github.com/gmarkall>`_ `luk-f-a <https://github.com/luk-f-a>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7729 <https://github.com/numba/numba/pull/7729>`_: Handle Omitted/OmittedArgDataModel in DI generation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7788 <https://github.com/numba/numba/pull/7788>`_: Avoid issue with DI gen for arrayexprs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7752 <https://github.com/numba/numba/pull/7752>`_: Fix #7751: Use original filename for array exprs (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7748 <https://github.com/numba/numba/pull/7748>`_: Fix #7713: Ensure _prng_random_hash return has correct bitwidth (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7745 <https://github.com/numba/numba/pull/7745>`_: Fix the release year for Numba 0.55 change log entry. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7740 <https://github.com/numba/numba/pull/7740>`_: CUDA Python 11.6 support (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7724 <https://github.com/numba/numba/pull/7724>`_: Update URLs in error messages to refer to RTD docs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7709 <https://github.com/numba/numba/pull/7709>`_: CUDA: Fixes missing type annotation pass following #7704 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7704 <https://github.com/numba/numba/pull/7704>`_: Move the type annotation pass to post legalization. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7619 <https://github.com/numba/numba/pull/7619>`_: CUDA: Fix linking with PTX when compiling lazily (`Graham Markall <https://github.com/gmarkall>`_)
Authors:
* `Graham Markall <https://github.com/gmarkall>`_
* `luk-f-a <https://github.com/luk-f-a>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
Version 0.55.0 (13 January, 2022)
---------------------------------
This release includes a significant number important dependency upgrades along
with a number of new features and bug fixes.
NOTE: Due to NumPy CVE-2021-33430 this release has bypassed the usual release
process so as to promptly provide a Numba release that supports NumPy 1.21. A
single release candidate (RC1) was made and a few issues were reported, these
are summarised as follows and will be fixed in a subsequent 0.55.1 release.
Known issues with this release:
* Incorrect result copying array-typed field of structured array (`#7693 <https://github.com/numba/numba/pull/7693>`_)
* Two issues in DebugInfo generation (`#7726 <https://github.com/numba/numba/pull/7726>`_, `#7730 <https://github.com/numba/numba/pull/7730>`_)
* Compilation failure for ``hash`` of floating point values on 32 bit Windows
when using Python 3.10 (`#7713 <https://github.com/numba/numba/pull/7713>`_).
Highlights of core dependency upgrades:
* Support for Python 3.10
* Support for NumPy 1.21
Python language support enhancements:
* Experimental support for ``isinstance``.
NumPy features/enhancements:
The following functions are now supported:
* ``np.broadcast_to``
* ``np.float_power``
* ``np.cbrt``
* ``np.logspace``
* ``np.take_along_axis``
* ``np.average``
* ``np.argmin`` gains support for the ``axis`` kwarg.
* ``np.ndarray.astype`` gains support for types expressed as literal strings.
Highlights of core changes:
* For users of the Numba extension API, Numba now has a new error handling mode
whereby it will treat all exceptions that do not inherit from
``numba.errors.NumbaException`` as a "hard error" and immediately unwind the
stack. This makes it much easier to debug when writing ``@overload``\s etc
from the extension API as there's now no confusion between Python errors and
Numba errors. This feature can be enabled by setting the environment
variable: ``NUMBA_CAPTURED_ERRORS='new_style'``.
* The threading layer selection priority can now be changed via the environment
variable ``NUMBA_THREADING_LAYER_PRIORITY``.
Highlights of changes for the CUDA target:
* Support for NVIDIA's CUDA Python bindings.
* Support for 16-bit floating point numbers and their basic operations via
intrinsics.
* Streams are provided in the ``Stream.async_done`` result, making it easier to
implement asynchronous work queues.
* Support for structured types in device arrays, character sequences in NumPy
arrays, and some array operations on nested arrays.
* Much underlying refactoring to align the CUDA target more closely with the
CPU target, which lays the groudwork for supporting the high level extension
API in CUDA in future releases.
Intel also kindly sponsored research and development into native debug (DWARF)
support and handling per-function compilation flags:
* Line number/location tracking is much improved.
* Numba's internal representation of containers (e.g. tuples, arrays) are now
encoded as structures.
* Numba's per-function compilation flags are encoded into the ABI field of the
mangled name of the function such that it's possible to compile and
differentiate between versions of the same function with different flags set.
General deprecation notices:
* There are no new general deprecations.
CUDA target deprecation notices:
* There are no new CUDA target deprecations.
Version support/dependency changes:
* Python 3.10 is supported.
* NumPy version 1.21 is supported.
* The minimum supported NumPy version is raised to 1.18 for runtime (compilation
however remains compatible with NumPy 1.11).
Pull-Requests:
* PR `#6075 <https://github.com/numba/numba/pull/6075>`_: add np.float_power and np.cbrt (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#7047 <https://github.com/numba/numba/pull/7047>`_: Support __hash__ for numpy.datetime64 (`Guilherme Leobas <https://github.com/guilhermeleobas>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7057 <https://github.com/numba/numba/pull/7057>`_: Fix #7041: Add charseq registry to CUDA target (`Graham Markall <https://github.com/gmarkall>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7082 <https://github.com/numba/numba/pull/7082>`_: Added Add/Sub between datetime64 array and timedelta64 scalar (`Nick Riasanovsky <https://github.com/njriasan>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7119 <https://github.com/numba/numba/pull/7119>`_: Add support for `np.broadcast_to` (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#7129 <https://github.com/numba/numba/pull/7129>`_: Add support for axis keyword argument to np.argmin() (`Itamar Turner-Trauring <https://github.com/itamarst>`_)
* PR `#7132 <https://github.com/numba/numba/pull/7132>`_: gh #7131 Support for astype with literal strings (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7177 <https://github.com/numba/numba/pull/7177>`_: Add debug infomation support based on datamodel. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7185 <https://github.com/numba/numba/pull/7185>`_: Add get_impl_key as abstract method to types.Callable (`Alexey Kozlov <https://github.com/kozlov-alexey>`_)
* PR `#7186 <https://github.com/numba/numba/pull/7186>`_: Add support for np.logspace. (`Guoqiang QI <https://github.com/guoqiangqi>`_)
* PR `#7189 <https://github.com/numba/numba/pull/7189>`_: CUDA: Skip IPC tests on ARM (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7190 <https://github.com/numba/numba/pull/7190>`_: CUDA: Fix test_pinned on Jetson (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7192 <https://github.com/numba/numba/pull/7192>`_: Fix missing import in array.argsort impl and add more tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7196 <https://github.com/numba/numba/pull/7196>`_: Fixes for lineinfo emission (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7197 <https://github.com/numba/numba/pull/7197>`_: don't post to python announce on the first RC (`esc <https://github.com/esc>`_)
* PR `#7202 <https://github.com/numba/numba/pull/7202>`_: Initial implementation of np.take_along_axis (`Itamar Turner-Trauring <https://github.com/itamarst>`_)
* PR `#7203 <https://github.com/numba/numba/pull/7203>`_: remove duplicate changelog entries (`esc <https://github.com/esc>`_)
* PR `#7216 <https://github.com/numba/numba/pull/7216>`_: Update CHANGE_LOG for 0.54.0rc2 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7219 <https://github.com/numba/numba/pull/7219>`_: bump llvmlite dependency to 0.38.0dev0 for Numba 0.55.0dev0 (`esc <https://github.com/esc>`_)
* PR `#7220 <https://github.com/numba/numba/pull/7220>`_: update release checklist post 0.54rc1+2 (`esc <https://github.com/esc>`_)
* PR `#7221 <https://github.com/numba/numba/pull/7221>`_: Show GPU UUIDs in cuda.detect() output (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7222 <https://github.com/numba/numba/pull/7222>`_: CUDA: Warn when debug=True and opt=True (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7223 <https://github.com/numba/numba/pull/7223>`_: Replace assertion errors on IR assumption violation (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7226 <https://github.com/numba/numba/pull/7226>`_: Add support for structured types in Device Arrays (`Michael Collison <https://github.com/testhound>`_)
* PR `#7227 <https://github.com/numba/numba/pull/7227>`_: FIX: Typo (`Srinath Kailasa <https://github.com/skailasa>`_)
* PR `#7230 <https://github.com/numba/numba/pull/7230>`_: PR #7171 bugfix only (`stuartarchibald <https://github.com/stuartarchibald>`_ `Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7234 <https://github.com/numba/numba/pull/7234>`_: add THREADING_LAYER_PRIORITY & NUMBA_THREADING_LAYER_PRIORITY (`Kolen Cheung <https://github.com/ickc>`_)
* PR `#7235 <https://github.com/numba/numba/pull/7235>`_: replace wordings of WIP by draft PR (`Kolen Cheung <https://github.com/ickc>`_)
* PR `#7236 <https://github.com/numba/numba/pull/7236>`_: CUDA: Skip managed alloc tests on ARM (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7237 <https://github.com/numba/numba/pull/7237>`_: fix a typo in a string (`Kolen Cheung <https://github.com/ickc>`_)
* PR `#7241 <https://github.com/numba/numba/pull/7241>`_: Set aliasing information for inplace_binops.. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7242 <https://github.com/numba/numba/pull/7242>`_: FIX: typo (`Srinath Kailasa <https://github.com/skailasa>`_)
* PR `#7244 <https://github.com/numba/numba/pull/7244>`_: Implement partial literal propagation pass (support 'isinstance') (`Guilherme Leobas <https://github.com/guilhermeleobas>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7247 <https://github.com/numba/numba/pull/7247>`_: Solve memory leak to fix issue #7210 (`Siu Kwan Lam <https://github.com/sklam>`_ `Graham Markall <https://github.com/gmarkall>`_ `ysheffer <https://github.com/ysheffer>`_)
* PR `#7251 <https://github.com/numba/numba/pull/7251>`_: Fix #6001: typed.List ignores ctor arguments with JIT disabled (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7256 <https://github.com/numba/numba/pull/7256>`_: Fix link to the discourse forum in README (`Kenichi Maehashi <https://github.com/kmaehashi>`_)
* PR `#7257 <https://github.com/numba/numba/pull/7257>`_: Use normal list constructor in List.__new__() (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7260 <https://github.com/numba/numba/pull/7260>`_: Support typed lists in `heapq` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7263 <https://github.com/numba/numba/pull/7263>`_: Updated issue URL for error messages #7261 (`DeviousLab <https://github.com/DeviousLab>`_)
* PR `#7265 <https://github.com/numba/numba/pull/7265>`_: Fix linspace to use np.divide and clamp to stop. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7266 <https://github.com/numba/numba/pull/7266>`_: CUDA: Skip multi-GPU copy test with peer access disabled (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7267 <https://github.com/numba/numba/pull/7267>`_: Fix #7258. Bug in SROA optimization (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7271 <https://github.com/numba/numba/pull/7271>`_: Update 3rd party license text. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7272 <https://github.com/numba/numba/pull/7272>`_: Allow annotations in njit-ed functions (`LunarLanding <https://github.com/LunarLanding>`_)
* PR `#7273 <https://github.com/numba/numba/pull/7273>`_: Update CHANGE_LOG for 0.54.0rc3. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7283 <https://github.com/numba/numba/pull/7283>`_: Added NPM to Glossary and linked to mentions (`Nihal Shetty <https://github.com/nihalshetty-boop>`_)
* PR `#7285 <https://github.com/numba/numba/pull/7285>`_: CUDA: Fix OOB in test_kernel_arg (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7288 <https://github.com/numba/numba/pull/7288>`_: Handle cval as a np attr in stencil generation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7294 <https://github.com/numba/numba/pull/7294>`_: Continuation of PR #7280, fixing lifetime of TBB task_scheduler_handle (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7296 <https://github.com/numba/numba/pull/7296>`_: Fix generator lowering not casting to the actual yielded type (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7298 <https://github.com/numba/numba/pull/7298>`_: Use CBC to pin GCC to 7 on most linux and 9 on aarch64. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7304 <https://github.com/numba/numba/pull/7304>`_: Continue PR#3655: add support for np.average (`Hadia Ahmed <https://github.com/hadia206>`_ `slnguyen <https://github.com/slnguyen>`_)
* PR `#7307 <https://github.com/numba/numba/pull/7307>`_: Prevent mutation of arrays in global tuples. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7309 <https://github.com/numba/numba/pull/7309>`_: Update MapConstraint to handle type coercion for typed.Dict correctly. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7312 <https://github.com/numba/numba/pull/7312>`_: Fix #7302. Workaround missing pthread problem on ppc64le (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7315 <https://github.com/numba/numba/pull/7315>`_: Link ELF obj as DSO for radare2 disassembly CFG (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7316 <https://github.com/numba/numba/pull/7316>`_: Use float64 for consistent typing in heapq tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7317 <https://github.com/numba/numba/pull/7317>`_: In TBB tsh test switch os.fork for mp fork ctx (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7319 <https://github.com/numba/numba/pull/7319>`_: Update CHANGE_LOG for 0.54.0 final. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7329 <https://github.com/numba/numba/pull/7329>`_: Improve documentation in reference to CUDA local memory (`Sterling Baird <https://github.com/sgbaird>`_)
* PR `#7330 <https://github.com/numba/numba/pull/7330>`_: Cuda matmul docs (`Sterling Baird <https://github.com/sgbaird>`_)
* PR `#7340 <https://github.com/numba/numba/pull/7340>`_: Add size_t and ssize_t types (`Bruce Merry <https://github.com/bmerry>`_)
* PR `#7345 <https://github.com/numba/numba/pull/7345>`_: Add check for ipykernel file in IPython cache locator (`Sahil Gupta <https://github.com/sahil1105>`_)
* PR `#7347 <https://github.com/numba/numba/pull/7347>`_: fix:updated url for error report and feature rquest using issue template (`DEBARGHA SAHA <https://github.com/Stark-developer01>`_)
* PR `#7349 <https://github.com/numba/numba/pull/7349>`_: Allow arbitrary walk-back in reduction nodes to find inplace_binop. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7359 <https://github.com/numba/numba/pull/7359>`_: Extend support for nested arrays inside numpy records (`Graham Markall <https://github.com/gmarkall>`_ `luk-f-a <https://github.com/luk-f-a>`_)
* PR `#7375 <https://github.com/numba/numba/pull/7375>`_: CUDA: Run doctests as part of numba.cuda.tests and fix test_cg (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7395 <https://github.com/numba/numba/pull/7395>`_: Fix #7394 and #6550 & Added test & improved error message (`MegaIng <https://github.com/MegaIng>`_)
* PR `#7397 <https://github.com/numba/numba/pull/7397>`_: Add option to catch only Numba `numba.core.errors` derived exceptions. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7398 <https://github.com/numba/numba/pull/7398>`_: Add support for arrayanalysis of tuple args. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7403 <https://github.com/numba/numba/pull/7403>`_: Fix for issue 7402: implement missing numpy ufunc interface (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#7404 <https://github.com/numba/numba/pull/7404>`_: fix typo in literal_unroll docs (`esc <https://github.com/esc>`_)
* PR `#7419 <https://github.com/numba/numba/pull/7419>`_: insert missing backtick in comment (`esc <https://github.com/esc>`_)
* PR `#7422 <https://github.com/numba/numba/pull/7422>`_: Update Omitted Type to use Hashable Values as Keys for Caching (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7429 <https://github.com/numba/numba/pull/7429>`_: Update CHANGE_LOG for 0.54.1 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7432 <https://github.com/numba/numba/pull/7432>`_: add github release task to checklist (`esc <https://github.com/esc>`_)
* PR `#7440 <https://github.com/numba/numba/pull/7440>`_: Refactor TargetConfig naming. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7441 <https://github.com/numba/numba/pull/7441>`_: Permit any string as a key in literalstrkeydict type. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7442 <https://github.com/numba/numba/pull/7442>`_: Add some diagnostics to SVML test failures. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7443 <https://github.com/numba/numba/pull/7443>`_: Refactor template selection logic for targets. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7444 <https://github.com/numba/numba/pull/7444>`_: use correct variable name in closure (`esc <https://github.com/esc>`_)
* PR `#7447 <https://github.com/numba/numba/pull/7447>`_: cleanup Numba metadata (`esc <https://github.com/esc>`_)
* PR `#7453 <https://github.com/numba/numba/pull/7453>`_: CUDA: Provide stream in async_done result (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7456 <https://github.com/numba/numba/pull/7456>`_: Fix invalid codegen for #7451. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7457 <https://github.com/numba/numba/pull/7457>`_: Factor out target registry selection logic (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7459 <https://github.com/numba/numba/pull/7459>`_: Include compiler flags in symbol mangling (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7460 <https://github.com/numba/numba/pull/7460>`_: Add FP16 support for CUDA (`Michael Collison <https://github.com/testhound>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7461 <https://github.com/numba/numba/pull/7461>`_: Support NVIDIA's CUDA Python bindings (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7465 <https://github.com/numba/numba/pull/7465>`_: Update changelog for 0.54.1 release (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7477 <https://github.com/numba/numba/pull/7477>`_: Fix unicode operator.eq handling of Optional types. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7479 <https://github.com/numba/numba/pull/7479>`_: CUDA: Print format string and warn for > 32 print() args (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7483 <https://github.com/numba/numba/pull/7483>`_: NumPy 1.21 support (`Sebastian Berg <https://github.com/seberg>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7484 <https://github.com/numba/numba/pull/7484>`_: Fixed outgoing link to nvidia documentation. (`Dhruv Patel <https://github.com/DhruvPatel01>`_)
* PR `#7493 <https://github.com/numba/numba/pull/7493>`_: Consolidate TLS stacks in target configuration (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7496 <https://github.com/numba/numba/pull/7496>`_: CUDA: Use a single dispatcher class for all kinds of functions (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7498 <https://github.com/numba/numba/pull/7498>`_: refactor with-detection logic (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_)
* PR `#7499 <https://github.com/numba/numba/pull/7499>`_: Add build scripts for CUDA testing on gpuCI (`Charles Blackmon-Luca <https://github.com/charlesbluca>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7500 <https://github.com/numba/numba/pull/7500>`_: Update parallel.rst (`Julius Bier Kirkegaard <https://github.com/juliusbierk>`_)
* PR `#7506 <https://github.com/numba/numba/pull/7506>`_: Enhance Flags mangling/demangling (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7514 <https://github.com/numba/numba/pull/7514>`_: Fixup cuda debuginfo emission for 7177 (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7525 <https://github.com/numba/numba/pull/7525>`_: Make sure` demangle()` returns `str` type. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7538 <https://github.com/numba/numba/pull/7538>`_: Fix `@overload_glue` performance regression. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7539 <https://github.com/numba/numba/pull/7539>`_: Fix str decode issue from merge #7525/#7506 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7546 <https://github.com/numba/numba/pull/7546>`_: Fix handling of missing const key in LiteralStrKeyDict (`Siu Kwan Lam <https://github.com/sklam>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7547 <https://github.com/numba/numba/pull/7547>`_: Remove 32bit linux scipy installation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7548 <https://github.com/numba/numba/pull/7548>`_: Correct evaluation order in assert statement (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7552 <https://github.com/numba/numba/pull/7552>`_: Prepend the inlined function name to inlined variables. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7557 <https://github.com/numba/numba/pull/7557>`_: Python3.10 v2 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_)
* PR `#7560 <https://github.com/numba/numba/pull/7560>`_: Refactor with detection py310 (`Siu Kwan Lam <https://github.com/sklam>`_ `esc <https://github.com/esc>`_)
* PR `#7561 <https://github.com/numba/numba/pull/7561>`_: fix a typo (`Kolen Cheung <https://github.com/ickc>`_)
* PR `#7567 <https://github.com/numba/numba/pull/7567>`_: Update docs to note meetings are public. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7570 <https://github.com/numba/numba/pull/7570>`_: Update the docs and error message for errors when importing Numba. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7580 <https://github.com/numba/numba/pull/7580>`_: Fix #7507. catch `NotImplementedError` in `.get_function()` (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7581 <https://github.com/numba/numba/pull/7581>`_: Add support for casting from int enums (`Michael Collison <https://github.com/testhound>`_)
* PR `#7583 <https://github.com/numba/numba/pull/7583>`_: Make numba.types.Optional __str__ less verbose. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7588 <https://github.com/numba/numba/pull/7588>`_: Fix casting of start/stop in linspace (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7591 <https://github.com/numba/numba/pull/7591>`_: Remove deprecations (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7596 <https://github.com/numba/numba/pull/7596>`_: Fix max symbol match length for r2 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7597 <https://github.com/numba/numba/pull/7597>`_: Update gdb docs for new DWARF enhancements. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7603 <https://github.com/numba/numba/pull/7603>`_: Fix list.insert() for refcounted values (`Ehsan Totoni <https://github.com/ehsantn>`_)
* PR `#7605 <https://github.com/numba/numba/pull/7605>`_: Fix TBB 2021 DSO names on OSX/Win and make TBB reporting consistent (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7606 <https://github.com/numba/numba/pull/7606>`_: Ensure a prescribed threading layer can load in CI. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7610 <https://github.com/numba/numba/pull/7610>`_: Fix #7609. Type should not be mutated. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7618 <https://github.com/numba/numba/pull/7618>`_: Fix the doc build: docutils 0.18 not compatible with pinned sphinx (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7626 <https://github.com/numba/numba/pull/7626>`_: Fix issues with package dependencies. (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_)
* PR `#7627 <https://github.com/numba/numba/pull/7627>`_: PR 7321 continued (`stuartarchibald <https://github.com/stuartarchibald>`_ `Eric Wieser <https://github.com/eric-wieser>`_)
* PR `#7628 <https://github.com/numba/numba/pull/7628>`_: Move to using windows-2019 images in Azure (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7632 <https://github.com/numba/numba/pull/7632>`_: Capture output in CUDA matmul doctest (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7636 <https://github.com/numba/numba/pull/7636>`_: Copy prange loop header to after the parfor. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7637 <https://github.com/numba/numba/pull/7637>`_: Increase the timeout on the SVML tests for loaded machines. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7645 <https://github.com/numba/numba/pull/7645>`_: In debuginfo, do not add noinline to functions marked alwaysinline (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7650 <https://github.com/numba/numba/pull/7650>`_: Move Azure builds to OSX 10.15 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
Authors:
* `Bruce Merry <https://github.com/bmerry>`_
* `Charles Blackmon-Luca <https://github.com/charlesbluca>`_
* `DeviousLab <https://github.com/DeviousLab>`_
* `Dhruv Patel <https://github.com/DhruvPatel01>`_
* `Todd A. Anderson <https://github.com/DrTodd13>`_
* `Ehsan Totoni <https://github.com/ehsantn>`_
* `Eric Wieser <https://github.com/eric-wieser>`_
* `esc <https://github.com/esc>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `Guilherme Leobas <https://github.com/guilhermeleobas>`_
* `Guoqiang QI <https://github.com/guoqiangqi>`_
* `Hadia Ahmed <https://github.com/hadia206>`_
* `Kolen Cheung <https://github.com/ickc>`_
* `Itamar Turner-Trauring <https://github.com/itamarst>`_
* `Julius Bier Kirkegaard <https://github.com/juliusbierk>`_
* `Kenichi Maehashi <https://github.com/kmaehashi>`_
* `Alexey Kozlov <https://github.com/kozlov-alexey>`_
* `luk-f-a <https://github.com/luk-f-a>`_
* `LunarLanding <https://github.com/LunarLanding>`_
* `MegaIng <https://github.com/MegaIng>`_
* `Nihal Shetty <https://github.com/nihalshetty-boop>`_
* `Nick Riasanovsky <https://github.com/njriasan>`_
* `Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_
* `Sahil Gupta <https://github.com/sahil1105>`_
* `Sebastian Berg <https://github.com/seberg>`_
* `Sterling Baird <https://github.com/sgbaird>`_
* `Srinath Kailasa <https://github.com/skailasa>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `slnguyen <https://github.com/slnguyen>`_
* `DEBARGHA SAHA <https://github.com/Stark-developer01>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
* `Michael Collison <https://github.com/testhound>`_
* `ysheffer <https://github.com/ysheffer>`_
Version 0.54.1 (7 October, 2021)
--------------------------------
This is a bugfix release for 0.54.0. It fixes a regression in structured array
type handling, a potential leak on initialization failure in the CUDA target, a
regression caused by Numba's vendored cloudpickle module resetting dynamic
classes and a few minor testing/infrastructure related problems.
* PR `#7348 <https://github.com/numba/numba/pull/7348>`_: test_inspect_cli: Decode exception with default (utf-8) codec (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7360 <https://github.com/numba/numba/pull/7360>`_: CUDA: Fix potential leaks when initialization fails (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7386 <https://github.com/numba/numba/pull/7386>`_: Ensure the NRT is initialized prior to use in external NRT tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7388 <https://github.com/numba/numba/pull/7388>`_: Patch cloudpickle to not reset dynamic class each time it is unpickled (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7393 <https://github.com/numba/numba/pull/7393>`_: skip azure pipeline test if file not present (`esc <https://github.com/esc>`_)
* PR `#7428 <https://github.com/numba/numba/pull/7428>`_: Fix regression #7355: cannot set items in structured array data types (`Siu Kwan Lam <https://github.com/sklam>`_)
Authors:
* `esc <https://github.com/esc>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
Version 0.54.0 (19 August, 2021)
--------------------------------
This release includes a significant number of new features, important
refactoring, critical bug fixes and a number of dependency upgrades.
Python language support enhancements:
* Basic support for ``f-strings``.
* ``dict`` comprehensions are now supported.
* The ``sum`` built-in function is implemented.
NumPy features/enhancements:
The following functions are now supported:
* ``np.clip``
* ``np.iscomplex``
* ``np.iscomplexobj``
* ``np.isneginf``
* ``np.isposinf``
* ``np.isreal``
* ``np.isrealobj``
* ``np.isscalar``
* ``np.random.dirichlet``
* ``np.rot90``
* ``np.swapaxes``
Also ``np.argmax`` has gained support for the ``axis`` keyword argument and it's
now possible to use ``0d`` NumPy arrays as scalars in ``__setitem__`` calls.
Internal changes:
* Debugging support through DWARF has been fixed and enhanced.
* Numba now optimises the way in which locals are emitted to help reduce time
spent in LLVM's SROA passes.
CUDA target changes:
* Support for emitting ``lineinfo`` to be consumed by profiling tools such as
Nsight Compute
* Improved fastmath code generation for various trig, division, and other
functions
* Faster compilation using lazy addition of libdevice to compiled units
* Support for IPC on Windows
* Support for passing tuples to CUDA ufuncs
* Performance warnings:
* When making implicit copies by calling a kernel on arrays in host memory
* When occupancy is poor due to kernel or ufunc/gufunc configuration
* Support for implementing warp-aggregated intrinsics:
* Using support for more CUDA functions: ``activemask()``, ``lanemask_lt()``
* The ``ffs()`` function now works correctly!
* Support for ``@overload`` in the CUDA target
Intel kindly sponsored research and development that lead to a number of new
features and internal support changes:
* Dispatchers can now be retargetted to a new target via a user defined context
manager.
* Support for custom NumPy array subclasses has been added (including an
overloadable memory allocator).
* An inheritance based model for targets that permits targets to share
``@overload`` implementations.
* Per function compiler flags with inheritance behaviours.
* The extension API now has support for overloading class methods via the
``@overload_classmethod`` decorator.
Deprecations:
* The ``ROCm`` target (for AMD ROC GPUs) has been moved to an "unmaintained"
status and a seperate repository stub has been created for it at:
https://github.com/numba/numba-rocm
CUDA target deprecations and breaking changes:
* Relaxed strides checking is now the default when computing the contiguity of
device arrays.
* The ``inspect_ptx()`` method is deprecated. For use cases that obtain PTX for
further compilation outside of Numba, use ``compile_ptx()`` instead.
* Eager compilation of device functions (the case when ``device=True`` and a
signature is provided) is deprecated.
Version support/dependency changes:
* LLVM 11 is now supported on all platforms via llvmlite.
* The minimum supported Python version is raised to 3.7.
* NumPy version 1.20 is supported.
* The minimum supported NumPy version is raised to 1.17 for runtime (compilation
however remains compatible with NumPy 1.11).
* Vendor `cloudpickle <https://github.com/cloudpipe/cloudpickle>`_ `v1.6.0` --
now used for all ``pickle`` operations.
* TBB >= 2021 is now supported and all prior versions are unsupported (not
easily possible to maintain the ABI breaking changes).
Pull-Requests:
* PR `#4516 <https://github.com/numba/numba/pull/4516>`_: Make setitem accept 0d np-arrays (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#4610 <https://github.com/numba/numba/pull/4610>`_: Implement np.is* functions (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#5984 <https://github.com/numba/numba/pull/5984>`_: Handle idx and size unification in wrap_index manually. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#6468 <https://github.com/numba/numba/pull/6468>`_: Access ``replace_functions_map`` via PreParforPass instance (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `Reazul Hoque <https://github.com/reazulhoque>`_)
* PR `#6469 <https://github.com/numba/numba/pull/6469>`_: Add address space in pointer type (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `Reazul Hoque <https://github.com/reazulhoque>`_)
* PR `#6608 <https://github.com/numba/numba/pull/6608>`_: Support f-strings for common cases (`Ehsan Totoni <https://github.com/ehsantn>`_)
* PR `#6619 <https://github.com/numba/numba/pull/6619>`_: Improved fastmath code generation for trig, log, and exp/pow. (`Graham Markall <https://github.com/gmarkall>`_ `Michael Collison <https://github.com/testhound>`_)
* PR `#6681 <https://github.com/numba/numba/pull/6681>`_: Explicitly catch ``with..as`` and raise error. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6689 <https://github.com/numba/numba/pull/6689>`_: Fix setup.py build command detection (`Hannes Pahl <https://github.com/HPLegion>`_)
* PR `#6695 <https://github.com/numba/numba/pull/6695>`_: Enable negative indexing for cuda atomic operations (`Ashutosh Varma <https://github.com/ashutoshvarma>`_)
* PR `#6696 <https://github.com/numba/numba/pull/6696>`_: flake8: made more files flake8 compliant (`Ashutosh Varma <https://github.com/ashutoshvarma>`_)
* PR `#6698 <https://github.com/numba/numba/pull/6698>`_: Fix #6697: Wrong dtype when using np.asarray on DeviceNDArray (`Ashutosh Varma <https://github.com/ashutoshvarma>`_)
* PR `#6700 <https://github.com/numba/numba/pull/6700>`_: Add UUID to CUDA devices (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6709 <https://github.com/numba/numba/pull/6709>`_: Block matplotlib in test examples (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6718 <https://github.com/numba/numba/pull/6718>`_: doc: fix typo in rewrites.rst (extra iterates) (`Alexander-Makaryev <https://github.com/Alexander-Makaryev>`_)
* PR `#6720 <https://github.com/numba/numba/pull/6720>`_: Faster compile (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6730 <https://github.com/numba/numba/pull/6730>`_: Fix Typeguard error (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6731 <https://github.com/numba/numba/pull/6731>`_: Add CUDA-specific pipeline (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6735 <https://github.com/numba/numba/pull/6735>`_: CUDA: Don't parse IR for modules with llvmlite (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6736 <https://github.com/numba/numba/pull/6736>`_: Support for dict comprehension (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6742 <https://github.com/numba/numba/pull/6742>`_: Do not add overload function definitions to index. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6750 <https://github.com/numba/numba/pull/6750>`_: Bump to llvmlite 0.37 series (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6751 <https://github.com/numba/numba/pull/6751>`_: Suppress typeguard warnings that affect testing. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6753 <https://github.com/numba/numba/pull/6753>`_: The check for internal types in RewriteArrayExprs (`Alexander-Makaryev <https://github.com/Alexander-Makaryev>`_)
* PR `#6755 <https://github.com/numba/numba/pull/6755>`_: install llvmlite from numba/label/dev (`esc <https://github.com/esc>`_)
* PR `#6758 <https://github.com/numba/numba/pull/6758>`_: patch to compile _devicearray.cpp with c++11 (`esc <https://github.com/esc>`_)
* PR `#6760 <https://github.com/numba/numba/pull/6760>`_: Fix scheduler bug where it rounds to 0 divisions for a chunk. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#6762 <https://github.com/numba/numba/pull/6762>`_: Glue wrappers to create @overload from split typing and lowering. (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6766 <https://github.com/numba/numba/pull/6766>`_: Fix DeviceNDArray null shape issue (`Michael Collison <https://github.com/testhound>`_)
* PR `#6769 <https://github.com/numba/numba/pull/6769>`_: CUDA: Replace ``CachedPTX`` and ``CachedCUFunction`` with ``CUDACodeLibrary`` functionality (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6776 <https://github.com/numba/numba/pull/6776>`_: Fix issue with TBB interface causing warnings and parfors counting them (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6779 <https://github.com/numba/numba/pull/6779>`_: Fix wrap_index type unification. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#6786 <https://github.com/numba/numba/pull/6786>`_: Fix gufunc kwargs support (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6788 <https://github.com/numba/numba/pull/6788>`_: Add support for fastmath 32-bit floating point divide (`Michael Collison <https://github.com/testhound>`_)
* PR `#6789 <https://github.com/numba/numba/pull/6789>`_: Fix warnings struct ref typeguard (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_ `esc <https://github.com/esc>`_)
* PR `#6794 <https://github.com/numba/numba/pull/6794>`_: refactor and move create_temp_module into numba.tests.support (`Alexander-Makaryev <https://github.com/Alexander-Makaryev>`_)
* PR `#6795 <https://github.com/numba/numba/pull/6795>`_: CUDA: Lazily add libdevice to compilation units (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6798 <https://github.com/numba/numba/pull/6798>`_: CUDA: Add optional Driver API argument logging (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6799 <https://github.com/numba/numba/pull/6799>`_: Print Numba and llvmlite versions in sysinfo (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6800 <https://github.com/numba/numba/pull/6800>`_: Make a common standard API for querying ufunc impl (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6801 <https://github.com/numba/numba/pull/6801>`_: ParallelAccelerator no long will convert StaticSetItem to SetItem because record arrays require StaticSetItems. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#6802 <https://github.com/numba/numba/pull/6802>`_: Add lineinfo flag to PTX and SASS compilation (`Graham Markall <https://github.com/gmarkall>`_ `Max Katz <https://github.com/maxpkatz>`_)
* PR `#6804 <https://github.com/numba/numba/pull/6804>`_: added runtime version to ``numba -s`` (`Kalyan <https://github.com/rawwar>`_)
* PR `#6808 <https://github.com/numba/numba/pull/6808>`_: #3468 continued: Add support for ``np.clip`` (`Graham Markall <https://github.com/gmarkall>`_ `Aaron Russell Voelker <https://github.com/arvoelke>`_)
* PR `#6809 <https://github.com/numba/numba/pull/6809>`_: #3203 additional info in cuda detect (`Kalyan <https://github.com/rawwar>`_)
* PR `#6810 <https://github.com/numba/numba/pull/6810>`_: Fix tiny formatting error in ROC kernel docs (`Felix Divo <https://github.com/felixdivo>`_)
* PR `#6811 <https://github.com/numba/numba/pull/6811>`_: CUDA: Remove test of runtime being a supported version (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6813 <https://github.com/numba/numba/pull/6813>`_: Mostly CUDA: Replace llvmpy API usage with llvmlite APIs (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6814 <https://github.com/numba/numba/pull/6814>`_: Improving context stack (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6818 <https://github.com/numba/numba/pull/6818>`_: CUDA: Support IPC on Windows (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6822 <https://github.com/numba/numba/pull/6822>`_: Add support for np.rot90 (`stuartarchibald <https://github.com/stuartarchibald>`_ `Daniel Nagel <https://github.com/braniii>`_)
* PR `#6829 <https://github.com/numba/numba/pull/6829>`_: Fix accuracy of np.arange and np.linspace (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6830 <https://github.com/numba/numba/pull/6830>`_: CUDA: Use relaxed strides checking to compute contiguity (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6833 <https://github.com/numba/numba/pull/6833>`_: Raise TypeError exception if numpy array is cast to scalar (`Michael Collison <https://github.com/testhound>`_)
* PR `#6834 <https://github.com/numba/numba/pull/6834>`_: Remove illegal "debug" kw argument (`Shaun Cutts <https://github.com/shaunc>`_)
* PR `#6836 <https://github.com/numba/numba/pull/6836>`_: CUDA: Documentation updates (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6840 <https://github.com/numba/numba/pull/6840>`_: CUDA: Remove items deprecated in 0.53 + simulator test fixes (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6841 <https://github.com/numba/numba/pull/6841>`_: CUDA: Fix source location on kernel entry and enable breakpoints to be set on kernels by mangled name (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6843 <https://github.com/numba/numba/pull/6843>`_: cross-referenced Array type in docs (`Kalyan <https://github.com/rawwar>`_)
* PR `#6844 <https://github.com/numba/numba/pull/6844>`_: CUDA: Remove NUMBAPRO env var warnings, envvars.py + other small tidy-ups (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6848 <https://github.com/numba/numba/pull/6848>`_: Ignore .ycm_extra_conf.py (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6849 <https://github.com/numba/numba/pull/6849>`_: Add __hash__ for IntEnum (`Hannes Pahl <https://github.com/HPLegion>`_)
* PR `#6850 <https://github.com/numba/numba/pull/6850>`_: Fix up more internal warnings (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6854 <https://github.com/numba/numba/pull/6854>`_: PR 6096 continued (`stuartarchibald <https://github.com/stuartarchibald>`_ `Ivan Butygin <https://github.com/Hardcode84>`_)
* PR `#6861 <https://github.com/numba/numba/pull/6861>`_: updated reference to hsa with roc (`Kalyan <https://github.com/rawwar>`_)
* PR `#6867 <https://github.com/numba/numba/pull/6867>`_: Update changelog for 0.53.1 (`esc <https://github.com/esc>`_)
* PR `#6869 <https://github.com/numba/numba/pull/6869>`_: Implement builtin sum() (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6870 <https://github.com/numba/numba/pull/6870>`_: Add support for dispatcher retargeting using with-context (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6871 <https://github.com/numba/numba/pull/6871>`_: Force text-align:left when using Annotate (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#6873 <https://github.com/numba/numba/pull/6873>`_: docs: Update reference to @jitclass location (`David Nadlinger <https://github.com/dnadlinger>`_)
* PR `#6876 <https://github.com/numba/numba/pull/6876>`_: Add trailing slashes to dir paths in CODEOWNERS (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6877 <https://github.com/numba/numba/pull/6877>`_: Add doc for recent target extension features (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6878 <https://github.com/numba/numba/pull/6878>`_: CUDA: Support passing tuples to ufuncs (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6879 <https://github.com/numba/numba/pull/6879>`_: CUDA: NumPy and string dtypes for local and shared arrays (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6880 <https://github.com/numba/numba/pull/6880>`_: Add attribute lower_extension to CPUContext (`Reazul Hoque <https://github.com/reazulhoque>`_)
* PR `#6883 <https://github.com/numba/numba/pull/6883>`_: Add support of np.swapaxes #4074 (`Daniel Nagel <https://github.com/braniii>`_)
* PR `#6885 <https://github.com/numba/numba/pull/6885>`_: CUDA: Explicitly specify objmode + looplifting for jit functions in cuda.random (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6886 <https://github.com/numba/numba/pull/6886>`_: CUDA: Fix parallel testing for all testsuite submodules (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6888 <https://github.com/numba/numba/pull/6888>`_: Get overload to consider compiler flags in cache lookup (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6889 <https://github.com/numba/numba/pull/6889>`_: Address guvectorize too slow for cuda target (`Michael Collison <https://github.com/testhound>`_)
* PR `#6890 <https://github.com/numba/numba/pull/6890>`_: fixes #6884 (`Kalyan <https://github.com/rawwar>`_)
* PR `#6898 <https://github.com/numba/numba/pull/6898>`_: Work on overloading by hardware target. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6911 <https://github.com/numba/numba/pull/6911>`_: CUDA: Add support for activemask(), lanemask_lt(), and nanosleep() (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6912 <https://github.com/numba/numba/pull/6912>`_: Prevent use of varargs in closure calls. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6913 <https://github.com/numba/numba/pull/6913>`_: Add runtests option to gitdiff on the common ancestor (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6915 <https://github.com/numba/numba/pull/6915>`_: Update _Intrinsic for sphinx to capture the inner docstring (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#6917 <https://github.com/numba/numba/pull/6917>`_: Add type conversion for StringLiteral to unicode_type and test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6918 <https://github.com/numba/numba/pull/6918>`_: Start section on commonly encounted unsupported parfors code. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6924 <https://github.com/numba/numba/pull/6924>`_: CUDA: Fix ``ffs`` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6928 <https://github.com/numba/numba/pull/6928>`_: Add support for axis keyword arg to numpy.argmax() (`stuartarchibald <https://github.com/stuartarchibald>`_ `Itamar Turner-Trauring <https://github.com/itamarst>`_)
* PR `#6929 <https://github.com/numba/numba/pull/6929>`_: Fix CI failure when gitpython is missing. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6935 <https://github.com/numba/numba/pull/6935>`_: fixes broken link in numba-runtime.rst (`Kalyan <https://github.com/rawwar>`_)
* PR `#6936 <https://github.com/numba/numba/pull/6936>`_: CUDA: Implement support for PTDS globally (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6937 <https://github.com/numba/numba/pull/6937>`_: Fix memory leak in bytes boxing (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6940 <https://github.com/numba/numba/pull/6940>`_: Fix function resolution for intrinsics across hardware. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6941 <https://github.com/numba/numba/pull/6941>`_: ABC the target descriptor and make consistent throughout. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6944 <https://github.com/numba/numba/pull/6944>`_: CUDA: Support for ``@overload`` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6945 <https://github.com/numba/numba/pull/6945>`_: Fix issue with array analysis tests needing scipy. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6948 <https://github.com/numba/numba/pull/6948>`_: Refactor registry init. (`stuartarchibald <https://github.com/stuartarchibald>`_ `Graham Markall <https://github.com/gmarkall>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6953 <https://github.com/numba/numba/pull/6953>`_: CUDA: Fix and deprecate ``inspect_ptx()``, fix NVVM option setup for device functions (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6958 <https://github.com/numba/numba/pull/6958>`_: Inconsistent behavior of reshape between numpy and numba/cuda device array (`Lauren Arnett <https://github.com/laurenarnett>`_)
* PR `#6961 <https://github.com/numba/numba/pull/6961>`_: Update overload glue to deal with typing_key (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6964 <https://github.com/numba/numba/pull/6964>`_: Move minimum supported Python version to 3.7 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6966 <https://github.com/numba/numba/pull/6966>`_: Fix issue with TBB test detecting forks from incorrect state. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6971 <https://github.com/numba/numba/pull/6971>`_: Fix CUDA ``@intrinsic`` use (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6977 <https://github.com/numba/numba/pull/6977>`_: Vendor cloudpickle (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6978 <https://github.com/numba/numba/pull/6978>`_: Implement operator.contains for empty Tuples (`Brandon T. Willard <https://github.com/brandonwillard>`_)
* PR `#6981 <https://github.com/numba/numba/pull/6981>`_: Fix LLVM IR parsing error on use of ``np.bool_`` in globals (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6983 <https://github.com/numba/numba/pull/6983>`_: Support Optional types in ufuncs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6985 <https://github.com/numba/numba/pull/6985>`_: Implement static set/get items on records with integer index (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6986 <https://github.com/numba/numba/pull/6986>`_: document release checklist (`esc <https://github.com/esc>`_)
* PR `#6989 <https://github.com/numba/numba/pull/6989>`_: update threading docs for function loading (`esc <https://github.com/esc>`_)
* PR `#6990 <https://github.com/numba/numba/pull/6990>`_: Refactor hardware extension API to refer to "target" instead. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6991 <https://github.com/numba/numba/pull/6991>`_: Move ROCm target status to "unmaintained". (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6995 <https://github.com/numba/numba/pull/6995>`_: Resolve issue where nan was being assigned to int type numpy array (`Michael Collison <https://github.com/testhound>`_)
* PR `#6996 <https://github.com/numba/numba/pull/6996>`_: Add constant lowering support for `SliceType`s (`Brandon T. Willard <https://github.com/brandonwillard>`_)
* PR `#6997 <https://github.com/numba/numba/pull/6997>`_: CUDA: Remove catch of NotImplementedError in target.py (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6999 <https://github.com/numba/numba/pull/6999>`_: Fix errors introduced by the cloudpickle patch (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7003 <https://github.com/numba/numba/pull/7003>`_: More mainline fixes (`stuartarchibald <https://github.com/stuartarchibald>`_ `Graham Markall <https://github.com/gmarkall>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7004 <https://github.com/numba/numba/pull/7004>`_: Test extending the CUDA target (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7007 <https://github.com/numba/numba/pull/7007>`_: Made stencil compilation not fail for arrays of conflicting types. (`MegaIng <https://github.com/MegaIng>`_)
* PR `#7008 <https://github.com/numba/numba/pull/7008>`_: Added support for np.random.dirichlet with all size arguments (`Rishi Kulkarni <https://github.com/rishi-kulkarni>`_)
* PR `#7016 <https://github.com/numba/numba/pull/7016>`_: Docs: Add DALI to list of CAI-supporting libraries (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7018 <https://github.com/numba/numba/pull/7018>`_: Remove cu{blas,sparse,rand,fft} from library checks (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7019 <https://github.com/numba/numba/pull/7019>`_: Support NumPy 1.20 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7020 <https://github.com/numba/numba/pull/7020>`_: Fix #7017. Adds util class PickleCallableByPath (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7024 <https://github.com/numba/numba/pull/7024>`_: fixed llvmir usage in create_module method (`stuartarchibald <https://github.com/stuartarchibald>`_ `Kalyan <https://github.com/rawwar>`_)
* PR `#7027 <https://github.com/numba/numba/pull/7027>`_: Fix nrt debug print (`MegaIng <https://github.com/MegaIng>`_)
* PR `#7031 <https://github.com/numba/numba/pull/7031>`_: Fix inliner to use a single scope for all blocks (`Alexey Kozlov <https://github.com/kozlov-alexey>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7040 <https://github.com/numba/numba/pull/7040>`_: Add Github action to mark issues as stale (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7044 <https://github.com/numba/numba/pull/7044>`_: Fixes for LLVM 11 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7049 <https://github.com/numba/numba/pull/7049>`_: Make NumPy random module use @overload_glue (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7050 <https://github.com/numba/numba/pull/7050>`_: Add overload_classmethod (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7052 <https://github.com/numba/numba/pull/7052>`_: Fix string support in CUDA target (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7056 <https://github.com/numba/numba/pull/7056>`_: Change prange conversion approach to reuse header block. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7061 <https://github.com/numba/numba/pull/7061>`_: Add ndarray allocator classmethod (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7064 <https://github.com/numba/numba/pull/7064>`_: Testhound/host array performance warning (`Michael Collison <https://github.com/testhound>`_)
* PR `#7066 <https://github.com/numba/numba/pull/7066>`_: Fix #7065: Add expected exception messages for NumPy 1.20 to tests (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7068 <https://github.com/numba/numba/pull/7068>`_: Enhancing docs about PRNG seeding (`Jérome Eertmans <https://github.com/jeertmans>`_)
* PR `#7070 <https://github.com/numba/numba/pull/7070>`_: Improve the issue templates and pull request template. (`Guoqiang QI <https://github.com/guoqiangqi>`_)
* PR `#7080 <https://github.com/numba/numba/pull/7080>`_: Fix ``__eq__`` for Flags and cpu_options classes (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7087 <https://github.com/numba/numba/pull/7087>`_: Add note to docs about zero-initialization of variables. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7088 <https://github.com/numba/numba/pull/7088>`_: Initialize NUMBA_DEFAULT_NUM_THREADS with a batch scheduler aware value (`Thomas VINCENT <https://github.com/t20100>`_)
* PR `#7100 <https://github.com/numba/numba/pull/7100>`_: Replace deprecated call to cuDeviceComputeCapability (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7113 <https://github.com/numba/numba/pull/7113>`_: Temporarily disable debug env export. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7114 <https://github.com/numba/numba/pull/7114>`_: CUDA: Deprecate eager compilation of device functions (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7116 <https://github.com/numba/numba/pull/7116>`_: Fix various issues with dwarf emission: (`stuartarchibald <https://github.com/stuartarchibald>`_ `vlad-perevezentsev <https://github.com/vlad-perevezentsev>`_)
* PR `#7118 <https://github.com/numba/numba/pull/7118>`_: Remove print to stdout (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7121 <https://github.com/numba/numba/pull/7121>`_: Continue work on numpy subclasses (`Todd A. Anderson <https://github.com/DrTodd13>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7122 <https://github.com/numba/numba/pull/7122>`_: Rtd/sphinx compat (`esc <https://github.com/esc>`_)
* PR `#7134 <https://github.com/numba/numba/pull/7134>`_: Move minimum LLVM version to 11. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7137 <https://github.com/numba/numba/pull/7137>`_: skip pycc test on Python 3.7 + macOS because of distutils issue (`esc <https://github.com/esc>`_)
* PR `#7138 <https://github.com/numba/numba/pull/7138>`_: Update the Azure default linux image to Ubuntu 18.04 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7141 <https://github.com/numba/numba/pull/7141>`_: Require llvmlite 0.37 as minimum supported. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7143 <https://github.com/numba/numba/pull/7143>`_: Update version checks in __init__ for np 1.17 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7145 <https://github.com/numba/numba/pull/7145>`_: Fix mainline (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7146 <https://github.com/numba/numba/pull/7146>`_: Fix ``inline_closurecall`` may not be imported (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7147 <https://github.com/numba/numba/pull/7147>`_: Revert "Workaround gitpython 3.1.18 dependency issue" (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7149 <https://github.com/numba/numba/pull/7149>`_: Fix issue in bytecode analysis where target and next are same. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7152 <https://github.com/numba/numba/pull/7152>`_: Fix iterators in CUDA (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7156 <https://github.com/numba/numba/pull/7156>`_: Fix ``ir_utils._max_label`` being updated incorrectly (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7160 <https://github.com/numba/numba/pull/7160>`_: Split parfors tests (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7161 <https://github.com/numba/numba/pull/7161>`_: Update README for 0.54 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7162 <https://github.com/numba/numba/pull/7162>`_: CUDA: Fix linkage of device functions when compiling for debug (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7163 <https://github.com/numba/numba/pull/7163>`_: Split legalization pass to consider IR and features separately. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7165 <https://github.com/numba/numba/pull/7165>`_: Fix use of np.clip where out is not provided. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7189 <https://github.com/numba/numba/pull/7189>`_: CUDA: Skip IPC tests on ARM (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7190 <https://github.com/numba/numba/pull/7190>`_: CUDA: Fix test_pinned on Jetson (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7192 <https://github.com/numba/numba/pull/7192>`_: Fix missing import in array.argsort impl and add more tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7196 <https://github.com/numba/numba/pull/7196>`_: Fixes for lineinfo emission. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7203 <https://github.com/numba/numba/pull/7203>`_: remove duplicate changelog entries (`esc <https://github.com/esc>`_)
* PR `#7209 <https://github.com/numba/numba/pull/7209>`_: Clamp numpy (`esc <https://github.com/esc>`_)
* PR `#7216 <https://github.com/numba/numba/pull/7216>`_: Update CHANGE_LOG for 0.54.0rc2. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7223 <https://github.com/numba/numba/pull/7223>`_: Replace assertion errors on IR assumption violation (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7230 <https://github.com/numba/numba/pull/7230>`_: PR #7171 bugfix only (`Todd A. Anderson <https://github.com/DrTodd13>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7236 <https://github.com/numba/numba/pull/7236>`_: CUDA: Skip managed alloc tests on ARM (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7267 <https://github.com/numba/numba/pull/7267>`_: Fix #7258. Bug in SROA optimization (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7271 <https://github.com/numba/numba/pull/7271>`_: Update 3rd party license text. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7272 <https://github.com/numba/numba/pull/7272>`_: Allow annotations in njit-ed functions (`LunarLanding <https://github.com/LunarLanding>`_)
* PR `#7273 <https://github.com/numba/numba/pull/7273>`_: Update CHANGE_LOG for 0.54.0rc3. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7285 <https://github.com/numba/numba/pull/7285>`_: CUDA: Fix OOB in test_kernel_arg (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7294 <https://github.com/numba/numba/pull/7294>`_: Continuation of PR #7280, fixing lifetime of TBB task_scheduler_handle (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7298 <https://github.com/numba/numba/pull/7298>`_: Use CBC to pin GCC to 7 on most linux and 9 on aarch64. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7312 <https://github.com/numba/numba/pull/7312>`_: Fix #7302. Workaround missing pthread problem on ppc64le (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7317 <https://github.com/numba/numba/pull/7317>`_: In TBB tsh test switch os.fork for mp fork ctx (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7319 <https://github.com/numba/numba/pull/7319>`_: Update CHANGE_LOG for 0.54.0 final. (`stuartarchibald <https://github.com/stuartarchibald>`_)
Authors:
* `Alexander-Makaryev <https://github.com/Alexander-Makaryev>`_
* `Todd A. Anderson <https://github.com/DrTodd13>`_
* `Hannes Pahl <https://github.com/HPLegion>`_
* `Ivan Butygin <https://github.com/Hardcode84>`_
* `MegaIng <https://github.com/MegaIng>`_
* `Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_
* `Aaron Russell Voelker <https://github.com/arvoelke>`_
* `Ashutosh Varma <https://github.com/ashutoshvarma>`_
* `Ben Greiner <https://github.com/bnavigator>`_
* `Brandon T. Willard <https://github.com/brandonwillard>`_
* `Daniel Nagel <https://github.com/braniii>`_
* `David Nadlinger <https://github.com/dnadlinger>`_
* `Ehsan Totoni <https://github.com/ehsantn>`_
* `esc <https://github.com/esc>`_
* `Felix Divo <https://github.com/felixdivo>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `Guilherme Leobas <https://github.com/guilhermeleobas>`_
* `Guoqiang QI <https://github.com/guoqiangqi>`_
* `Itamar Turner-Trauring <https://github.com/itamarst>`_
* `Jérome Eertmans <https://github.com/jeertmans>`_
* `Alexey Kozlov <https://github.com/kozlov-alexey>`_
* `Lauren Arnett <https://github.com/laurenarnett>`_
* `LunarLanding <https://github.com/LunarLanding>`_
* `Max Katz <https://github.com/maxpkatz>`_
* `Kalyan <https://github.com/rawwar>`_
* `Reazul Hoque <https://github.com/reazulhoque>`_
* `Rishi Kulkarni <https://github.com/rishi-kulkarni>`_
* `Shaun Cutts <https://github.com/shaunc>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
* `Thomas VINCENT <https://github.com/t20100>`_
* `Michael Collison <https://github.com/testhound>`_
* `vlad-perevezentsev <https://github.com/vlad-perevezentsev>`_
Version 0.53.1 (25 March, 2021)
-------------------------------
This is a bugfix release for 0.53.0. It contains the following four
pull-requests which fix two critical regressions and two build failures
reported by the openSuSe team:
* PR #6826 Fix regression on gufunc serialization
* PR #6828 Fix regression in CUDA: Set stream in mapped and managed array
device_setup
* PR #6837 Ignore warnings from packaging module when testing import behaviour.
* PR #6851 set non-reported llvm timing values to 0.0
Authors:
* Ben Greiner
* Graham Markall
* Siu Kwan Lam
* Stuart Archibald
Version 0.53.0 (11 March, 2021)
-------------------------------
This release continues to add new features, bug fixes and stability improvements
to Numba.
Highlights of core changes:
* Support for Python 3.9 (Stuart Archibald).
* Function sub-typing (Lucio Fernandez-Arjona).
* Initial support for dynamic ``gufuncs`` (i.e. from ``@guvectorize``)
(Guilherme Leobas).
* Parallel Accelerator (``@njit(parallel=True)`` now supports Fortran ordered
arrays (Todd A. Anderson and Siu Kwan Lam).
Intel also kindly sponsored research and development that lead to two new
features:
* Exposing LLVM compilation pass timings for diagnostic purposes (Siu Kwan
Lam).
* An event system for broadcasting compiler events (Siu Kwan Lam).
Highlights of changes for the CUDA target:
* CUDA 11.2 onwards (versions of the toolkit using NVVM IR 1.6 / LLVM IR 7.0.1)
are now supported (Graham Markall).
* A fast cube root function is added (Michael Collison).
* Support for atomic ``xor``, increment, decrement, exchange, are added, and
compare-and-swap is extended to support 64-bit integers (Michael Collison).
* Addition of ``cuda.is_supported_version()`` to check if the CUDA runtime
version is supported (Graham Markall).
* The CUDA dispatcher now shares infrastructure with the CPU dispatcher,
improving launch times for lazily-compiled kernels (Graham Markall).
* The CUDA Array Interface is updated to version 3, with support for streams
added (Graham Markall).
* Tuples and ``namedtuples`` can now be passed to kernels (Graham Markall).
* Initial support for Cooperative Groups is added, with support for Grid Groups
and Grid Sync (Graham Markall and Nick White).
* Support for ``math.log2`` and ``math.remainder`` is added (Guilherme Leobas).
General deprecation notices:
* There are no new general deprecations.
CUDA target deprecation notices:
* CUDA support on macOS is deprecated with this release (it still works, it is
just unsupported).
* The ``argtypes``, ``restypes``, and ``bind`` keyword arguments to the
``cuda.jit`` decorator, deprecated since 0.51.0, are removed
* The ``Device.COMPUTE_CAPABILITY`` property, deprecated since 2014, has been
removed (use ``compute_capability`` instead).
* The ``to_host`` method of device arrays is removed (use ``copy_to_host``
instead).
General Enhancements:
* PR #4769: objmode complex type spelling (Siu Kwan Lam)
* PR #5579: Function subtyping (Lucio Fernandez-Arjona)
* PR #5659: Add support for parfors creating 'F'ortran layout Numpy arrays.
(Todd A. Anderson)
* PR #5936: Improve array analysis for user-defined data types. (Todd A.
Anderson)
* PR #5938: Initial support for dynamic gufuncs (Guilherme Leobas)
* PR #5958: Making typed.List a typing Generic (Lucio Fernandez-Arjona)
* PR #6334: Support attribute access from other modules (Farah Hariri)
* PR #6373: Allow Dispatchers to be cached (Eric Wieser)
* PR #6519: Avoid unnecessary ir.Del generation and removal (Ehsan Totoni)
* PR #6545: Refactoring ParforDiagnostics (Elena Totmenina)
* PR #6560: Add LLVM pass timer (Siu Kwan Lam)
* PR #6573: Improve ``__str__`` for typed.List when invoked from IPython shell
(Amin Sadeghi)
* PR #6575: Avoid temp variable assignments (Ehsan Totoni)
* PR #6578: Add support for numpy ``intersect1d`` and basic test cases
(``@caljrobe``)
* PR #6579: Python 3.9 support. (Stuart Archibald)
* PR #6580: Store partial typing errors in compiler state (Ehsan Totoni)
* PR #6626: A simple event system to broadcast compiler events (Siu Kwan Lam)
* PR #6635: Try to resolve dynamic getitems as static post unroll transform.
(Stuart Archibald)
* PR #6636: Adds llvm_lock event (Siu Kwan Lam)
* PR #6664: Adds tests for PR 5659 (Siu Kwan Lam)
* PR #6680: Allow getattr to work in objmode output type spec (Siu Kwan Lam)
Fixes:
* PR #6176: Remove references to deprecated numpy globals (Eric Wieser)
* PR #6374: Use Python 3 style OSError handling (Eric Wieser)
* PR #6402: Fix ``typed.Dict`` and ``typed.List`` crashing on parametrized types
(Andreas Sodeur)
* PR #6403: Add ``types.ListType.key`` (Andreas Sodeur)
* PR #6410: Fixes issue #6386 (Danny Weitekamp)
* PR #6425: Fix unicode join for issue #6405 (Teugea Ioan-Teodor)
* PR #6437: Don't pass reduction variables known in an outer parfor to inner
parfors when analyzing reductions. (Todd A. Anderson)
* PR #6453: Keep original variable names in metadata to improve diagnostics
(Ehsan Totoni)
* PR #6454: FIX: Fixes for literals (Eric Larson)
* PR #6463: Bump llvmlite to 0.36 series (Stuart Archibald)
* PR #6466: Remove the misspelling of finalize_dynamic_globals (Sergey
Pokhodenko)
* PR #6489: Improve the error message for unsupported Buffer in Buffer
situation. (Stuart Archibald)
* PR #6503: Add test to ensure Numba imports without warnings. (Stuart
Archibald)
* PR #6508: Defer requirements to setup.py (Siu Kwan Lam)
* PR #6521: Skip annotated jitclass test if typeguard is running. (Stuart
Archibald)
* PR #6524: Fix typed.List return value (Lucio Fernandez-Arjona)
* PR #6562: Correcting typo in numba sysinfo output (Nick Sutcliffe)
* PR #6574: Run parfor fusion if 2 or more parfors (Ehsan Totoni)
* PR #6582: Fix typed dict error with uninitialized padding bytes (Siu Kwan
Lam)
* PR #6584: Remove jitclass from ``__init__`` ``__all__``. (Stuart Archibald)
* PR #6586: Run closure inlining ahead of branch pruning in case of nonlocal
(Stuart Archibald)
* PR #6591: Fix inlineasm test failure. (Siu Kwan Lam)
* PR #6622: Fix 6534, handle unpack of assign-like tuples. (Stuart Archibald)
* PR #6652: Simplify PR-6334 (Siu Kwan Lam)
* PR #6653: Fix get_numba_envvar (Siu Kwan Lam)
* PR #6654: Fix #6632 support alternative dtype string spellings (Stuart
Archibald)
* PR #6685: Add Python 3.9 to classifiers. (Stuart Archibald)
* PR #6693: patch to compile _devicearray.cpp with c++11 (Valentin Haenel)
* PR #6716: Consider assignment lhs live if used in rhs (Fixes #6715) (Ehsan
Totoni)
* PR #6727: Avoid errors in array analysis for global tuples with non-int
(Ehsan Totoni)
* PR #6733: Fix segfault and errors in #6668 (Siu Kwan Lam)
* PR #6741: Enable SSA in IR inliner (Ehsan Totoni)
* PR #6763: use an alternative constraint for the conda packages (Valentin
Haenel)
* PR #6786: Fix gufunc kwargs support (Siu Kwan Lam)
CUDA Enhancements/Fixes:
* PR #5162: Specify synchronization semantics of CUDA Array Interface (Graham
Markall)
* PR #6245: CUDA Cooperative grid groups (Graham Markall and Nick White)
* PR #6333: Remove dead ``_Kernel.__call__`` (Graham Markall)
* PR #6343: CUDA: Add support for passing tuples and namedtuples to kernels
(Graham Markall)
* PR #6349: Refactor Dispatcher to remove unnecessary indirection (Graham
Markall)
* PR #6358: Add log2 and remainder implementations for cuda (Guilherme Leobas)
* PR #6376: Added a fixed seed in test_atomics.py for issue #6370 (Teugea
Ioan-Teodor)
* PR #6377: CUDA: Fix various issues in test suite (Graham Markall)
* PR #6409: Implement cuda atomic xor (Michael Collison)
* PR #6422: CUDA: Remove deprecated items, expect CUDA 11.1 (Graham Markall)
* PR #6427: Remove duplicate repeated definition of gufunc (Amit Kumar)
* PR #6432: CUDA: Use ``_dispatcher.Dispatcher`` as base Dispatcher class
(Graham Markall)
* PR #6447: CUDA: Add get_regs_per_thread method to Dispatcher (Graham Markall)
* PR #6499: CUDA atomic increment, decrement, exchange and compare and swap
(Michael Collison)
* PR #6510: CUDA: Make device array assignment synchronous where necessary
(Graham Markall)
* PR #6517: CUDA: Add NVVM test of all 8-bit characters (Graham Markall)
* PR #6567: Refactor llvm replacement code into separate function (Michael
Collison)
* PR #6642: Testhound/cuda cuberoot (Michael Collison)
* PR #6661: CUDA: Support NVVM70 / CUDA 11.2 (Graham Markall)
* PR #6663: Fix error caused by missing "-static" libraries defined for some
platforms (Siu Kwan Lam)
* PR #6666: CUDA: Add a function to query whether the runtime version is
supported. (Graham Markall)
* PR #6725: CUDA: Fix compile to PTX with debug for CUDA 11.2 (Graham Markall)
Documentation Updates:
* PR #5740: Add FAQ entry on how to create a MWR. (Stuart Archibald)
* PR #6346: DOC: add where to get dev builds from to FAQ (Eyal Trabelsi)
* PR #6418: docs: use https for homepage (``@imba-tjd``)
* PR #6430: CUDA docs: Add RNG example with 3D grid and strided loops (Graham
Markall)
* PR #6436: docs: remove typo in Deprecation Notices (Thibault Ballier)
* PR #6440: Add note about performance of typed containers from the interpreter.
(Stuart Archibald)
* PR #6457: Link to read the docs instead of numba homepage (Hannes Pahl)
* PR #6470: Adding PyCon Sweden 2020 talk on numba (Ankit Mahato)
* PR #6472: Document ``numba.extending.is_jitted`` (Stuart Archibald)
* PR #6495: Fix typo in literal list docs. (Stuart Archibald)
* PR #6501: Add doc entry on Numba's limited resources and how to help. (Stuart
Archibald)
* PR #6502: Add CODEOWNERS file. (Stuart Archibald)
* PR #6531: Update canonical URL. (Stuart Archibald)
* PR #6544: Minor typo / grammar fixes to 5 minute guide (Ollin Boer Bohan)
* PR #6599: docs: fix simple typo, consevatively -> conservatively (Tim Gates)
* PR #6609: Recommend miniforge instead of c4aarch64 (Isuru Fernando)
* PR #6671: Update environment creation example to python 3.8 (Lucio
Fernandez-Arjona)
* PR #6676: Update hardware and software versions in various docs. (Stuart
Archibald)
* PR #6682: Update deprecation notices for 0.53 (Stuart Archibald)
CI/Infrastructure Updates:
* PR #6458: Enable typeguard in CI (Siu Kwan Lam)
* PR #6500: Update bug and feature request templates. (Stuart Archibald)
* PR #6516: Fix RTD build by using conda. (Stuart Archibald)
* PR #6587: Add zenodo badge (Siu Kwan Lam)
Authors:
* Amin Sadeghi
* Amit Kumar
* Andreas Sodeur
* Ankit Mahato
* Chris Barnes
* Danny Weitekamp
* Ehsan Totoni (core dev)
* Eric Larson
* Eric Wieser
* Eyal Trabelsi
* Farah Hariri
* Graham Markall
* Guilherme Leobas
* Hannes Pahl
* Isuru Fernando
* Lucio Fernandez-Arjona
* Michael Collison
* Nick Sutcliffe
* Nick White
* Ollin Boer Bohan
* Sergey Pokhodenko
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
* Teugea Ioan-Teodor
* Thibault Ballier
* Tim Gates
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
* ``@caljrobe``
* ``@imba-tjd``
Version 0.52.0 (30 November, 2020)
----------------------------------
This release focuses on performance improvements, but also adds some new
features and contains numerous bug fixes and stability improvements.
Highlights of core performance improvements include:
* Intel kindly sponsored research and development into producing a new reference
count pruning pass. This pass operates at the LLVM level and can prune a
number of common reference counting patterns. This will improve performance
for two primary reasons:
* There will be less pressure on the atomic locks used to do the reference
counting.
* Removal of reference counting operations permits more inlining and the
optimisation passes can in general do more with what is present.
(Siu Kwan Lam).
* Intel also sponsored work to improve the performance of the
``numba.typed.List`` container, particularly in the case of ``__getitem__``
and iteration (Stuart Archibald).
* Superword-level parallelism vectorization is now switched on and the
optimisation pipeline has been lightly analysed and tuned so as to be able to
vectorize more and more often (Stuart Archibald).
Highlights of core feature changes include:
* The ``inspect_cfg`` method on the JIT dispatcher object has been
significantly enhanced and now includes highlighted output and interleaved
line markers and Python source (Stuart Archibald).
* The BSD operating system is now unofficially supported (Stuart Archibald).
* Numerous features/functionality improvements to NumPy support, including
support for:
* ``np.asfarray`` (Guilherme Leobas)
* "subtyping" in record arrays (Lucio Fernandez-Arjona)
* ``np.split`` and ``np.array_split`` (Isaac Virshup)
* ``operator.contains`` with ``ndarray`` (``@mugoh``).
* ``np.asarray_chkfinite`` (Rishabh Varshney).
* NumPy 1.19 (Stuart Archibald).
* the ``ndarray`` allocators, ``empty``, ``ones`` and ``zeros``, accepting a
``dtype`` specified as a string literal (Stuart Archibald).
* Booleans are now supported as literal types (Alexey Kozlov).
* On the CUDA target:
* CUDA 9.0 is now the minimum supported version (Graham Markall).
* Support for Unified Memory has been added (Max Katz).
* Kernel launch overhead is reduced (Graham Markall).
* Cudasim support for mapped array, memcopies and memset has been added (Mike
Williams).
* Access has been wired in to all libdevice functions (Graham Markall).
* Additional CUDA atomic operations have been added (Michael Collison).
* Additional math library functions (``frexp``, ``ldexp``, ``isfinite``)
(Zhihao Yuan).
* Support for ``power`` on complex numbers (Graham Markall).
Deprecations to note:
There are no new deprecations. However, note that "compatibility" mode, which
was added some 40 releases ago to help transition from 0.11 to 0.12+, has been
removed! Also, the shim to permit the import of ``jitclass`` from Numba's top
level namespace has now been removed as per the deprecation schedule.
General Enhancements:
* PR #5418: Add np.asfarray impl (Guilherme Leobas)
* PR #5560: Record subtyping (Lucio Fernandez-Arjona)
* PR #5609: Jitclass Infer Spec from Type Annotations (Ethan Pronovost)
* PR #5699: Implement np.split and np.array_split (Isaac Virshup)
* PR #6015: Adding BooleanLiteral type (Alexey Kozlov)
* PR #6027: Support operators inlining in InlineOverloads (Alexey Kozlov)
* PR #6038: Closes #6037, fixing FreeBSD compilation (László Károlyi)
* PR #6086: Add more accessible version information (Stuart Archibald)
* PR #6157: Add pipeline_class argument to @cfunc as supported by @jit. (Arthur
Peters)
* PR #6262: Support dtype from str literal. (Stuart Archibald)
* PR #6271: Support ``ndarray`` contains (``@mugoh``)
* PR #6295: Enhance inspect_cfg (Stuart Archibald)
* PR #6304: Support NumPy 1.19 (Stuart Archibald)
* PR #6309: Add suitable file search path for BSDs. (Stuart Archibald)
* PR #6341: Re roll 6279 (Rishabh Varshney and Valentin Haenel)
Performance Enhancements:
* PR #6145: Patch to fingerprint namedtuples. (Stuart Archibald)
* PR #6202: Speed up str(int) (Stuart Archibald)
* PR #6261: Add np.ndarray.ptp() support. (Stuart Archibald)
* PR #6266: Use custom LLVM refcount pruning pass (Siu Kwan Lam)
* PR #6275: Switch on SLP vectorize. (Stuart Archibald)
* PR #6278: Improve typed list performance. (Stuart Archibald)
* PR #6335: Split optimisation passes. (Stuart Archibald)
* PR #6455: Fix refprune on obfuscated refs and stabilize optimisation WRT
wrappers. (Stuart Archibald)
Fixes:
* PR #5639: Make UnicodeType inherit from Hashable (Stuart Archibald)
* PR #6006: Resolves incorrectly hoisted list in parfor. (Todd A. Anderson)
* PR #6126: fix version_info if version can not be determined (Valentin Haenel)
* PR #6137: Remove references to Python 2's long (Eric Wieser)
* PR #6139: Use direct syntax instead of the ``add_metaclass`` decorator (Eric
Wieser)
* PR #6140: Replace calls to utils.iteritems(d) with d.items() (Eric Wieser)
* PR #6141: Fix #6130 objmode cache segfault (Siu Kwan Lam)
* PR #6156: Remove callers of ``reraise`` in favor of using ``with_traceback``
directly (Eric Wieser)
* PR #6162: Move charseq support out of init (Stuart Archibald)
* PR #6165: #5425 continued (Amos Bird and Stuart Archibald)
* PR #6166: Remove Python 2 compatibility from numba.core.utils (Eric Wieser)
* PR #6185: Better error message on NotDefinedError (Luiz Almeida)
* PR #6194: Remove recursion from traverse_types (Radu Popovici)
* PR #6200: Workaround #5973 (Stuart Archibald)
* PR #6203: Make find_callname only lookup functions that are likely part of
NumPy. (Stuart Archibald)
* PR #6204: Fix unicode kind selection for getitem. (Stuart Archibald)
* PR #6206: Build all extension modules with -g -Wall -Werror on Linux x86,
provide -O0 flag option (Graham Markall)
* PR #6212: Fix for objmode recompilation issue (Alexey Kozlov)
* PR #6213: Fix #6177. Remove AOT dependency on the Numba package (Siu Kwan Lam)
* PR #6224: Add support for tuple concatenation to array analysis. (#5396
continued) (Todd A. Anderson)
* PR #6231: Remove compatibility mode (Graham Markall)
* PR #6254: Fix win-32 hashing bug (from Stuart Archibald) (Ray Donnelly)
* PR #6265: Fix #6260 (Stuart Archibald)
* PR #6267: speed up a couple of really slow unittests (Stuart Archibald)
* PR #6281: Remove numba.jitclass shim as per deprecation schedule. (Stuart
Archibald)
* PR #6294: Make return type propagate to all return variables (Andreas Sodeur)
* PR #6300: Un-skip tests that were skipped because of #4026. (Owen Anderson)
* PR #6307: Remove restrictions on SVML version due to bug in LLVM SVML CC
(Stuart Archibald)
* PR #6316: Make IR inliner tests not self mutating. (Stuart Archibald)
* PR #6318: PR #5892 continued (Todd A. Anderson, via Stuart Archibald)
* PR #6319: Permit switching off boundschecking when debug is on. (Stuart
Archibald)
* PR #6324: PR 6208 continued (Ivan Butygin and Stuart Archibald)
* PR #6337: Implements ``key`` on ``types.TypeRef`` (Andreas Sodeur)
* PR #6354: Bump llvmlite to 0.35. series. (Stuart Archibald)
* PR #6357: Fix enumerate invalid decref (Siu Kwan Lam)
* PR #6359: Fixes typed list indexing on 32bit (Stuart Archibald)
* PR #6378: Fix incorrect CPU override in vectorization test. (Stuart Archibald)
* PR #6379: Use O0 to enable inline and not affect loop-vectorization by later
O3... (Siu Kwan Lam)
* PR #6384: Fix failing tests to match on platform invariant int spelling.
(Stuart Archibald)
* PR #6390: Updates inspect_cfg (Stuart Archibald)
* PR #6396: Remove hard dependency on tbb package. (Stuart Archibald)
* PR #6408: Don't do array analysis for tuples that contain arrays. (Todd A.
Anderson)
* PR #6441: Fix ASCII flag in Unicode slicing (0.52.0rc2 regression) (Ehsan
Totoni)
* PR #6442: Fix array analysis regression in 0.52 RC2 for tuple of 1D arrays
(Ehsan Totoni)
* PR #6446: Fix #6444: pruner issues with reference stealing functions (Siu
Kwan Lam)
* PR #6450: Fix asfarray kwarg default handling. (Stuart Archibald)
* PR #6486: fix abstract base class import (Valentin Haenel)
* PR #6487: Restrict maximum version of python (Siu Kwan Lam)
* PR #6527: setup.py: fix py version guard (Chris Barnes)
CUDA Enhancements/Fixes:
* PR #5465: Remove macro expansion and replace uses with FE typing + BE lowering
(Graham Markall)
* PR #5741: CUDA: Add two-argument implementation of round() (Graham Markall)
* PR #5900: Enable CUDA Unified Memory (Max Katz)
* PR #6042: CUDA: Lower launch overhead by launching kernel directly (Graham
Markall)
* PR #6064: Lower math.frexp and math.ldexp in numba.cuda (Zhihao Yuan)
* PR #6066: Lower math.isfinite in numba.cuda (Zhihao Yuan)
* PR #6092: CUDA: Add mapped_array_like and pinned_array_like (Graham Markall)
* PR #6127: Fix race in reduction kernels on Volta, require CUDA 9, add syncwarp
with default mask (Graham Markall)
* PR #6129: Extend Cudasim to support most of the memory functionality. (Mike
Williams)
* PR #6150: CUDA: Turn on flake8 for cudadrv and fix errors (Graham Markall)
* PR #6152: CUDA: Provide wrappers for all libdevice functions, and fix typing
of math function (#4618) (Graham Markall)
* PR #6227: Raise exception when no supported architectures are found (Jacob
Tomlinson)
* PR #6244: CUDA Docs: Make workflow using simulator more explicit (Graham
Markall)
* PR #6248: Add support for CUDA atomic subtract operations (Michael Collison)
* PR #6289: Refactor atomic test cases to reduce code duplication (Michael
Collison)
* PR #6290: CUDA: Add support for complex power (Graham Markall)
* PR #6296: Fix flake8 violations in numba.cuda module (Graham Markall)
* PR #6297: Fix flake8 violations in numba.cuda.tests.cudapy module (Graham
Markall)
* PR #6298: Fix flake8 violations in numba.cuda.tests.cudadrv (Graham Markall)
* PR #6299: Fix flake8 violations in numba.cuda.simulator (Graham Markall)
* PR #6306: Fix flake8 in cuda atomic test from merge. (Stuart Archibald)
* PR #6325: Refactor code for atomic operations (Michael Collison)
* PR #6329: Flake8 fix for a CUDA test (Stuart Archibald)
* PR #6331: Explicitly state that NUMBA_ENABLE_CUDASIM needs to be set before
import (Graham Markall)
* PR #6340: CUDA: Fix #6339, performance regression launching specialized
kernels (Graham Markall)
* PR #6380: Only test managed allocations on Linux (Graham Markall)
Documentation Updates:
* PR #6090: doc: Add doc on direct creation of Numba typed-list (``@rht``)
* PR #6110: Update CONTRIBUTING.md (Stuart Archibald)
* PR #6128: CUDA Docs: Restore Dispatcher.forall() docs (Graham Markall)
* PR #6277: fix: cross2d wrong doc. reference (issue #6276) (``@jeertmans``)
* PR #6282: Remove docs on Python 2(.7) EOL. (Stuart Archibald)
* PR #6283: Add note on how public CI is impl and what users can do to help.
(Stuart Archibald)
* PR #6292: Document support for structured array attribute access
(Graham Markall)
* PR #6310: Declare unofficial \*BSD support (Stuart Archibald)
* PR #6342: Fix docs on literally usage. (Stuart Archibald)
* PR #6348: doc: fix typo in jitclass.rst ("initilising" -> "initialising")
(``@muxator``)
* PR #6362: Move llvmlite support in README to 0.35 (Stuart Archibald)
* PR #6363: Note that reference counted types are not permitted in set().
(Stuart Archibald)
* PR #6364: Move deprecation schedules for 0.52 (Stuart Archibald)
CI/Infrastructure Updates:
* PR #6252: Show channel URLs (Siu Kwan Lam)
* PR #6338: Direct user questions to Discourse instead of the Google Group.
(Stan Seibert)
* PR #6474: Add skip on PPC64LE for tests causing SIGABRT in LLVM. (Stuart
Archibald)
Authors:
* Alexey Kozlov
* Amos Bird
* Andreas Sodeur
* Arthur Peters
* Chris Barnes
* Ehsan Totoni (core dev)
* Eric Wieser
* Ethan Pronovost
* Graham Markall
* Guilherme Leobas
* Isaac Virshup
* Ivan Butygin
* Jacob Tomlinson
* Luiz Almeida
* László Károlyi
* Lucio Fernandez-Arjona
* Max Katz
* Michael Collison
* Mike Williams
* Owen Anderson
* Radu Popovici
* Ray Donnelly
* Rishabh Varshney
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
* Zhihao Yuan
* ``@jeertmans``
* ``@mugoh``
* ``@muxator``
* ``@rht``
Version 0.51.2 (September 2, 2020)
----------------------------------
This is a bugfix release for 0.51.1. It fixes a critical performance bug in the
CFG back edge computation algorithm that leads to exponential time complexity
arising in compilation for use cases with certain pathological properties.
* PR #6195: PR 6187 Continue. Don't visit already checked successors
Authors:
* Graham Markall
* Siu Kwan Lam (core dev)
Version 0.51.1 (August 26, 2020)
--------------------------------
This is a bugfix release for 0.51.0, it fixes a critical bug in caching, another
critical bug in the CUDA target initialisation sequence and also fixes some
compile time performance regressions:
* PR #6141: Fix #6130 objmode cache segfault
* PR #6146: Fix compilation slowdown due to controlflow analysis
* PR #6147: CUDA: Don't make a runtime call on import
* PR #6153: Fix for #6151. Make UnicodeCharSeq into str for comparison.
* PR #6168: Fix Issue #6167: Failure in test_cuda_submodules
Authors:
* Graham Markall
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
Version 0.51.0 (August 12, 2020)
--------------------------------
This release continues to add new features to Numba and also contains a
significant number of bug fixes and stability improvements.
Highlights of core feature changes include:
* The compilation chain is now based on LLVM 10 (Valentin Haenel).
* Numba has internally switched to prefer non-literal types over literal ones so
as to reduce function over-specialisation, this with view of speeding up
compile times (Siu Kwan Lam).
* On the CUDA target: Support for CUDA Toolkit 11, Ampere, and Compute
Capability 8.0; Printing of ``SASS`` code for kernels; Callbacks to Python
functions can be inserted into CUDA streams, and streams are async awaitable;
Atomic ``nanmin`` and ``nanmax`` functions are added; Fixes for various
miscompilations and segfaults. (mostly Graham Markall; call backs on
streams by Peter Würtz).
Intel also kindly sponsored research and development that lead to some exciting
new features:
* Support for heterogeneous immutable lists and heterogeneous immutable string
key dictionaries. Also optional initial/construction value capturing for all
lists and dictionaries containing literal values (Stuart Archibald).
* A new pass-by-reference mutable structure extension type ``StructRef`` (Siu
Kwan Lam).
* Object mode blocks are now cacheable, with the side effect of numerous bug
fixes and performance improvements in caching. This also permits caching of
functions defined in closures (Siu Kwan Lam).
Deprecations to note:
To align with other targets, the ``argtypes`` and ``restypes`` kwargs to
``@cuda.jit`` are now deprecated, the ``bind`` kwarg is also deprecated.
Further the ``target`` kwarg to the ``numba.jit`` decorator family is
deprecated.
General Enhancements:
* PR #5463: Add str(int) impl
* PR #5526: Impl. np.asarray(literal)
* PR #5619: Add support for multi-output ufuncs
* PR #5711: Division with timedelta input
* PR #5763: Support minlength argument to np.bincount
* PR #5779: Return zero array from np.dot when the arguments are empty.
* PR #5796: Add implementation for np.positive
* PR #5849: Setitem for records when index is StringLiteral, including literal
unroll
* PR #5856: Add support for conversion of inplace_binop to parfor.
* PR #5893: Allocate 1D iteration space one at a time for more even
distribution.
* PR #5922: Reduce objmode and unpickling overhead
* PR #5944: re-enable OpenMP in wheels
* PR #5946: Implement literal dictionaries and lists.
* PR #5956: Update numba_sysinfo.py
* PR #5978: Add structref as a mutable struct that is pass-by-ref
* PR #5980: Deprecate target kwarg for numba.jit.
* PR #6058: Add prefer_literal option to overload API
Fixes:
* PR #5674: Fix #3955. Allow `with objmode` to be cached
* PR #5724: Initialize process lock lazily to prevent multiprocessing issue
* PR #5783: Make np.divide and np.remainder code more similar
* PR #5808: Fix 5665 Block jit(nopython=True, forceobj=True) and suppress
njit(forceobj=True)
* PR #5834: Fix the is operator on Ellipsis
* PR #5838: Ensure ``Dispatcher.__eq__`` always returns a bool
* PR #5841: cleanup: Use PythonAPI.bool_from_bool in more places
* PR #5862: Do not leak loop iteration variables into the numba.np.npyimpl
namespace
* PR #5869: Update repomap
* PR #5879: Fix erroneous input mutation in linalg routines
* PR #5882: Type check function in jit decorator
* PR #5925: Use np.inf and -np.inf for max and min float values respectively.
* PR #5935: Fix default arguments with multiprocessing
* PR #5952: Fix "Internal error ... local variable 'errstr' referenced before
assignment during BoundFunction(...)"
* PR #5962: Fix SVML tests with LLVM 10 and AVX512
* PR #5972: fix flake8 for numba/runtests.py
* PR #5995: Update setup.py with new llvmlite versions
* PR #5996: Set lower bound for llvmlite to 0.33
* PR #6004: Fix problem in branch pruning with LiteralStrKeyDict
* PR #6017: Fixing up numba_do_raise
* PR #6028: Fix #6023
* PR #6031: Continue 5821
* PR #6035: Fix overspecialize of literal
* PR #6046: Fixes statement reordering bug in maximize fusion step.
* PR #6056: Fix issue on invalid inlining of non-empty build_list by
inline_arraycall
* PR #6057: fix aarch64/python_3.8 failure on master
* PR #6070: Fix overspecialized containers
* PR #6071: Remove f-strings in setup.py
* PR #6072: Fix for #6005
* PR #6073: Fixes invalid C prototype in helper function.
* PR #6078: Duplicate NumPy's PyArray_DescrCheck macro
* PR #6081: Fix issue with cross drive use and relpath.
* PR #6083: Fix bug in initial value unify.
* PR #6087: remove invalid sanity check from randrange tests
* PR #6089: Fix invalid reference to TypingError
* PR #6097: Add function code and closure bytes into cache key
* PR #6099: Restrict upper limit of TBB version due to ABI changes.
* PR #6101: Restrict lower limit of icc_rt version due to assumed SVML bug.
* PR #6107: Fix and test #6095
* PR #6109: Fixes an issue reported in #6094
* PR #6111: Decouple LiteralList and LiteralStrKeyDict from tuple
* PR #6116: Fix #6102. Problem with non-unique label.
CUDA Enhancements/Fixes:
* PR #5359: Remove special-casing of 0d arrays
* PR #5709: CUDA: Refactoring of cuda.jit and kernel / dispatcher abstractions
* PR #5732: CUDA Docs: document ``forall`` method of kernels
* PR #5745: CUDA stream callbacks and async awaitable streams
* PR #5761: Add implmentation for int types for isnan and isinf for CUDA
* PR #5819: Add support for CUDA 11 and Ampere / CC 8.0
* PR #5826: CUDA: Add function to get SASS for kernels
* PR #5846: CUDA: Allow disabling NVVM optimizations, and fix debug issues
* PR #5851: CUDA EMM enhancements - add default get_ipc_handle implementation,
skip a test conditionally
* PR #5852: CUDA: Fix ``cuda.test()``
* PR #5857: CUDA docs: Add notes on resetting the EMM plugin
* PR #5859: CUDA: Fix reduce docs and style improvements
* PR #6016: Fixes change of list spelling in a cuda test.
* PR #6020: CUDA: Fix #5820, adding atomic nanmin / nanmax
* PR #6030: CUDA: Don't optimize IR before sending it to NVVM
* PR #6052: Fix dtype for atomic_add_double testsuite
* PR #6080: CUDA: Prevent auto-upgrade of atomic intrinsics
* PR #6123: Fix #6121
Documentation Updates:
* PR #5782: Host docs on Read the Docs
* PR #5830: doc: Mention that caching uses pickle
* PR #5963: Fix broken link to numpy ufunc signature docs
* PR #5975: restructure communication section
* PR #5981: Document bounds-checking behavior in python deviations page
* PR #5993: Docs for structref
* PR #6008: Small fix so bullet points are rendered by sphinx
* PR #6013: emphasize cuda kernel functions are asynchronous
* PR #6036: Update deprecation doc from numba.errors to numba.core.errors
* PR #6062: Change references to numba.pydata.org to https
CI updates:
* PR #5850: Updates the "New Issue" behaviour to better redirect users.
* PR #5940: Add discourse badge
* PR #5960: Setting mypy on CI
Enhancements from user contributed PRs (with thanks!):
* Aisha Tammy added the ability to switch off TBB support at compile time in
#5821 (continued in #6031 by Stuart Archibald).
* Alexander Stiebing fixed a reference before assignment bug in #5952.
* Alexey Kozlov fixed a bug in tuple getitem for literals in #6028.
* Andrew Eckart updated the repomap in #5869, added support for Read the Docs
in #5782, fixed a bug in the ``np.dot`` implementation to correctly handle
empty arrays in #5779 and added support for ``minlength`` to ``np.bincount``
in #5763.
* ``@bitsisbits`` updated ``numba_sysinfo.py`` to handle HSA agents correctly in
#5956.
* Daichi Suzuo Fixed a bug in the threading backend initialisation sequence such
that it is now correctly a lazy lock in #5724.
* Eric Wieser contributed a number of patches, particularly in enhancing and
improving the ``ufunc`` capabilities:
* #5359: Remove special-casing of 0d arrays
* #5834: Fix the is operator on Ellipsis
* #5619: Add support for multi-output ufuncs
* #5841: cleanup: Use PythonAPI.bool_from_bool in more places
* #5862: Do not leak loop iteration variables into the numba.np.npyimpl
namespace
* #5838: Ensure ``Dispatcher.__eq__`` always returns a bool
* #5830: doc: Mention that caching uses pickle
* #5783: Make np.divide and np.remainder code more similar
* Ethan Pronovost added a guard to prevent the common mistake of applying a jit
decorator to the same function twice in #5881.
* Graham Markall contributed many patches to the CUDA target, as follows:
* #6052: Fix dtype for atomic_add_double tests
* #6030: CUDA: Don't optimize IR before sending it to NVVM
* #5846: CUDA: Allow disabling NVVM optimizations, and fix debug issues
* #5826: CUDA: Add function to get SASS for kernels
* #5851: CUDA EMM enhancements - add default get_ipc_handle implementation,
skip a test conditionally
* #5709: CUDA: Refactoring of cuda.jit and kernel / dispatcher abstractions
* #5819: Add support for CUDA 11 and Ampere / CC 8.0
* #6020: CUDA: Fix #5820, adding atomic nanmin / nanmax
* #5857: CUDA docs: Add notes on resetting the EMM plugin
* #5859: CUDA: Fix reduce docs and style improvements
* #5852: CUDA: Fix ``cuda.test()``
* #5732: CUDA Docs: document ``forall`` method of kernels
* Guilherme Leobas added support for ``str(int)`` in #5463 and
``np.asarray(literal value)``` in #5526.
* Hameer Abbasi deprecated the ``target`` kwarg for ``numba.jit`` in #5980.
* Hannes Pahl added a badge to the Numba github page linking to the new
discourse forum in #5940 and also fixed a bug that permitted illegal
combinations of flags to be passed into ``@jit`` in #5808.
* Kayran Schmidt emphasized that CUDA kernel functions are asynchronous in the
documentation in #6013.
* Leonardo Uieda fixed a broken link to the NumPy ufunc signature docs in #5963.
* Lucio Fernandez-Arjona added mypy to CI and started adding type annotations to
the code base in #5960, also fixed a (de)serialization problem on the
dispatcher in #5935, improved the undefined variable error message in #5876,
added support for division with timedelta input in #5711 and implemented
``setitem`` for records when the index is a ``StringLiteral`` in #5849.
* Ludovic Tiako documented Numba's bounds-checking behavior in the python
deviations page in #5981.
* Matt Roeschke changed all ``http`` references ``https`` in #6062.
* ``@niteya-shah`` implemented ``isnan`` and ``isinf`` for integer types on the
CUDA target in #5761 and implemented ``np.positive`` in #5796.
* Peter Würtz added CUDA stream callbacks and async awaitable streams in #5745.
* ``@rht`` fixed an invalid import referred to in the deprecation documentation
in #6036.
* Sergey Pokhodenko updated the SVML tests for LLVM 10 in #5962.
* Shyam Saladi fixed a Sphinx rendering bug in #6008.
Authors:
* Aisha Tammy
* Alexander Stiebing
* Alexey Kozlov
* Andrew Eckart
* ``@bitsisbits``
* Daichi Suzuo
* Eric Wieser
* Ethan Pronovost
* Graham Markall
* Guilherme Leobas
* Hameer Abbasi
* Hannes Pahl
* Kayran Schmidt
* Kozlov, Alexey
* Leonardo Uieda
* Lucio Fernandez-Arjona
* Ludovic Tiako
* Matt Roeschke
* ``@niteya-shah``
* Peter Würtz
* Sergey Pokhodenko
* Shyam Saladi
* ``@rht``
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
Version 0.50.1 (Jun 24, 2020)
-----------------------------
This is a bugfix release for 0.50.0, it fixes a critical bug in error reporting
and a number of other smaller issues:
* PR #5861: Added except for possible Windows get_terminal_size exception
* PR #5876: Improve undefined variable error message
* PR #5884: Update the deprecation notices for 0.50.1
* PR #5889: Fixes literally not forcing re-dispatch for inline='always'
* PR #5912: Fix bad attr access on certain typing templates breaking exceptions.
* PR #5918: Fix cuda test due to #5876
Authors:
* ``@pepping_dore``
* Lucio Fernandez-Arjona
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
Version 0.50.0 (Jun 10, 2020)
-----------------------------
This is a more usual release in comparison to the others that have been made in
the last six months. It comprises the result of a number of maintenance tasks
along with some new features and a lot of bug fixes.
Highlights of core feature changes include:
* The compilation chain is now based on LLVM 9.
* The error handling and reporting system has been improved to reduce the size
of error messages, and also improve quality and specificity.
* The CUDA target has more stream constructors available and a new function for
compiling to PTX without linking and loading the code to a device. Further,
the macro-based system for describing CUDA threads and blocks has been
replaced with standard typing and lowering implementations, for improved
debugging and extensibility.
IMPORTANT: The backwards compatibility shim, that was present in 0.49.x to
accommodate the refactoring of Numba's internals, has been removed. If a module
is imported from a moved location an ``ImportError`` will occur.
General Enhancements:
* PR #5060: Enables np.sum for timedelta64
* PR #5225: Adjust interpreter to make conditionals predicates via bool() call.
* PR #5506: Jitclass static methods
* PR #5580: Revert shim
* PR #5591: Fix #5525 Add figure for total memory to ``numba -s`` output.
* PR #5616: Simplify the ufunc kernel registration
* PR #5617: Remove /examples from the Numba repo.
* PR #5673: Fix inliners to run all passes on IR and clean up correctly.
* PR #5700: Make it easier to understand type inference: add SSA dump, use for
``DEBUG_TYPEINFER``
* PR #5702: Fixes for LLVM 9
* PR #5722: Improve error messages.
* PR #5758: Support NumPy 1.18
Fixes:
* PR #5390: add error handling for lookup_module
* PR #5464: Jitclass drops annotations to avoid error
* PR #5478: Fix #5471. Issue with omitted type not recognized as literal value.
* PR #5517: Fix numba.typed.List extend for singleton and empty iterable
* PR #5549: Check type getitem
* PR #5568: Add skip to entrypoint test on windows
* PR #5581: Revert #5568
* PR #5602: Fix segfault caused by pop from numba.typed.List
* PR #5645: Fix SSA redundant CFG computation
* PR #5686: Fix issue with SSA not minimal
* PR #5689: Fix bug in unified_function_type (issue 5685)
* PR #5694: Skip part of slice array analysis if any part is not analyzable.
* PR #5697: Fix usedef issue with parfor loopnest variables.
* PR #5705: A fix for cases where SSA looks like a reduction variable.
* PR #5714: Fix bug in test
* PR #5717: Initialise Numba extensions ahead of any compilation starting.
* PR #5721: Fix array iterator layout.
* PR #5738: Unbreak master on buildfarm
* PR #5757: Force LLVM to use ZMM registers for vectorization.
* PR #5764: fix flake8 errors
* PR #5768: Interval example: fix import
* PR #5781: Moving record array examples to a test module
* PR #5791: Fix up no cgroups problem
* PR #5795: Restore refct removal pass and make it strict
* PR #5807: Skip failing test on POWER8 due to PPC CTR Loop problem.
* PR #5812: Fix side issue from #5792, @overload inliner cached IR being
mutated.
* PR #5815: Pin llvmlite to 0.33
* PR #5833: Fixes the source location appearing incorrectly in error messages.
CUDA Enhancements/Fixes:
* PR #5347: CUDA: Provide more stream constructors
* PR #5388: CUDA: Fix OOB write in test_round{f4,f8}
* PR #5437: Fix #5429: Exception using ``.get_ipc_handle(...)`` on array from
``as_cuda_array(...)``
* PR #5481: CUDA: Replace macros with typing and lowering implementations
* PR #5556: CUDA: Make atomic semantics match Python / NumPy, and fix #5458
* PR #5558: CUDA: Only release primary ctx if retained
* PR #5561: CUDA: Add function for compiling to PTX (+ other small fixes)
* PR #5573: CUDA: Skip tests under cuda-memcheck that hang it
* PR #5578: Implement math.modf for CUDA target
* PR #5704: CUDA Eager compilation: Fix max_registers kwarg
* PR #5718: CUDA lib path tests: unset CUDA_PATH when CUDA_HOME unset
* PR #5800: Fix LLVM 9 IR for NVVM
* PR #5803: CUDA Update expected error messages to fix #5797
Documentation Updates:
* PR #5546: DOC: Add documentation about cost model to inlining notes.
* PR #5653: Update doc with respect to try-finally case
Enhancements from user contributed PRs (with thanks!):
* Elias Kuthe fixed in issue with imports in the Interval example in #5768
* Eric Wieser Simplified the ufunc kernel registration mechanism in #5616
* Ethan Pronovost patched a problem with ``__annotations__`` in ``jitclass`` in
#5464, fixed a bug that lead to infinite loops in Numba's ``Type.__getitem__``
in #5549, fixed a bug in ``np.arange`` testing in #5714 and added support for
``@staticmethod`` to ``jitclass`` in #5506.
* Gabriele Gemmi implemented ``math.modf`` for the CUDA target in #5578
* Graham Markall contributed many patches, largely to the CUDA target, as
follows:
* #5347: CUDA: Provide more stream constructors
* #5388: CUDA: Fix OOB write in test_round{f4,f8}
* #5437: Fix #5429: Exception using ``.get_ipc_handle(...)`` on array from
``as_cuda_array(...)``
* #5481: CUDA: Replace macros with typing and lowering implementations
* #5556: CUDA: Make atomic semantics match Python / NumPy, and fix #5458
* #5558: CUDA: Only release primary ctx if retained
* #5561: CUDA: Add function for compiling to PTX (+ other small fixes)
* #5573: CUDA: Skip tests under cuda-memcheck that hang it
* #5648: Unset the memory manager after EMM Plugin tests
* #5700: Make it easier to understand type inference: add SSA dump, use for
``DEBUG_TYPEINFER``
* #5704: CUDA Eager compilation: Fix max_registers kwarg
* #5718: CUDA lib path tests: unset CUDA_PATH when CUDA_HOME unset
* #5800: Fix LLVM 9 IR for NVVM
* #5803: CUDA Update expected error messages to fix #5797
* Guilherme Leobas updated the documentation surrounding try-finally in #5653
* Hameer Abbasi added documentation about the cost model to the notes on
inlining in #5546
* Jacques Gaudin rewrote ``numba -s`` to produce and consume a dictionary of
output about the current system in #5591
* James Bourbeau Updated min/argmin and max/argmax to handle non-leading nans
(via #5758)
* Lucio Fernandez-Arjona moved the record array examples to a test module in
#5781 and added ``np.timedelta64`` handling to ``np.sum`` in #5060
* Pearu Peterson Fixed a bug in unified_function_type in #5689
* Sergey Pokhodenko fixed an issue impacting LLVM 10 regarding vectorization
widths on Intel SkyLake processors in #5757
* Shan Sikdar added error handling for ``lookup_module`` in #5390
* @toddrme2178 add CI testing for NumPy 1.18 (via #5758)
Authors:
* Elias Kuthe
* Eric Wieser
* Ethan Pronovost
* Gabriele Gemmi
* Graham Markall
* Guilherme Leobas
* Hameer Abbasi
* Jacques Gaudin
* James Bourbeau
* Lucio Fernandez-Arjona
* Pearu Peterson
* Sergey Pokhodenko
* Shan Sikdar
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* ``@toddrme2178``
* Valentin Haenel (core dev)
Version 0.49.1 (May 7, 2020)
----------------------------
This is a bugfix release for 0.49.0, it fixes some residual issues with SSA
form, a critical bug in the branch pruning logic and a number of other smaller
issues:
* PR #5587: Fixed #5586 Threading Implementation Typos
* PR #5592: Fixes #5583 Remove references to cffi_support from docs and examples
* PR #5614: Fix invalid type in resolve for comparison expr in parfors.
* PR #5624: Fix erroneous rewrite of predicate to bit const on prune.
* PR #5627: Fixes #5623, SSA local def scan based on invalid equality
assumption.
* PR #5629: Fixes naming error in array_exprs
* PR #5630: Fix #5570. Incorrect race variable detection due to SSA naming.
* PR #5638: Make literal_unroll function work as a freevar.
* PR #5648: Unset the memory manager after EMM Plugin tests
* PR #5651: Fix some SSA issues
* PR #5652: Pin to sphinx=2.4.4 to avoid problem with C declaration
* PR #5658: Fix unifying undefined first class function types issue
* PR #5669: Update example in 5m guide WRT SSA type stability.
* PR #5676: Restore ``numba.types`` as public API
Authors:
* Graham Markall
* Juan Manuel Cruz Martinez
* Pearu Peterson
* Sean Law
* Stuart Archibald (core dev)
* Siu Kwan Lam (core dev)
Version 0.49.0 (Apr 16, 2020)
-----------------------------
This release is very large in terms of code changes. Large scale removal of
unsupported Python and NumPy versions has taken place along with a significant
amount of refactoring to simplify the Numba code base to make it easier for
contributors. Numba's intermediate representation has also undergone some
important changes to solve a number of long standing issues. In addition some
new features have been added and a large number of bugs have been fixed!
IMPORTANT: In this release Numba's internals have moved about a lot. A backwards
compatibility "shim" is provided for this release so as to not immediately break
projects using Numba's internals. If a module is imported from a moved location
the shim will issue a deprecation warning and suggest how to update the import
statement for the new location. The shim will be removed in 0.50.0!
Highlights of core feature changes include:
* Removal of all Python 2 related code and also updating the minimum supported
Python version to 3.6, the minimum supported NumPy version to 1.15 and the
minimum supported SciPy version to 1.0. (Stuart Archibald).
* Refactoring of the Numba code base. The code is now organised into submodules
by functionality. This cleans up Numba's top level namespace.
(Stuart Archibald).
* Introduction of an ``ir.Del`` free static single assignment form for Numba's
intermediate representation (Siu Kwan Lam and Stuart Archibald).
* An OpenMP-like thread masking API has been added for use with code using the
parallel CPU backends (Aaron Meurer and Stuart Archibald).
* For the CUDA target, all kernel launches now require a configuration, this
preventing accidental launches of kernels with the old default of a single
thread in a single block. The hard-coded autotuner is also now removed, such
tuning is deferred to CUDA API calls that provide the same functionality
(Graham Markall).
* The CUDA target also gained an External Memory Management plugin interface to
allow Numba to use another CUDA-aware library for all memory allocations and
deallocations (Graham Markall).
* The Numba Typed List container gained support for construction from iterables
(Valentin Haenel).
* Experimental support was added for first-class function types
(Pearu Peterson).
Enhancements from user contributed PRs (with thanks!):
* Aaron Meurer added support for thread masking at runtime in #4615.
* Andreas Sodeur fixed a long standing bug that was preventing ``cProfile`` from
working with Numba JIT compiled functions in #4476.
* Arik Funke fixed error messages in ``test_array_reductions`` (#5278), fixed
an issue with test discovery (#5239), made it so the documentation would build
again on windows (#5453) and fixed a nested list problem in the docs in #5489.
* Antonio Russo fixed a SyntaxWarning in #5252.
* Eric Wieser added support for inferring the types of object arrays (#5348) and
iterating over 2D arrays (#5115), also fixed some compiler warnings due to
missing (void) in #5222. Also helped improved the "shim" and associated
warnings in #5485, #5488, #5498 and partly #5532.
* Ethan Pronovost fixed a problem with the shim erroneously warning for jitclass
use in #5454 and also prevented illegal return values in jitclass ``__init__``
in #5505.
* Gabriel Majeri added SciPy 2019 talks to the docs in #5106.
* Graham Markall changed the Numba HTML documentation theme to resolve a number
of long standing issues in #5346. Also contributed were a large number of CUDA
enhancements and fixes, namely:
* #5519: CUDA: Silence the test suite - Fix #4809, remove autojit, delete
prints
* #5443: Fix #5196: Docs: assert in CUDA only enabled for debug
* #5436: Fix #5408: test_set_registers_57 fails on Maxwell
* #5423: Fix #5421: Add notes on printing in CUDA kernels
* #5400: Fix #4954, and some other small CUDA testsuite fixes
* #5328: NBEP 7: External Memory Management Plugin Interface
* #5144: Fix #4875: Make #2655 test with debug expect to pass
* #5323: Document lifetime semantics of CUDA Array Interface
* #5061: Prevent kernel launch with no configuration, remove autotuner
* #5099: Fix #5073: Slices of dynamic shared memory all alias
* #5136: CUDA: Enable asynchronous operations on the default stream
* #5085: Support other itemsizes with view
* #5059: Docs: Explain how to use Memcheck with Numba, fixups in CUDA
documentation
* #4957: Add notes on overwriting gufunc inputs to docs
* Greg Jennings fixed an issue with ``np.random.choice`` not acknowledging the
RNG seed correctly in #3897/#5310.
* Guilherme Leobas added support for ``np.isnat`` in #5293.
* Henry Schreiner made the llvmlite requirements more explicit in
requirements.txt in #5150.
* Ivan Butygin helped fix an issue with parfors sequential lowering in
#5114/#5250.
* Jacques Gaudin fixed a bug for Python >= 3.8 in ``numba -s`` in #5548.
* Jim Pivarski added some hints for debugging entry points in #5280.
* John Kirkham added ``numpy.dtype`` coercion for the ``dtype`` argument to CUDA
device arrays in #5252.
* Leo Fang added a list of libraries that support ``__cuda_array_interface__``
in #5104.
* Lucio Fernandez-Arjona added ``getitem`` for the NumPy record type when the
index is a ``StringLiteral`` type in #5182 and improved the documentation
rendering via additions to the TOC and removal of numbering in #5450.
* Mads R. B. Kristensen fixed an issue with ``__cuda_array_interface__`` not
requiring the context in #5189.
* Marcin Tolysz added support for nested modules in AOT compilation in #5174.
* Mike Williams fixed some issues with NumPy records and ``getitem`` in the CUDA
simulator in #5343.
* Pearu Peterson added experimental support for first-class function types in
#5287 (and fixes in #5459, #5473/#5429, and #5557).
* Ravi Teja Gutta added support for ``np.flip`` in #4376/#5313.
* Rohit Sanjay fixed an issue with type refinement for unicode input supplied to
typed-list ``extend()`` (#5295) and fixed unicode ``.strip()`` to strip all
whitespace characters in #5213.
* Vladimir Lukyanov fixed an awkward bug in ``typed.dict`` in #5361, added a fix
to ensure the LLVM and assembly dumps are highlighted correctly in #5357 and
implemented a Numba IR Lexer and added highlighting to Numba IR dumps in
#5333.
* hdf fixed an issue with the ``boundscheck`` flag in the CUDA jit target in
#5257.
General Enhancements:
* PR #4615: Allow masking threads out at runtime
* PR #4798: Add branch pruning based on raw predicates.
* PR #5115: Add support for iterating over 2D arrays
* PR #5117: Implement ord()/chr()
* PR #5122: Remove Python 2.
* PR #5127: Calling convention adaptor for boxer/unboxer to call jitcode
* PR #5151: implement None-typed typed-list
* PR #5174: Nested modules https://github.com/numba/numba/issues/4739
* PR #5182: Add getitem for Record type when index is StringLiteral
* PR #5185: extract code-gen utilities from closures
* PR #5197: Refactor Numba, part I
* PR #5210: Remove more unsupported Python versions from build tooling.
* PR #5212: Adds support for viewing the CFG of the ELF disassembly.
* PR #5227: Immutable typed-list
* PR #5231: Added support for ``np.asarray`` to be used with
``numba.typed.List``
* PR #5235: Added property ``dtype`` to ``numba.typed.List``
* PR #5272: Refactor parfor: split up ParforPass
* PR #5281: Make IR ir.Del free until legalized.
* PR #5287: First-class function type
* PR #5293: np.isnat
* PR #5294: Create typed-list from iterable
* PR #5295: refine typed-list on unicode input to extend
* PR #5296: Refactor parfor: better exception from passes
* PR #5308: Provide ``numba.extending.is_jitted``
* PR #5320: refactor array_analysis
* PR #5325: Let literal_unroll accept types.Named*Tuple
* PR #5330: refactor common operation in parfor lowering into a new util
* PR #5333: Add: highlight Numba IR dump
* PR #5342: Support for tuples passed to parfors.
* PR #5348: Add support for inferring the types of object arrays
* PR #5351: SSA again
* PR #5352: Add shim to accommodate refactoring.
* PR #5356: implement allocated parameter in njit
* PR #5369: Make test ordering more consistent across feature availability
* PR #5428: Wip/deprecate jitclass location
* PR #5441: Additional changes to first class function
* PR #5455: Move to llvmlite 0.32.*
* PR #5457: implement repr for untyped lists
Fixes:
* PR #4476: Another attempt at fixing frame injection in the dispatcher tracing
path
* PR #4942: Prevent some parfor aliasing. Rename copied function var to prevent
recursive type locking.
* PR #5092: Fix 5087
* PR #5150: More explicit llvmlite requirement in requirements.txt
* PR #5172: fix version spec for llvmlite
* PR #5176: Normalize kws going into fold_arguments.
* PR #5183: pass 'inline' explicitly to overload
* PR #5193: Fix CI failure due to missing files when installed
* PR #5213: Fix ``.strip()`` to strip all whitespace characters
* PR #5216: Fix namedtuple mistreated by dispatcher as simple tuple
* PR #5222: Fix compiler warnings due to missing (void)
* PR #5232: Fixes a bad import that breaks master
* PR #5239: fix test discovery for unittest
* PR #5247: Continue PR #5126
* PR #5250: Part fix/5098
* PR #5252: Trivially fix SyntaxWarning
* PR #5276: Add prange variant to has_no_side_effect.
* PR #5278: fix error messages in test_array_reductions
* PR #5310: PR #3897 continued
* PR #5313: Continues PR #4376
* PR #5318: Remove AUTHORS file reference from MANIFEST.in
* PR #5327: Add warning if FNV hashing is found as the default for CPython.
* PR #5338: Remove refcount pruning pass
* PR #5345: Disable test failing due to removed pass.
* PR #5357: Small fix to have llvm and asm highlighted properly
* PR #5361: 5081 typed.dict
* PR #5431: Add tolerance to numba extension module entrypoints.
* PR #5432: Fix code causing compiler warnings.
* PR #5445: Remove undefined variable
* PR #5454: Don't warn for numba.experimental.jitclass
* PR #5459: Fixes issue 5448
* PR #5480: Fix for #5477, literal_unroll KeyError searching for getitems
* PR #5485: Show the offending module in "no direct replacement" error message
* PR #5488: Add missing ``numba.config`` shim
* PR #5495: Fix missing null initializer for variable after phi strip
* PR #5498: Make the shim deprecation warnings work on python 3.6 too
* PR #5505: Better error message if __init__ returns value
* PR #5527: Attempt to fix #5518
* PR #5529: PR #5473 continued
* PR #5532: Make ``numba.<mod>`` available without an import
* PR #5542: Fixes RC2 module shim bug
* PR #5548: Fix #5537 Removed reference to ``platform.linux_distribution``
* PR #5555: Fix #5515 by reverting changes to ArrayAnalysis
* PR #5557: First-class function call cannot use keyword arguments
* PR #5569: Fix RewriteConstGetitems not registering calltype for new expr
* PR #5571: Pin down llvmlite requirement
CUDA Enhancements/Fixes:
* PR #5061: Prevent kernel launch with no configuration, remove autotuner
* PR #5085: Support other itemsizes with view
* PR #5099: Fix #5073: Slices of dynamic shared memory all alias
* PR #5104: Add a list of libraries that support __cuda_array_interface__
* PR #5136: CUDA: Enable asynchronous operations on the default stream
* PR #5144: Fix #4875: Make #2655 test with debug expect to pass
* PR #5189: __cuda_array_interface__ not requiring context
* PR #5253: Coerce ``dtype`` to ``numpy.dtype``
* PR #5257: boundscheck fix
* PR #5319: Make user facing error string use abs path not rel.
* PR #5323: Document lifetime semantics of CUDA Array Interface
* PR #5328: NBEP 7: External Memory Management Plugin Interface
* PR #5343: Fix cuda spoof
* PR #5400: Fix #4954, and some other small CUDA testsuite fixes
* PR #5436: Fix #5408: test_set_registers_57 fails on Maxwell
* PR #5519: CUDA: Silence the test suite - Fix #4809, remove autojit, delete
prints
Documentation Updates:
* PR #4957: Add notes on overwriting gufunc inputs to docs
* PR #5059: Docs: Explain how to use Memcheck with Numba, fixups in CUDA
documentation
* PR #5106: Add SciPy 2019 talks to docs
* PR #5147: Update master for 0.48.0 updates
* PR #5155: Explain what inlining at Numba IR level will do
* PR #5161: Fix README.rst formatting
* PR #5207: Remove AUTHORS list
* PR #5249: fix target path for See also
* PR #5262: fix typo in inlining docs
* PR #5270: fix 'see also' in typeddict docs
* PR #5280: Added some hints for debugging entry points.
* PR #5297: Update docs with intro to {g,}ufuncs.
* PR #5326: Update installation docs with OpenMP requirements.
* PR #5346: Docs: use sphinx_rtd_theme
* PR #5366: Remove reference to Python 2.7 in install check output
* PR #5423: Fix #5421: Add notes on printing in CUDA kernels
* PR #5438: Update package deps for doc building.
* PR #5440: Bump deprecation notices.
* PR #5443: Fix #5196: Docs: assert in CUDA only enabled for debug
* PR #5450: Docs: remove numbers and add titles to TOC
* PR #5453: fix building docs on windows
* PR #5489: docs: fix rendering of nested bulleted list
CI updates:
* PR #5314: Update the image used in Azure CI for OSX.
* PR #5360: Remove Travis CI badge.
Authors:
* Aaron Meurer
* Andreas Sodeur
* Antonio Russo
* Arik Funke
* Eric Wieser
* Ethan Pronovost
* Gabriel Majeri
* Graham Markall
* Greg Jennings
* Guilherme Leobas
* hdf
* Henry Schreiner
* Ivan Butygin
* Jacques Gaudin
* Jim Pivarski
* John Kirkham
* Leo Fang
* Lucio Fernandez-Arjona
* Mads R. B. Kristensen
* Marcin Tolysz
* Mike Williams
* Pearu Peterson
* Ravi Teja Gutta
* Rohit Sanjay
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
* Vladimir Lukyanov
Version 0.48.0 (Jan 27, 2020)
-----------------------------
This release is particularly small as it was present to catch anything that
missed the 0.47.0 deadline (the deadline deliberately coincided with the end of
support for Python 2.7). The next release will be considerably larger.
The core changes in this release are dominated by the start of the clean up
needed for the end of Python 2.7 support, improvements to the CUDA target and
support for numerous additional unicode string methods.
Enhancements from user contributed PRs (with thanks!):
* Brian Wignall fixed more spelling typos in #4998.
* Denis Smirnov added support for string methods ``capitalize`` (#4823),
``casefold`` (#4824), ``swapcase`` (#4825), ``rsplit`` (#4834), ``partition``
(#4845) and ``splitlines`` (#4849).
* Elena Totmenina extended support for string methods ``startswith`` (#4867) and
added ``endswith`` (#4868).
* Eric Wieser made ``type_callable`` return the decorated function itself in
#4760
* Ethan Pronovost added support for ``np.argwhere`` in #4617
* Graham Markall contributed a large number of CUDA enhancements and fixes,
namely:
* #5068: Remove Python 3.4 backports from utils
* #4975: Make ``device_array_like`` create contiguous arrays (Fixes #4832)
* #5023: Don't launch ForAll kernels with 0 elements (Fixes #5017)
* #5016: Fix various issues in CUDA library search (Fixes #4979)
* #5014: Enable use of records and bools for shared memory, remove ddt, add
additional transpose tests
* #4964: Fix #4628: Add more appropriate typing for CUDA device arrays
* #5007: test_consuming_strides: Keep dev array alive
* #4997: State that CUDA Toolkit 8.0 required in docs
* James Bourbeau added the Python 3.8 classifier to setup.py in #5027.
* John Kirkham added a clarification to the ``__cuda_array_interface__``
documentation in #5049.
* Leo Fang Fixed an indexing problem in ``dummyarray`` in #5012.
* Marcel Bargull fixed a build and test issue for Python 3.8 in #5029.
* Maria Rubtsov added support for string methods ``isdecimal`` (#4842),
``isdigit`` (#4843), ``isnumeric`` (#4844) and ``replace`` (#4865).
General Enhancements:
* PR #4760: Make type_callable return the decorated function
* PR #5010: merge string prs
This merge PR included the following:
* PR #4823: Implement str.capitalize() based on CPython
* PR #4824: Implement str.casefold() based on CPython
* PR #4825: Implement str.swapcase() based on CPython
* PR #4834: Implement str.rsplit() based on CPython
* PR #4842: Implement str.isdecimal
* PR #4843: Implement str.isdigit
* PR #4844: Implement str.isnumeric
* PR #4845: Implement str.partition() based on CPython
* PR #4849: Implement str.splitlines() based on CPython
* PR #4865: Implement str.replace
* PR #4867: Functionality extension str.startswith() based on CPython
* PR #4868: Add functionality for str.endswith()
* PR #5039: Disable help messages.
* PR #4617: Add coverage for ``np.argwhere``
Fixes:
* PR #4724: Only use lives (and not aliases) to create post parfor live set.
* PR #4998: Fix more spelling typos
* PR #5024: Propagate semantic constants ahead of static rewrites.
* PR #5027: Add Python 3.8 classifier to setup.py
* PR #5046: Update setup.py and buildscripts for dependency requirements
* PR #5053: Convert from arrays to names in define() and don't invalidate for
multiple consistent defines.
* PR #5058: Permit mixed int types in wrap_index
* PR #5078: Catch the use of global typed-list in JITed functions
* PR #5092: Fix #5087, bug in bytecode analysis.
CUDA Enhancements/Fixes:
* PR #4964: Fix #4628: Add more appropriate typing for CUDA device arrays
* PR #4975: Make ``device_array_like`` create contiguous arrays (Fixes #4832)
* PR #4997: State that CUDA Toolkit 8.0 required in docs
* PR #5007: test_consuming_strides: Keep dev array alive
* PR #5012: Fix IndexError when accessing the "-1" element of dummyarray
* PR #5014: Enable use of records and bools for shared memory, remove ddt, add
additional transpose tests
* PR #5016: Fix various issues in CUDA library search (Fixes #4979)
* PR #5023: Don't launch ForAll kernels with 0 elements (Fixes #5017)
* PR #5068: Remove Python 3.4 backports from utils
Documentation Updates:
* PR #5049: Clarify what dictionary means
* PR #5062: Update docs for updated version requirements
* PR #5090: Update deprecation notices for 0.48.0
CI updates:
* PR #5029: Install optional dependencies for Python 3.8 tests
* PR #5040: Drop Py2.7 and Py3.5 from public CI
* PR #5048: Fix CI py38
Authors:
* Brian Wignall
* Denis Smirnov
* Elena Totmenina
* Eric Wieser
* Ethan Pronovost
* Graham Markall
* James Bourbeau
* John Kirkham
* Leo Fang
* Marcel Bargull
* Maria Rubtsov
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
Version 0.47.0 (Jan 2, 2020)
-----------------------------
This release expands the capability of Numba in a number of important areas and
is also significant as it is the last major point release with support for
Python 2 and Python 3.5 included. The next release (0.48.0) will be for Python
3.6+ only! (This follows NumPy's deprecation schedule as specified in
`NEP 29 <https://numpy.org/neps/nep-0029-deprecation_policy.html>`_.)
Highlights of core feature changes include:
* Full support for Python 3.8 (Siu Kwan Lam)
* Opt-in bounds checking (Aaron Meurer)
* Support for ``map``, ``filter`` and ``reduce`` (Stuart Archibald)
Intel also kindly sponsored research and development that lead to some exciting
new features:
* Initial support for basic ``try``/``except`` use (Siu Kwan Lam)
* The ability to pass functions created from closures/lambdas as arguments
(Stuart Archibald)
* ``sorted`` and ``list.sort()`` now accept the ``key`` argument (Stuart
Archibald and Siu Kwan Lam)
* A new compiler pass triggered through the use of the function
``numba.literal_unroll`` which permits iteration over heterogeneous tuples
and constant lists of constants. (Stuart Archibald)
Enhancements from user contributed PRs (with thanks!):
* Ankit Mahato added a reference to a new talk on Numba at PyCon India 2019 in
#4862
* Brian Wignall kindly fixed some spelling mistakes and typos in #4909
* Denis Smirnov wrote numerous methods to considerable enhance string support
including:
* ``str.rindex()`` in #4861
* ``str.isprintable()`` in #4836
* ``str.index()`` in #4860
* ``start/end`` parameters for ``str.find()`` in #4866
* ``str.isspace()`` in #4835
* ``str.isidentifier()`` #4837
* ``str.rpartition()`` in #4841
* ``str.lower()`` and ``str.islower()`` in #4651
* Elena Totmenina implemented both ``str.isalnum()``, ``str.isalpha()`` and
``str.isascii`` in #4839, #4840 and #4847 respectively.
* Eric Larson fixed a bug in literal comparison in #4710
* Ethan Pronovost updated the ``np.arange`` implementation in #4770 to allow
the use of the ``dtype`` key word argument and also added ``bool``
implementations for several types in #4715.
* Graham Markall fixed some issues with the CUDA target, namely:
* #4931: Added physical limits for CC 7.0 / 7.5 to CUDA autotune
* #4934: Fixed bugs in TestCudaWarpOperations
* #4938: Improved errors / warnings for the CUDA vectorize decorator
* Guilherme Leobas fixed a typo in the ``urem`` implementation in #4667
* Isaac Virshup contributed a number of patches that fixed bugs, added support
for more NumPy functions and enhanced Python feature support. These
contributions included:
* #4729: Allow array construction with mixed type shape tuples
* #4904: Implementing ``np.lcm``
* #4780: Implement np.gcd and math.gcd
* #4779: Make slice constructor more similar to python.
* #4707: Added support for slice.indices
* #4578: Clarify numba ufunc supported features
* James Bourbeau fixed some issues with tooling, #4794 add ``setuptools`` as a
dependency and #4501 add pre-commit hooks for ``flake8`` compliance.
* Leo Fang made ``numba.dummyarray.Array`` iterable in #4629
* Marc Garcia fixed the ``numba.jit`` parameter name signature_or_function in
#4703
* Marcelo Duarte Trevisani patched the llvmlite requirement to ``>=0.30.0`` in
#4725
* Matt Cooper fixed a long standing CI problem in #4737 by remove maxParallel
* Matti Picus fixed an issue with ``collections.abc`` in #4734
from Azure Pipelines.
* Rob Ennis patched a bug in ``np.interp`` ``float32`` handling in #4911
* VDimir fixed a bug in array transposition layouts in #4777 and re-enabled and
fixed some idle tests in #4776.
* Vyacheslav Smirnov Enable support for `str.istitle()`` in #4645
General Enhancements:
* PR #4432: Bounds checking
* PR #4501: Add pre-commit hooks
* PR #4536: Handle kw args in inliner when callee is a function
* PR #4599: Permits closures to become functions, enables map(), filter()
* PR #4611: Implement method title() for unicode based on Cpython
* PR #4645: Enable support for istitle() method for unicode string
* PR #4651: Implement str.lower() and str.islower()
* PR #4652: Implement str.rfind()
* PR #4695: Refactor `overload*` and support `jit_options` and `inline`
* PR #4707: Added support for slice.indices
* PR #4715: Add `bool` overload for several types
* PR #4729: Allow array construction with mixed type shape tuples
* PR #4755: Python3.8 support
* PR #4756: Add parfor support for ndarray.fill.
* PR #4768: Update typeconv error message to ask for sys.executable.
* PR #4770: Update `np.arange` implementation with `@overload`
* PR #4779: Make slice constructor more similar to python.
* PR #4780: Implement np.gcd and math.gcd
* PR #4794: Add setuptools as a dependency
* PR #4802: put git hash into build string
* PR #4803: Better compiler error messages for improperly used reduction
variables.
* PR #4817: Typed list implement and expose allocation
* PR #4818: Typed list faster copy
* PR #4835: Implement str.isspace() based on CPython
* PR #4836: Implement str.isprintable() based on CPython
* PR #4837: Implement str.isidentifier() based on CPython
* PR #4839: Implement str.isalnum() based on CPython
* PR #4840: Implement str.isalpha() based on CPython
* PR #4841: Implement str.rpartition() based on CPython
* PR #4847: Implement str.isascii() based on CPython
* PR #4851: Add graphviz output for FunctionIR
* PR #4854: Python3.8 looplifting
* PR #4858: Implement str.expandtabs() based on CPython
* PR #4860: Implement str.index() based on CPython
* PR #4861: Implement str.rindex() based on CPython
* PR #4866: Support params start/end for str.find()
* PR #4874: Bump to llvmlite 0.31
* PR #4896: Specialise arange dtype on arch + python version.
* PR #4902: basic support for try except
* PR #4904: Implement np.lcm
* PR #4910: loop canonicalisation and type aware tuple unroller/loop body
versioning passes
* PR #4961: Update hash(tuple) for Python 3.8.
* PR #4977: Implement sort/sorted with key.
* PR #4987: Add `is_internal` property to all Type classes.
Fixes:
* PR #4090: Update to LLVM8 memset/memcpy intrinsic
* PR #4582: Convert sub to add and div to mul when doing the reduction across
the per-thread reduction array.
* PR #4648: Handle 0 correctly as slice parameter.
* PR #4660: Remove multiply defined variables from all blocks' equivalence sets.
* PR #4672: Fix pickling of dufunc
* PR #4710: BUG: Comparison for literal
* PR #4718: Change get_call_table to support intermediate Vars.
* PR #4725: Requires llvmlite >=0.30.0
* PR #4734: prefer to import from collections.abc
* PR #4736: fix flake8 errors
* PR #4776: Fix and enable idle tests from test_array_manipulation
* PR #4777: Fix transpose output array layout
* PR #4782: Fix issue with SVML (and knock-on function resolution effects).
* PR #4785: Treat 0d arrays like scalars.
* PR #4787: fix missing incref on flags
* PR #4789: fix typos in numba/targets/base.py
* PR #4791: fix typos
* PR #4811: fix spelling in now-failing tests
* PR #4852: windowing test should check equality only up to double precision
errors
* PR #4881: fix refining list by using extend on an iterator
* PR #4882: Fix return type in arange and zero step size handling.
* PR #4885: suppress spurious RuntimeWarning about ufunc sizes
* PR #4891: skip the xfail test for now. Py3.8 CFG refactor seems to have
changed the test case
* PR #4892: regex needs to accept singular form of "argument"
* PR #4901: fix typed list equals
* PR #4909: Fix some spelling typos
* PR #4911: np.interp bugfix for float32 handling
* PR #4920: fix creating list with JIT disabled
* PR #4921: fix creating dict with JIT disabled
* PR #4935: Better handling of prange with multiple reductions on the same
variable.
* PR #4946: Improve the error message for `raise <string>`.
* PR #4955: Move overload of literal_unroll to avoid circular dependency that
breaks Python 2.7
* PR #4962: Fix test error on windows
* PR #4973: Fixes a bug in the relabelling logic in literal_unroll.
* PR #4978: Fix overload_method problem with stararg
* PR #4981: Add ind_to_const to enable fewer equivalence classes.
* PR #4991: Continuation of #4588 (Let dead code removal handle removing more of
the unneeded code after prange conversion to parfor)
* PR #4994: Remove xfail for test which has since had underlying issue fixed.
* PR #5018: Fix #5011.
* PR #5019: skip pycc test on Python 3.8 + macOS because of distutils issue
CUDA Enhancements/Fixes:
* PR #4629: Make numba.dummyarray.Array iterable
* PR #4675: Bump cuda array interface to version 2
* PR #4741: Update choosing the "CUDA_PATH" for windows
* PR #4838: Permit ravel('A') for contig device arrays in CUDA target
* PR #4931: Add physical limits for CC 7.0 / 7.5 to autotune
* PR #4934: Fix fails in TestCudaWarpOperations
* PR #4938: Improve errors / warnings for cuda vectorize decorator
Documentation Updates:
* PR #4418: Directed graph task roadmap
* PR #4578: Clarify numba ufunc supported features
* PR #4655: fix sphinx build warning
* PR #4667: Fix typo on urem implementation
* PR #4669: Add link to ParallelAccelerator paper.
* PR #4703: Fix numba.jit parameter name signature_or_function
* PR #4862: Addition of PyCon India 2019 talk on Numba
* PR #4947: Document jitclass with numba.typed use.
* PR #4958: Add docs for `try..except`
* PR #4993: Update deprecations for 0.47
CI Updates:
* PR #4737: remove maxParallel from Azure Pipelines
* PR #4767: pin to 2.7.16 for py27 on osx
* PR #4781: WIP/runtest cf pytest
Authors:
* Aaron Meurer
* Ankit Mahato
* Brian Wignall
* Denis Smirnov
* Ehsan Totoni (core dev)
* Elena Totmenina
* Eric Larson
* Ethan Pronovost
* Giovanni Cavallin
* Graham Markall
* Guilherme Leobas
* Isaac Virshup
* James Bourbeau
* Leo Fang
* Marc Garcia
* Marcelo Duarte Trevisani
* Matt Cooper
* Matti Picus
* Rob Ennis
* Rujal Desai
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* VDimir
* Valentin Haenel (core dev)
* Vyacheslav Smirnov
Version 0.46.0
--------------
This release significantly reworked one of the main parts of Numba, the compiler
pipeline, to make it more extensible and easier to use. The purpose of this was
to continue enhancing Numba's ability for use as a compiler toolkit. In a
similar vein, Numba now has an extension registration mechanism to allow other
Numba-using projects to automatically have their Numba JIT compilable functions
discovered. There were also a number of other related compiler toolkit
enhancement added along with some more NumPy features and a lot of bug fixes.
This release has updated the CUDA Array Interface specification to version 2,
which clarifies the `strides` attribute for C-contiguous arrays and specifies
the treatment for zero-size arrays. The implementation in Numba has been
changed and may affect downstream packages relying on the old behavior
(see issue #4661).
Enhancements from user contributed PRs (with thanks!):
* Aaron Meurer fixed some Python issues in the code base in #4345 and #4341.
* Ashwin Srinath fixed a CUDA performance bug via #4576.
* Ethan Pronovost added support for triangular indices functions in #4601 (the
NumPy functions ``tril_indices``, ``tril_indices_from``, ``triu_indices``, and
``triu_indices_from``).
* Gerald Dalley fixed a tear down race occurring in Python 2.
* Gregory R. Lee fixed the use of deprecated ``inspect.getargspec``.
* Guilherme Leobas contributed five PRs, adding support for ``np.append`` and
``np.count_nonzero`` in #4518 and #4386. The typed List was fixed to accept
unsigned integers in #4510. #4463 made a fix to NamedTuple internals and #4397
updated the docs for ``np.sum``.
* James Bourbeau added a new feature to permit the automatic application of the
`jit` decorator to a whole module in #4331. Also some small fixes to the docs
and the code base were made in #4447 and #4433, and a fix to inplace array
operation in #4228.
* Jim Crist fixed a bug in the rendering of patched errors in #4464.
* Leo Fang updated the CUDA Array Interface contract in #4609.
* Pearu Peterson added support for Unicode based NumPy arrays in #4425.
* Peter Andreas Entschev fixed a CUDA concurrency bug in #4581.
* Lucio Fernandez-Arjona extended Numba's ``np.sum`` support to now accept the
``dtype`` kwarg in #4472.
* Pedro A. Morales Maries added support for ``np.cross`` in #4128 and also added
the necessary extension ``numba.numpy_extensions.cross2d`` in #4595.
* David Hoese, Eric Firing, Joshua Adelman, and Juan Nunez-Iglesias all made
documentation fixes in #4565, #4482, #4455, #4375 respectively.
* Vyacheslav Smirnov and Rujal Desai enabled support for ``count()`` on unicode
strings in #4606.
General Enhancements:
* PR #4113: Add rewrite for semantic constants.
* PR #4128: Add np.cross support
* PR #4162: Make IR comparable and legalize it.
* PR #4208: R&D inlining, jitted and overloaded.
* PR #4331: Automatic JIT of called functions
* PR #4353: Inspection tool to check what numba supports
* PR #4386: Implement np.count_nonzero
* PR #4425: Unicode array support
* PR #4427: Entrypoints for numba extensions
* PR #4467: Literal dispatch
* PR #4472: Allow dtype input argument in np.sum
* PR #4513: New compiler.
* PR #4518: add support for np.append
* PR #4554: Refactor NRT C-API
* PR #4556: 0.46 scheduled deprecations
* PR #4567: Add env var to disable performance warnings.
* PR #4568: add np.array_equal support
* PR #4595: Implement numba.cross2d
* PR #4601: Add triangular indices functions
* PR #4606: Enable support for count() method for unicode string
Fixes:
* PR #4228: Fix inplace operator error for arrays
* PR #4282: Detect and raise unsupported on generator expressions
* PR #4305: Don't allow the allocation of mutable objects written into a
container to be hoisted.
* PR #4311: Avoid deprecated use of inspect.getargspec
* PR #4328: Replace GC macro with function call
* PR #4330: Loosen up typed container casting checks
* PR #4341: Fix some coding lines at the top of some files (utf8 -> utf-8)
* PR #4345: Replace "import \*" with explicit imports in numba/types
* PR #4346: Fix incorrect alg in isupper for ascii strings.
* PR #4349: test using jitclass in typed-list
* PR #4361: Add allocation hoisting info to LICM section at diagnostic L4
* PR #4366: Offset search box to avoid wrapping on some pages with Safari.
Fixes #4365.
* PR #4372: Replace all "except BaseException" with "except Exception".
* PR #4407: Restore the "free" conda channel for NumPy 1.10 support.
* PR #4408: Add lowering for constant bytes.
* PR #4409: Add exception chaining for better error context
* PR #4411: Name of type should not contain user facing description for debug.
* PR #4412: Fix #4387. Limit the number of return types for recursive functions
* PR #4426: Fixed two module teardown races in py2.
* PR #4431: Fix and test numpy.random.random_sample(n) for np117
* PR #4463: NamedTuple - Raises an error on non-iterable elements
* PR #4464: Add a newline in patched errors
* PR #4474: Fix liveness for remove dead of parfors (and other IR extensions)
* PR #4510: Make List.__getitem__ accept unsigned parameters
* PR #4512: Raise specific error at typing time for iteration on >1D array.
* PR #4532: Fix static_getitem with Literal type as index
* PR #4547: Update to inliner cost model information.
* PR #4557: Use specific random number seed when generating arbitrary test data
* PR #4559: Adjust test timeouts
* PR #4564: Skip unicode array tests on ppc64le that trigger an LLVM bug
* PR #4621: Fix packaging issue due to missing numba/cext
* PR #4623: Fix issue 4520 due to storage model mismatch
* PR #4644: Updates for llvmlite 0.30.0
CUDA Enhancements/Fixes:
* PR #4410: Fix #4111. cudasim mishandling recarray
* PR #4576: Replace use of `np.prod` with `functools.reduce` for computing size
from shape
* PR #4581: Prevent taking the GIL in ForAll
* PR #4592: Fix #4589. Just pass NULL for b2d_func for constant dynamic
sharedmem
* PR #4609: Update CUDA Array Interface & Enforce Numba compliance
* PR #4619: Implement math.{degrees, radians} for the CUDA target.
* PR #4675: Bump cuda array interface to version 2
Documentation Updates:
* PR #4317: Add docs for ARMv8/AArch64
* PR #4318: Add supported platforms to the docs. Closes #4316
* PR #4375: Add docstrings to inspect methods
* PR #4388: Update Python 2.7 EOL statement
* PR #4397: Add note about np.sum
* PR #4447: Minor parallel performance tips edits
* PR #4455: Clarify docs for typed dict with regard to arrays
* PR #4482: Fix example in guvectorize docstring.
* PR #4541: fix two typos in architecture.rst
* PR #4548: Document numba.extending.intrinsic and inlining.
* PR #4565: Fix typo in jit-compilation docs
* PR #4607: add dependency list to docs
* PR #4614: Add documentation for implementing new compiler passes.
CI Updates:
* PR #4415: Make 32bit incremental builds on linux not use free channel
* PR #4433: Removes stale azure comment
* PR #4493: Fix Overload Inliner wrt CUDA Intrinsics
* PR #4593: Enable Azure CI batching
Contributors:
* Aaron Meurer
* Ashwin Srinath
* David Hoese
* Ehsan Totoni (core dev)
* Eric Firing
* Ethan Pronovost
* Gerald Dalley
* Gregory R. Lee
* Guilherme Leobas
* James Bourbeau
* Jim Crist
* Joshua Adelman
* Juan Nunez-Iglesias
* Leo Fang
* Lucio Fernandez-Arjona
* Pearu Peterson
* Pedro A. Morales Marie
* Peter Andreas Entschev
* Rujal Desai
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
* Vyacheslav Smirnov
Version 0.45.1
--------------
This patch release addresses some regressions reported in the 0.45.0 release and
adds support for NumPy 1.17:
* PR #4325: accept scalar/0d-arrays
* PR #4338: Fix #4299. Parfors reduction vars not deleted.
* PR #4350: Use process level locks for fork() only.
* PR #4354: Try to fix #4352.
* PR #4357: Fix np1.17 isnan, isinf, isfinite ufuncs
* PR #4363: Fix np.interp for np1.17 nan handling
* PR #4371: Fix nump1.17 random function non-aliasing
Contributors:
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
* Valentin Haenel (core dev)
Version 0.45.0
--------------
In this release, Numba gained an experimental :ref:`numba.typed.List
<feature-typed-list>` container as a future replacement of the :ref:`reflected
list <feature-reflected-list>`. In addition, functions decorated with
``parallel=True`` can now be cached to reduce compilation overhead associated
with the auto-parallelization.
Enhancements from user contributed PRs (with thanks!):
* James Bourbeau added the Numba version to reportable error messages in #4227,
added the ``signature`` parameter to ``inspect_types`` in #4200, improved the
docstring of ``normalize_signature`` in #4205, and fixed #3658 by adding
reference counting to ``register_dispatcher`` in #4254
* Guilherme Leobas implemented the dominator tree and dominance frontier
algorithms in #4216 and #4149, respectively.
* Nick White fixed the issue with ``round`` in the CUDA target in #4137.
* Joshua Adelman added support for determining if a value is in a `range`
(i.e. ``x in range(...)``) in #4129, and added windowing functions
(``np.bartlett``, ``np.hamming``, ``np.blackman``, ``np.hanning``,
``np.kaiser``) from NumPy in #4076.
* Lucio Fernandez-Arjona added support for ``np.select`` in #4077
* Rob Ennis added support for ``np.flatnonzero`` in #4157
* Keith Kraus extended the ``__cuda_array_interface__`` with an optional mask
attribute in #4199.
* Gregory R. Lee replaced deprecated use of ``inspect.getargspec`` in #4311.
General Enhancements:
* PR #4328: Replace GC macro with function call
* PR #4311: Avoid deprecated use of inspect.getargspec
* PR #4296: Slacken window function testing tol on ppc64le
* PR #4254: Add reference counting to register_dispatcher
* PR #4239: Support len() of multi-dim arrays in array analysis
* PR #4234: Raise informative error for np.kron array order
* PR #4232: Add unicodetype db, low level str functions and examples.
* PR #4229: Make hashing cacheable
* PR #4227: Include numba version in reportable error message
* PR #4216: Add dominator tree
* PR #4200: Add signature parameter to inspect_types
* PR #4196: Catch missing imports of internal functions.
* PR #4180: Update use of unlowerable global message.
* PR #4166: Add tests for PR #4149
* PR #4157: Support for np.flatnonzero
* PR #4149: Implement dominance frontier for SSA for the Numba IR
* PR #4148: Call branch pruning in inline_closure_call()
* PR #4132: Reduce usage of inttoptr
* PR #4129: Support contains for range
* PR #4112: better error messages for np.transpose and tuples
* PR #4110: Add range attrs, start, stop, step
* PR #4077: Add np select
* PR #4076: Add numpy windowing functions support (np.bartlett, np.hamming,
np.blackman, np.hanning, np.kaiser)
* PR #4095: Support ir.Global/FreeVar in find_const()
* PR #3691: Make TypingError abort compiling earlier
* PR #3646: Log internal errors encountered in typeinfer
Fixes:
* PR #4303: Work around scipy bug 10206
* PR #4302: Fix flake8 issue on master
* PR #4301: Fix integer literal bug in np.select impl
* PR #4291: Fix pickling of jitclass type
* PR #4262: Resolves #4251 - Fix bug in reshape analysis.
* PR #4233: Fixes issue revealed by #4215
* PR #4224: Fix #4223. Looplifting error due to StaticSetItem in objectmode
* PR #4222: Fix bad python path.
* PR #4178: Fix unary operator overload, check with unicode impl
* PR #4173: Fix return type in np.bincount with weights
* PR #4153: Fix slice shape assignment in array analysis
* PR #4152: fix status check in dict lookup
* PR #4145: Use callable instead of checking __module__
* PR #4118: Fix inline assembly support on CPU.
* PR #4088: Resolves #4075 - parfors array_analysis bug.
* PR #4085: Resolves #3314 - parfors array_analysis bug with reshape.
CUDA Enhancements/Fixes:
* PR #4199: Extend `__cuda_array_interface__` with optional mask attribute,
bump version to 1
* PR #4137: CUDA - Fix round Builtin
* PR #4114: Support 3rd party activated CUDA context
Documentation Updates:
* PR #4317: Add docs for ARMv8/AArch64
* PR #4318: Add supported platforms to the docs. Closes #4316
* PR #4295: Alter deprecation schedules
* PR #4253: fix typo in pysupported docs
* PR #4252: fix typo on repomap
* PR #4241: remove unused import
* PR #4240: fix typo in jitclass docs
* PR #4205: Update return value order in normalize_signature docstring
* PR #4237: Update doc links to point to latest not dev docs.
* PR #4197: hyperlink repomap
* PR #4170: Clarify docs on accumulating into arrays in prange
* PR #4147: fix docstring for DictType iterables
* PR #3951: A guide to overloading
CI Updates:
* PR #4300: AArch64 has no faulthandler package
* PR #4273: pin to MKL BLAS for testing to get consistent results
* PR #4209: Revert previous network tol patch and try with conda config
* PR #4138: Remove tbb before Azure test only on Python 3, since it was already
removed for Python 2
Contributors:
* Ehsan Totoni (core dev)
* Gregory R. Lee
* Guilherme Leobas
* James Bourbeau
* Joshua L. Adelman
* Keith Kraus
* Lucio Fernandez-Arjona
* Nick White
* Rob Ennis
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
Version 0.44.1
--------------
This patch release addresses some regressions reported in the 0.44.0 release:
- PR #4165: Fix #4164 issue with NUMBAPRO_NVVM.
- PR #4172: Abandon branch pruning if an arg name is redefined. (Fixes #4163)
- PR #4183: Fix #4156. Problem with defining in-loop variables.
Version 0.44.0
--------------
IMPORTANT: In this release a few significant deprecations (and some less
significant ones) are being made, users are encouraged to read the related
documentation.
General enhancements in this release include:
- Numba is backed by LLVM 8 on all platforms apart from ppc64le, which, due to
bugs, remains on the LLVM 7.x series.
- Numba's dictionary support now includes type inference for keys and values.
- The .view() method now works for NumPy scalar types.
- Newly supported NumPy functions added: np.delete, np.nanquantile, np.quantile,
np.repeat, np.shape.
In addition considerable effort has been made to fix some long standing bugs and
a large number of other bugs, the "Fixes" section is very large this time!
Enhancements from user contributed PRs (with thanks!):
- Max Bolingbroke added support for the selective use of ``fastmath`` flags in
#3847.
- Rob Ennis made min() and max() work on iterables in #3820 and added
np.quantile and np.nanquantile in #3899.
- Sergey Shalnov added numerous unicode string related features, zfill in #3978,
ljust in #4001, rjust and center in #4044 and strip, lstrip and rstrip in
#4048.
- Guilherme Leobas added support for np.delete in #3890
- Christoph Deil exposed the Numba CLI via ``python -m numba`` in #4066 and made
numerous documentation fixes.
- Leo Schwarz wrote the bulk of the code for jitclass default constructor
arguments in #3852.
- Nick White enhanced the CUDA backend to use min/max PTX instructions where
possible in #4054.
- Lucio Fernandez-Arjona implemented the unicode string ``__mul__`` function in
#3952.
- Dimitri Vorona wrote the bulk of the code to implement getitem and setitem for
jitclass in #3861.
General Enhancements:
* PR #3820: Min max on iterables
* PR #3842: Unicode type iteration
* PR #3847: Allow fine-grained control of fastmath flags to partially address #2923
* PR #3852: Continuation of PR #2894
* PR #3861: Continuation of PR #3730
* PR #3890: Add support for np.delete
* PR #3899: Support for np.quantile and np.nanquantile
* PR #3900: Fix 3457 :: Implements np.repeat
* PR #3928: Add .view() method for NumPy scalars
* PR #3939: Update icc_rt clone recipe.
* PR #3952: __mul__ for strings, initial implementation and tests
* PR #3956: Type-inferred dictionary
* PR #3959: Create a view for string slicing to avoid extra allocations
* PR #3978: zfill operation implementation
* PR #4001: ljust operation implementation
* PR #4010: Support `dict()` and `{}`
* PR #4022: Support for llvm 8
* PR #4034: Make type.Optional str more representative
* PR #4041: Deprecation warnings
* PR #4044: rjust and center operations implementation
* PR #4048: strip, lstrip and rstrip operations implementation
* PR #4066: Expose numba CLI via python -m numba
* PR #4081: Impl `np.shape` and support function for `asarray`.
* PR #4091: Deprecate the use of iternext_impl without RefType
CUDA Enhancements/Fixes:
* PR #3933: Adds `.nbytes` property to CUDA device array objects.
* PR #4011: Add .inspect_ptx() to cuda device function
* PR #4054: CUDA: Use min/max PTX Instructions
* PR #4096: Update env-vars for CUDA libraries lookup
Documentation Updates:
* PR #3867: Code repository map
* PR #3918: adding Joris' Fosdem 2019 presentation
* PR #3926: order talks on applications of Numba by date
* PR #3943: fix two small typos in vectorize docs
* PR #3944: Fixup jitclass docs
* PR #3990: mention preprint repo in FAQ. Fixes #3981
* PR #4012: Correct runtests command in contributing.rst
* PR #4043: fix typo
* PR #4047: Ambiguous Documentation fix for guvectorize.
* PR #4060: Remove remaining mentions of autojit in docs
* PR #4063: Fix annotate example in docstring
* PR #4065: Add FAQ entry explaining Numba project name
* PR #4079: Add Documentation for atomicity of typed.Dict
* PR #4105: Remove info about CUDA ENVVAR potential replacement
Fixes:
* PR #3719: Resolves issue #3528. Adds support for slices when not using parallel=True.
* PR #3727: Remove dels for known dead vars.
* PR #3845: Fix mutable flag transmission in .astype
* PR #3853: Fix some minor issues in the C source.
* PR #3862: Correct boolean reinterpretation of data
* PR #3863: Comments out the appveyor badge
* PR #3869: fixes flake8 after merge
* PR #3871: Add assert to ir.py to help enforce correct structuring
* PR #3881: fix preparfor dtype transform for datetime64
* PR #3884: Prevent mutation of objmode fallback IR.
* PR #3885: Updates for llvmlite 0.29
* PR #3886: Use `safe_load` from pyyaml.
* PR #3887: Add tolerance to network errors by permitting conda to retry
* PR #3893: Fix casting in namedtuple ctor.
* PR #3894: Fix array inliner for multiple array definition.
* PR #3905: Cherrypick #3903 to main
* PR #3920: Raise better error if unsupported jump opcode found.
* PR #3927: Apply flake8 to the numpy related files
* PR #3935: Silence DeprecationWarning
* PR #3938: Better error message for unknown opcode
* PR #3941: Fix typing of ufuncs in parfor conversion
* PR #3946: Return variable renaming dict from inline_closurecall
* PR #3962: Fix bug in alignment computation of `Record.make_c_struct`
* PR #3967: Fix error with pickling unicode
* PR #3964: Unicode split algo versioning
* PR #3975: Add handler for unknown locale to numba -s
* PR #3991: Permit Optionals in ufunc machinery
* PR #3995: Remove assert in type inference causing poor error message.
* PR #3996: add is_ascii flag to UnicodeType
* PR #4009: Prevent zero division error in np.linalg.cond
* PR #4014: Resolves #4007.
* PR #4021: Add a more specific error message for invalid write to a global.
* PR #4023: Fix handling of titles in record dtype
* PR #4024: Do a check if a call is const before saying that an object is multiply defined.
* PR #4027: Fix issue #4020. Turn off no_cpython_wrapper flag when compiling for…
* PR #4033: [WIP] Fixing wrong dtype of array inside reflected list #4028
* PR #4061: Change IPython cache dir name to numba_cache
* PR #4067: Delete examples/notebooks/LinearRegr.py
* PR #4070: Catch writes to global typed.Dict and raise.
* PR #4078: Check tuple length
* PR #4084: Fix missing incref on optional return None
* PR #4089: Make the warnings fixer flush work for warning comparing on type.
* PR #4094: Fix function definition finding logic for commented def
* PR #4100: Fix alignment check on 32-bit.
* PR #4104: Use PEP 508 compliant env markers for install deps
Contributors:
* Benjamin Zaitlen
* Christoph Deil
* David Hirschfeld
* Dimitri Vorona
* Ehsan Totoni (core dev)
* Guilherme Leobas
* Leo Schwarz
* Lucio Fernandez-Arjona
* Max Bolingbroke
* NanduTej
* Nick White
* Ravi Teja Gutta
* Rob Ennis
* Sergey Shalnov
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
Version 0.43.1
--------------
This is a bugfix release that provides minor changes to fix: a bug in branch
pruning, bugs in `np.interp` functionality, and also fully accommodate the
NumPy 1.16 release series.
* PR #3826: NumPy 1.16 support
* PR #3850: Refactor np.interp
* PR #3883: Rewrite pruned conditionals as their evaluated constants.
Contributors:
* Rob Ennis
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
Version 0.43.0
--------------
In this release, the major new features are:
- Initial support for statically typed dictionaries
- Improvements to `hash()` to match Python 3 behavior
- Support for the heapq module
- Ability to pass C structs to Numba
- More NumPy functions: asarray, trapz, roll, ptp, extract
NOTE:
The vast majority of NumPy 1.16 behaviour is supported, however
``datetime`` and ``timedelta`` use involving ``NaT`` matches the behaviour
present in earlier release. The ufunc suite has not been extending to
accommodate the two new time computation related additions present in NumPy
1.16. In addition the functions ``ediff1d`` and ``interp`` have known minor
issues in replicating outputs exactly when ``NaN``'s occur in certain input
patterns.
General Enhancements:
* PR #3563: Support for np.roll
* PR #3572: Support for np.ptp
* PR #3592: Add dead branch prune before type inference.
* PR #3598: Implement np.asarray()
* PR #3604: Support for np.interp
* PR #3607: Some simplication to lowering
* PR #3612: Exact match flag in dispatcher
* PR #3627: Support for np.trapz
* PR #3630: np.where with broadcasting
* PR #3633: Support for np.extract
* PR #3657: np.max, np.min, np.nanmax, np.nanmin - support for complex dtypes
* PR #3661: Access C Struct as Numpy Structured Array
* PR #3678: Support for str.split and str.join
* PR #3684: Support C array in C struct
* PR #3696: Add intrinsic to help debug refcount
* PR #3703: Implementations of type hashing.
* PR #3715: Port CPython3.7 dictionary for numba internal use
* PR #3716: Support inplace concat of strings
* PR #3718: Add location to ConstantInferenceError exceptions.
* PR #3720: improve error msg about invalid signature
* PR #3731: Support for heapq
* PR #3754: Updates for llvmlite 0.28
* PR #3760: Overloadable operator.setitem
* PR #3775: Support overloading operator.delitem
* PR #3777: Implement compiler support for dictionary
* PR #3791: Implement interpreter-side interface for numba dict
* PR #3799: Support refcount'ed types in numba dict
CUDA Enhancements/Fixes:
* PR #3713: Fix the NvvmSupportError message when CC too low
* PR #3722: Fix #3705: slicing error with negative strides
* PR #3755: Make cuda.to_device accept readonly host array
* PR #3773: Adapt library search to accommodate multiple locations
Documentation Updates:
* PR #3651: fix link to berryconda in docs
* PR #3668: Add Azure Pipelines build badge
* PR #3749: DOC: Clarify when prange is different from range
* PR #3771: fix a few typos
* PR #3785: Clarify use of range as function only.
* PR #3829: Add docs for typed-dict
Fixes:
* PR #3614: Resolve #3586
* PR #3618: Skip gdb tests on ARM.
* PR #3643: Remove support_literals usage
* PR #3645: Enforce and fix that AbstractTemplate.generic must be returning a Signature
* PR #3648: Fail on @overload signature mismatch.
* PR #3660: Added Ignore message to test numba.tests.test_lists.TestLists.test_mul_error
* PR #3662: Replace six with numba.six
* PR #3663: Removes coverage computation from travisci builds
* PR #3672: Avoid leaking memory when iterating over uniform tuple
* PR #3676: Fixes constant string lowering inside tuples
* PR #3677: Ensure all referenced compiled functions are linked properly
* PR #3692: Fix test failure due to overly strict test on floating point values.
* PR #3693: Intercept failed import to help users.
* PR #3694: Fix memory leak in enumerate iterator
* PR #3695: Convert return of None from intrinsic implementation to dummy value
* PR #3697: Fix for issue #3687
* PR #3701: Fix array.T analysis (fixes #3700)
* PR #3704: Fixes for overload_method
* PR #3706: Don't push call vars recursively into nested parfors. Resolves #3686.
* PR #3710: Set as non-hoistable if a mutable variable is passed to a function in a loop. Resolves #3699.
* PR #3712: parallel=True to use better builtin mechanism to resolve call types. Resolves issue #3671
* PR #3725: Fix invalid removal of dead empty list
* PR #3740: add uintp as a valid type to the tuple operator.getitem
* PR #3758: Fix target definition update in inlining
* PR #3782: Raise typing error on yield optional.
* PR #3792: Fix non-module object used as the module of a function.
* PR #3800: Bugfix for np.interp
* PR #3808: Bump macro to include VS2014 to fix py3.5 build
* PR #3809: Add debug guard to debug only C function.
* PR #3816: Fix array.sum(axis) 1d input return type.
* PR #3821: Replace PySys_WriteStdout with PySys_FormatStdout to ensure no truncation.
* PR #3830: Getitem should not return optional type
* PR #3832: Handle single string as path in find_file()
Contributors:
* Ehsan Totoni
* Gryllos Prokopis
* Jonathan J. Helmus
* Kayla Ngan
* lalitparate
* luk-f-a
* Matyt
* Max Bolingbroke
* Michael Seifert
* Rob Ennis
* Siu Kwan Lam
* Stan Seibert
* Stuart Archibald
* Todd A. Anderson
* Tao He
* Valentin Haenel
Version 0.42.1
--------------
Bugfix release to fix the incorrect hash in OSX wheel packages.
No change in source code.
Version 0.42.0
--------------
In this release the major features are:
- The capability to launch and attach the GDB debugger from within a jitted
function.
- The upgrading of LLVM to version 7.0.0.
We added a draft of the project roadmap to the developer manual. The roadmap is
for informational purposes only as priorities and resources may change.
Here are some enhancements from contributed PRs:
- #3532. Daniel Wennberg improved the ``cuda.{pinned, mapped}`` API so that
the associated memory is released immediately at the exit of the context
manager.
- #3531. Dimitri Vorona enabled the inlining of jitclass methods.
- #3516. Simon Perkins added the support for passing numpy dtypes (i.e.
``np.dtype("int32")``) and their type constructor (i.e. ``np.int32``) into
a jitted function.
- #3509. Rob Ennis added support for ``np.corrcoef``.
A regression issue (#3554, #3461) relating to making an empty slice in parallel
mode is resolved by #3558.
General Enhancements:
* PR #3392: Launch and attach gdb directly from Numba.
* PR #3437: Changes to accommodate LLVM 7.0.x
* PR #3509: Support for np.corrcoef
* PR #3516: Typeof dtype values
* PR #3520: Fix @stencil ignoring cval if out kwarg supplied.
* PR #3531: Fix jitclass method inlining and avoid unnecessary increfs
* PR #3538: Avoid future C-level assertion error due to invalid visibility
* PR #3543: Avoid implementation error being hidden by the try-except
* PR #3544: Add `long_running` test flag and feature to exclude tests.
* PR #3549: ParallelAccelerator caching improvements
* PR #3558: Fixes array analysis for inplace binary operators.
* PR #3566: Skip alignment tests on armv7l.
* PR #3567: Fix unifying literal types in namedtuple
* PR #3576: Add special copy routine for NumPy out arrays
* PR #3577: Fix example and docs typos for `objmode` context manager.
reorder statements.
* PR #3580: Use alias information when determining whether it is safe to
* PR #3583: Use `ir.unknown_loc` for unknown `Loc`, as #3390 with tests
* PR #3587: Fix llvm.memset usage changes in llvm7
* PR #3596: Fix Array Analysis for Global Namedtuples
* PR #3597: Warn users if threading backend init unsafe.
* PR #3605: Add guard for writing to read only arrays from ufunc calls
* PR #3606: Improve the accuracy of error message wording for undefined type.
* PR #3611: gdb test guard needs to ack ptrace permissions
* PR #3616: Skip gdb tests on ARM.
CUDA Enhancements:
* PR #3532: Unregister temporarily pinned host arrays at once
* PR #3552: Handle broadcast arrays correctly in host->device transfer.
* PR #3578: Align cuda and cuda simulator kwarg names.
Documentation Updates:
* PR #3545: Fix @njit description in 5 min guide
* PR #3570: Minor documentation fixes for numba.cuda
* PR #3581: Fixing minor typo in `reference/types.rst`
* PR #3594: Changing `@stencil` docs to correctly reflect `func_or_mode` param
* PR #3617: Draft roadmap as of Dec 2018
Contributors:
* Aaron Critchley
* Daniel Wennberg
* Dimitri Vorona
* Dominik Stańczak
* Ehsan Totoni (core dev)
* Iskander Sharipov
* Rob Ennis
* Simon Muller
* Simon Perkins
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
Version 0.41.0
--------------
This release adds the following major features:
* Diagnostics showing the optimizations done by ParallelAccelerator
* Support for profiling Numba-compiled functions in Intel VTune
* Additional NumPy functions: partition, nancumsum, nancumprod, ediff1d, cov,
conj, conjugate, tri, tril, triu
* Initial support for Python 3 Unicode strings
General Enhancements:
* PR #1968: armv7 support
* PR #2983: invert mapping b/w binop operators and the operator module #2297
* PR #3160: First attempt at parallel diagnostics
* PR #3307: Adding NUMBA_ENABLE_PROFILING envvar, enabling jit event
* PR #3320: Support for np.partition
* PR #3324: Support for np.nancumsum and np.nancumprod
* PR #3325: Add location information to exceptions.
* PR #3337: Support for np.ediff1d
* PR #3345: Support for np.cov
* PR #3348: Support user pipeline class in with lifting
* PR #3363: string support
* PR #3373: Improve error message for empty imprecise lists.
* PR #3375: Enable overload(operator.getitem)
* PR #3402: Support negative indexing in tuple.
* PR #3414: Refactor Const type
* PR #3416: Optimized usage of alloca out of the loop
* PR #3424: Updates for llvmlite 0.26
* PR #3462: Add support for `np.conj/np.conjugate`.
* PR #3480: np.tri, np.tril, np.triu - default optional args
* PR #3481: Permit dtype argument as sole kwarg in np.eye
CUDA Enhancements:
* PR #3399: Add max_registers Option to cuda.jit
Continuous Integration / Testing:
* PR #3303: CI with Azure Pipelines
* PR #3309: Workaround race condition with apt
* PR #3371: Fix issues with Azure Pipelines
* PR #3362: Fix #3360: `RuntimeWarning: 'numba.runtests' found in sys.modules`
* PR #3374: Disable openmp in wheel building
* PR #3404: Azure Pipelines templates
* PR #3419: Fix cuda tests and error reporting in test discovery
* PR #3491: Prevent faulthandler installation on armv7l
* PR #3493: Fix CUDA test that used negative indexing behaviour that's fixed.
* PR #3495: Start Flake8 checking of Numba source
Fixes:
* PR #2950: Fix dispatcher to only consider contiguous-ness.
* PR #3124: Fix 3119, raise for 0d arrays in reductions
* PR #3228: Reduce redundant module linking
* PR #3329: Fix AOT on windows.
* PR #3335: Fix memory management of __cuda_array_interface__ views.
* PR #3340: Fix typo in error name.
* PR #3365: Fix the default unboxing logic
* PR #3367: Allow non-global reference to objmode() context-manager
* PR #3381: Fix global reference in objmode for dynamically created function
* PR #3382: CUDA_ERROR_MISALIGNED_ADDRESS Using Multiple Const Arrays
* PR #3384: Correctly handle very old versions of colorama
* PR #3394: Add 32bit package guard for non-32bit installs
* PR #3397: Fix with-objmode warning
* PR #3403 Fix label offset in call inline after parfor pass
* PR #3429: Fixes raising of user defined exceptions for exec(<string>).
* PR #3432: Fix error due to function naming in CI in py2.7
* PR #3444: Fixed TBB's single thread execution and test added for #3440
* PR #3449: Allow matching non-array objects in find_callname()
* PR #3455: Change getiter and iternext to not be pure. Resolves #3425
* PR #3467: Make ir.UndefinedType singleton class.
* PR #3478: Fix np.random.shuffle sideeffect
* PR #3487: Raise unsupported for kwargs given to `print()`
* PR #3488: Remove dead script.
* PR #3498: Fix stencil support for boolean as return type
* PR #3511: Fix handling make_function literals (regression of #3414)
* PR #3514: Add missing unicode != unicode
* PR #3527: Fix complex math sqrt implementation for large -ve values
* PR #3530: This adds arg an check for the pattern supplied to Parfors.
* PR #3536: Sets list dtor linkage to `linkonce_odr` to fix visibility in AOT
Documentation Updates:
* PR #3316: Update 0.40 changelog with additional PRs
* PR #3318: Tweak spacing to avoid search box wrapping onto second line
* PR #3321: Add note about memory leaks with exceptions to docs. Fixes #3263
* PR #3322: Add FAQ on CUDA + fork issue. Fixes #3315.
* PR #3343: Update docs for argsort, kind kwarg partially supported.
* PR #3357: Added mention of njit in 5minguide.rst
* PR #3434: Fix parallel reduction example in docs.
* PR #3452: Fix broken link and mark up problem.
* PR #3484: Size Numba logo in docs in em units. Fixes #3313
* PR #3502: just two typos
* PR #3506: Document string support
* PR #3513: Documentation for parallel diagnostics.
* PR #3526: Fix 5 min guide with respect to @njit decl
Contributors:
* Alex Ford
* Andreas Sodeur
* Anton Malakhov
* Daniel Stender
* Ehsan Totoni (core dev)
* Henry Schreiner
* Marcel Bargull
* Matt Cooper
* Nick White
* Nicolas Hug
* rjenc29
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
Version 0.40.1
--------------
This is a PyPI-only patch release to ensure that PyPI wheels can enable the
TBB threading backend, and to disable the OpenMP backend in the wheels.
Limitations of manylinux1 and variation in user environments can cause
segfaults when OpenMP is enabled on wheel builds. Note that this release has
no functional changes for users who obtained Numba 0.40.0 via conda.
Patches:
* PR #3338: Accidentally left Anton off contributor list for 0.40.0
* PR #3374: Disable OpenMP in wheel building
* PR #3376: Update 0.40.1 changelog and docs on OpenMP backend
Version 0.40.0
--------------
This release adds a number of major features:
* A new GPU backend: kernels for AMD GPUs can now be compiled using the ROCm
driver on Linux.
* The thread pool implementation used by Numba for automatic multithreading
is configurable to use TBB, OpenMP, or the old "workqueue" implementation.
(TBB is likely to become the preferred default in a future release.)
* New documentation on thread and fork-safety with Numba, along with overall
improvements in thread-safety.
* Experimental support for executing a block of code inside a nopython mode
function in object mode.
* Parallel loops now allow arrays as reduction variables
* CUDA improvements: FMA, faster float64 atomics on supporting hardware,
records in const memory, and improved datatime dtype support
* More NumPy functions: vander, tri, triu, tril, fill_diagonal
General Enhancements:
* PR #3017: Add facility to support with-contexts
* PR #3033: Add support for multidimensional CFFI arrays
* PR #3122: Add inliner to object mode pipeline
* PR #3127: Support for reductions on arrays.
* PR #3145: Support for np.fill_diagonal
* PR #3151: Keep a queue of references to last N deserialized functions. Fixes #3026
* PR #3154: Support use of list() if typeable.
* PR #3166: Objmode with-block
* PR #3179: Updates for llvmlite 0.25
* PR #3181: Support function extension in alias analysis
* PR #3189: Support literal constants in typing of object methods
* PR #3190: Support passing closures as literal values in typing
* PR #3199: Support inferring stencil index as constant in simple unary expressions
* PR #3202: Threading layer backend refactor/rewrite/reinvention!
* PR #3209: Support for np.tri, np.tril and np.triu
* PR #3211: Handle unpacking in building tuple (BUILD_TUPLE_UNPACK opcode)
* PR #3212: Support for np.vander
* PR #3227: Add NumPy 1.15 support
* PR #3272: Add MemInfo_data to runtime._nrt_python.c_helpers
* PR #3273: Refactor. Removing thread-local-storage based context nesting.
* PR #3278: compiler threadsafety lockdown
* PR #3291: Add CPU count and CFS restrictions info to numba -s.
CUDA Enhancements:
* PR #3152: Use cuda driver api to get best blocksize for best occupancy
* PR #3165: Add FMA intrinsic support
* PR #3172: Use float64 add Atomics, Where Available
* PR #3186: Support Records in CUDA Const Memory
* PR #3191: CUDA: fix log size
* PR #3198: Fix GPU datetime timedelta types usage
* PR #3221: Support datetime/timedelta scalar argument to a CUDA kernel.
* PR #3259: Add DeviceNDArray.view method to reinterpret data as a different type.
* PR #3310: Fix IPC handling of sliced cuda array.
ROCm Enhancements:
* PR #3023: Support for AMDGCN/ROCm.
* PR #3108: Add ROC info to `numba -s` output.
* PR #3176: Move ROC vectorize init to npyufunc
* PR #3177: Add auto_synchronize support to ROC stream
* PR #3178: Update ROC target documentation.
* PR #3294: Add compiler lock to ROC compilation path.
* PR #3280: Add wavebits property to the HSA Agent.
* PR #3281: Fix ds_permute types and add tests
Continuous Integration / Testing:
* PR #3091: Remove old recipes, switch to test config based on env var.
* PR #3094: Add higher ULP tolerance for products in complex space.
* PR #3096: Set exit on error in incremental scripts
* PR #3109: Add skip to test needing jinja2 if no jinja2.
* PR #3125: Skip cudasim only tests
* PR #3126: add slack, drop flowdock
* PR #3147: Improve error message for arg type unsupported during typing.
* PR #3128: Fix recipe/build for jetson tx2/ARM
* PR #3167: In build script activate env before installing.
* PR #3180: Add skip to broken test.
* PR #3216: Fix libcuda.so loading in some container setup
* PR #3224: Switch to new Gitter notification webhook URL and encrypt it
* PR #3235: Add 32bit Travis CI jobs
* PR #3257: This adds scipy/ipython back into windows conda test phase.
Fixes:
* PR #3038: Fix random integer generation to match results from NumPy.
* PR #3045: Fix #3027 - Numba reassigns sys.stdout
* PR #3059: Handler for known LoweringErrors.
* PR #3060: Adjust attribute error for NumPy functions.
* PR #3067: Abort simulator threads on exception in thread block.
* PR #3079: Implement +/-(types.boolean) Fix #2624
* PR #3080: Compute np.var and np.std correctly for complex types.
* PR #3088: Fix #3066 (array.dtype.type in prange)
* PR #3089: Fix invalid ParallelAccelerator hoisting issue.
* PR #3136: Fix #3135 (lowering error)
* PR #3137: Fix for issue3103 (race condition detection)
* PR #3142: Fix Issue #3139 (parfors reuse of reduction variable across prange blocks)
* PR #3148: Remove dead array equal @infer code
* PR #3153: Fix canonicalize_array_math typing for calls with kw args
* PR #3156: Fixes issue with missing pygments in testing and adds guards.
* PR #3168: Py37 bytes output fix.
* PR #3171: Fix #3146. Fix CFUNCTYPE void* return-type handling
* PR #3193: Fix setitem/getitem resolvers
* PR #3222: Fix #3214. Mishandling of POP_BLOCK in while True loop.
* PR #3230: Fixes liveness analysis issue in looplifting
* PR #3233: Fix return type difference for 32bit ctypes.c_void_p
* PR #3234: Fix types and layout for `np.where`.
* PR #3237: Fix DeprecationWarning about imp module
* PR #3241: Fix #3225. Normalize 0nd array to scalar in typing of indexing code.
* PR #3256: Fix #3251: Move imports of ABCs to collections.abc for Python >= 3.3
* PR #3292: Fix issue3279.
* PR #3302: Fix error due to mismatching dtype
Documentation Updates:
* PR #3104: Workaround for #3098 (test_optional_unpack Heisenbug)
* PR #3132: Adds an ~5 minute guide to Numba.
* PR #3194: Fix docs RE: np.random generator fork/thread safety
* PR #3242: Page with Numba talks and tutorial links
* PR #3258: Allow users to choose the type of issue they are reporting.
* PR #3260: Fixed broken link
* PR #3266: Fix cuda pointer ownership problem with user/externally allocated pointer
* PR #3269: Tweak typography with CSS
* PR #3270: Update FAQ for functions passed as arguments
* PR #3274: Update installation instructions
* PR #3275: Note pyobject and voidptr are types in docs
* PR #3288: Do not need to call parallel optimizations "experimental" anymore
* PR #3318: Tweak spacing to avoid search box wrapping onto second line
Contributors:
* Anton Malakhov
* Alex Ford
* Anthony Bisulco
* Ehsan Totoni (core dev)
* Leonard Lausen
* Matthew Petroff
* Nick White
* Ray Donnelly
* rjenc29
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Stuart Reynolds
* Todd A. Anderson (core dev)
Version 0.39.0
--------------
Here are the highlights for the Numba 0.39.0 release.
* This is the first version that supports Python 3.7.
* With help from Intel, we have fixed the issues with SVML support (related
issues #2938, #2998, #3006).
* List has gained support for containing reference-counted types like NumPy
arrays and `list`. Note, list still cannot hold heterogeneous types.
* We have made a significant change to the internal calling-convention,
which should be transparent to most users, to allow for a future feature that
will permitting jumping back into python-mode from a nopython-mode function.
This also fixes a limitation to `print` that disabled its use from nopython
functions that were deep in the call-stack.
* For CUDA GPU support, we added a `__cuda_array_interface__` following the
NumPy array interface specification to allow Numba to consume externally
defined device arrays. We have opened a corresponding pull request to CuPy to
test out the concept and be able to use a CuPy GPU array.
* The Numba dispatcher `inspect_types()` method now supports the kwarg `pretty`
which if set to `True` will produce ANSI/HTML output, showing the annotated
types, when invoked from ipython/jupyter-notebook respectively.
* The NumPy functions `ndarray.dot`, `np.percentile` and `np.nanpercentile`, and
`np.unique` are now supported.
* Numba now supports the use of a per-project configuration file to permanently
set behaviours typically set via `NUMBA_*` family environment variables.
* Support for the `ppc64le` architecture has been added.
Enhancements:
* PR #2793: Simplify and remove javascript from html_annotate templates.
* PR #2840: Support list of refcounted types
* PR #2902: Support for np.unique
* PR #2926: Enable fence for all architecture and add developer notes
* PR #2928: Making error about untyped list more informative.
* PR #2930: Add configuration file and color schemes.
* PR #2932: Fix encoding to 'UTF-8' in `check_output` decode.
* PR #2938: Python 3.7 compat: _Py_Finalizing becomes _Py_IsFinalizing()
* PR #2939: Comprehensive SVML unit test
* PR #2946: Add support for `ndarray.dot` method and tests.
* PR #2953: percentile and nanpercentile
* PR #2957: Add new 3.7 opcode support.
* PR #2963: Improve alias analysis to be more comprehensive
* PR #2984: Support for namedtuples in array analysis
* PR #2986: Fix environment propagation
* PR #2990: Improve function call matching for intrinsics
* PR #3002: Second pass at error rewrites (interpreter errors).
* PR #3004: Add numpy.empty to the list of pure functions.
* PR #3008: Augment SVML detection with llvmlite SVML patch detection.
* PR #3012: Make use of the common spelling of heterogeneous/homogeneous.
* PR #3032: Fix pycc ctypes test due to mismatch in calling-convention
* PR #3039: Add SVML detection to Numba environment diagnostic tool.
* PR #3041: This adds @needs_blas to tests that use BLAS
* PR #3056: Require llvmlite>=0.24.0
CUDA Enhancements:
* PR #2860: __cuda_array_interface__
* PR #2910: More CUDA intrinsics
* PR #2929: Add Flag To Prevent Unneccessary D->H Copies
* PR #3037: Add CUDA IPC support on non-peer-accessible devices
CI Enhancements:
* PR #3021: Update appveyor config.
* PR #3040: Add fault handler to all builds
* PR #3042: Add catchsegv
* PR #3077: Adds optional number of processes for `-m` in testing
Fixes:
* PR #2897: Fix line position of delete statement in numba ir
* PR #2905: Fix for #2862
* PR #3009: Fix optional type returning in recursive call
* PR #3019: workaround and unittest for issue #3016
* PR #3035: [TESTING] Attempt delayed removal of Env
* PR #3048: [WIP] Fix cuda tests failure on buildfarm
* PR #3054: Make test work on 32-bit
* PR #3062: Fix cuda.In freeing devary before the kernel launch
* PR #3073: Workaround #3072
* PR #3076: Avoid ignored exception due to missing globals at interpreter teardown
Documentation Updates:
* PR #2966: Fix syntax in env var docs.
* PR #2967: Fix typo in CUDA kernel layout example.
* PR #2970: Fix docstring copy paste error.
Contributors:
The following people contributed to this release.
* Anton Malakhov
* Ehsan Totoni (core dev)
* Julia Tatz
* Matthias Bussonnier
* Nick White
* Ray Donnelly
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Rik-de-Kort
* rjenc29
Version 0.38.1
--------------
This is a critical bug fix release addressing:
https://github.com/numba/numba/issues/3006
The bug does not impact users using conda packages from Anaconda or Intel Python
Distribution (but it does impact conda-forge). It does not impact users of pip
using wheels from PyPI.
This only impacts a small number of users where:
* The ICC runtime (specifically libsvml) is present in the user's environment.
* The user is using an llvmlite statically linked against a version of LLVM
that has not been patched with SVML support.
* The platform is 64-bit.
The release fixes a code generation path that could lead to the production of
incorrect results under the above situation.
Fixes:
* PR #3007: Augment SVML detection with llvmlite SVML patch detection.
Contributors:
The following people contributed to this release.
* Stuart Archibald (core dev)
Version 0.38.0
--------------
Following on from the bug fix focus of the last release, this release swings
back towards the addition of new features and usability improvements based on
community feedback. This release is comparatively large! Three key features/
changes to note are:
* Numba (via llvmlite) is now backed by LLVM 6.0, general vectorization is
improved as a result. A significant long standing LLVM bug that was causing
corruption was also found and fixed.
* Further considerable improvements in vectorization are made available as
Numba now supports Intel's short vector math library (SVML).
Try it out with `conda install -c numba icc_rt`.
* CUDA 8.0 is now the minimum supported CUDA version.
Other highlights include:
* Bug fixes to `parallel=True` have enabled more vectorization opportunities
when using the ParallelAccelerator technology.
* Much effort has gone into improving error reporting and the general usability
of Numba. This includes highlighted error messages and performance tips
documentation. Try it out with `conda install colorama`.
* A number of new NumPy functions are supported, `np.convolve`, `np.correlate`
`np.reshape`, `np.transpose`, `np.permutation`, `np.real`, `np.imag`, and
`np.searchsorted` now supports the`side` kwarg. Further, `np.argsort` now
supports the `kind` kwarg with `quicksort` and `mergesort` available.
* The Numba extension API has gained the ability operate more easily with
functions from Cython modules through the use of
`numba.extending.get_cython_function_address` to obtain function addresses
for direct use in `ctypes.CFUNCTYPE`.
* Numba now allows the passing of jitted functions (and containers of jitted
functions) as arguments to other jitted functions.
* The CUDA functionality has gained support for a larger selection of bit
manipulation intrinsics, also SELP, and has had a number of bugs fixed.
* Initial work to support the PPC64LE platform has been added, full support is
however waiting on the LLVM 6.0.1 release as it contains critical patches
not present in 6.0.0.
It is hoped that any remaining issues will be fixed in the next release.
* The capacity for advanced users/compiler engineers to define their own
compilation pipelines.
Enhancements:
* PR #2660: Support bools from cffi in nopython.
* PR #2741: Enhance error message for undefined variables.
* PR #2744: Add diagnostic error message to test suite discovery failure.
* PR #2748: Added Intel SVML optimizations as opt-out choice working by default
* PR #2762: Support transpose with axes arguments.
* PR #2777: Add support for np.correlate and np.convolve
* PR #2779: Implement np.random.permutation
* PR #2801: Passing jitted functions as args
* PR #2802: Support np.real() and np.imag()
* PR #2807: Expose `import_cython_function`
* PR #2821: Add kwarg 'side' to np.searchsorted
* PR #2822: Adds stable argsort
* PR #2832: Fixups for llvmlite 0.23/llvm 6
* PR #2836: Support `index` method on tuples
* PR #2839: Support for np.transpose and np.reshape.
* PR #2843: Custom pipeline
* PR #2847: Replace signed array access indices in unsiged prange loop body
* PR #2859: Add support for improved error reporting.
* PR #2880: This adds a github issue template.
* PR #2881: Build recipe to clone Intel ICC runtime.
* PR #2882: Update TravisCI to test SVML
* PR #2893: Add reference to the data buffer in array.ctypes object
* PR #2895: Move to CUDA 8.0
Fixes:
* PR #2737: Fix #2007 (part 1). Empty array handling in np.linalg.
* PR #2738: Fix install_requires to allow pip getting pre-release version
* PR #2740: Fix 2208. Generate better error message.
* PR #2765: Fix Bit-ness
* PR #2780: PowerPC reference counting memory fences
* PR #2805: Fix six imports.
* PR #2813: Fix #2812: gufunc scalar output bug.
* PR #2814: Fix the build post #2727
* PR #2831: Attempt to fix #2473
* PR #2842: Fix issue with test discovery and broken CUDA drivers.
* PR #2850: Add rtsys init guard and test.
* PR #2852: Skip vectorization test with targets that are not x86
* PR #2856: Prevent printing to stdout in `test_extending.py`
* PR #2864: Correct C code to prevent compiler warnings.
* PR #2889: Attempt to fix #2386.
* PR #2891: Removed test skipping for inspect_cfg
* PR #2898: Add guard to parallel test on unsupported platforms
* PR #2907: Update change log for PPC64LE LLVM dependency.
* PR #2911: Move build requirement to llvmlite>=0.23.0dev0
* PR #2912: Fix random permutation test.
* PR #2914: Fix MD list syntax in issue template.
Documentation Updates:
* PR #2739: Explicitly state default value of error_model in docstring
* PR #2803: DOC: parallel vectorize requires signatures
* PR #2829: Add Python 2.7 EOL plan to docs
* PR #2838: Use automatic numbering syntax in list.
* PR #2877: Add performance tips documentation.
* PR #2883: Fix #2872: update rng doc about thread/fork-safety
* PR #2908: Add missing link and ref to docs.
* PR #2909: Tiny typo correction
ParallelAccelerator enhancements/fixes:
* PR #2727: Changes to enable vectorization in ParallelAccelerator.
* PR #2816: Array analysis for transpose with arbitrary arguments
* PR #2874: Fix dead code eliminator not to remove a call with side-effect
* PR #2886: Fix ParallelAccelerator arrayexpr repr
CUDA enhancements:
* PR #2734: More Constants From cuda.h
* PR #2767: Add len(..) Support to DeviceNDArray
* PR #2778: Add More Device Array API Functions to CUDA Simulator
* PR #2824: Add CUDA Primitives for Population Count
* PR #2835: Emit selp Instructions to Avoid Branching
* PR #2867: Full support for CUDA device attributes
CUDA fixes:
* PR #2768: Don't Compile Code on Every Assignment
* PR #2878: Fixes a Win64 issue with the test in Pr/2865
Contributors:
The following people contributed to this release.
* Abutalib Aghayev
* Alex Olivas
* Anton Malakhov
* Dong-hee Na
* Ehsan Totoni (core dev)
* John Zwinck
* Josh Wilson
* Kelsey Jordahl
* Nick White
* Olexa Bilaniuk
* Rik-de-Kort
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Thomas Arildsen
* Todd A. Anderson (core dev)
Version 0.37.0
--------------
This release focuses on bug fixing and stability but also adds a few new
features including support for Numpy 1.14. The key change for Numba core was the
long awaited addition of the final tranche of thread safety improvements that
allow Numba to be run concurrently on multiple threads without hitting known
thread safety issues inside LLVM itself. Further, a number of fixes and
enhancements went into the CUDA implementation and ParallelAccelerator gained
some new features and underwent some internal refactoring.
Misc enhancements:
* PR #2627: Remove hacks to make llvmlite threadsafe
* PR #2672: Add ascontiguousarray
* PR #2678: Add Gitter badge
* PR #2691: Fix #2690: add intrinsic to convert array to tuple
* PR #2703: Test runner feature: failed-first and last-failed
* PR #2708: Patch for issue #1907
* PR #2732: Add support for array.fill
Misc Fixes:
* PR #2610: Fix #2606 lowering of optional.setattr
* PR #2650: Remove skip for win32 cosine test
* PR #2668: Fix empty_like from readonly arrays.
* PR #2682: Fixes 2210, remove _DisableJitWrapper
* PR #2684: Fix #2340, generator error yielding bool
* PR #2693: Add travis-ci testing of NumPy 1.14, and also check on Python 2.7
* PR #2694: Avoid type inference failure due to a typing template rejection
* PR #2695: Update llvmlite version dependency.
* PR #2696: Fix tuple indexing codegeneration for empty tuple
* PR #2698: Fix #2697 by deferring deletion in the simplify_CFG loop.
* PR #2701: Small fix to avoid tempfiles being created in the current directory
* PR #2725: Fix 2481, LLVM IR parsing error due to mutated IR
* PR #2726: Fix #2673: incorrect fork error msg.
* PR #2728: Alternative to #2620. Remove dead code ByteCodeInst.get.
* PR #2730: Add guard for test needing SciPy/BLAS
Documentation updates:
* PR #2670: Update communication channels
* PR #2671: Add docs about diagnosing loop vectorizer
* PR #2683: Add docs on const arg requirements and on const mem alloc
* PR #2722: Add docs on numpy support in cuda
* PR #2724: Update doc: warning about unsupported arguments
ParallelAccelerator enhancements/fixes:
Parallel support for `np.arange` and `np.linspace`, also `np.mean`, `np.std`
and `np.var` are added. This was performed as part of a general refactor and
cleanup of the core ParallelAccelerator code.
* PR #2674: Core pa
* PR #2704: Generate Dels after parfor sequential lowering
* PR #2716: Handle matching directly supported functions
CUDA enhancements:
* PR #2665: CUDA DeviceNDArray: Support numpy tranpose API
* PR #2681: Allow Assigning to DeviceNDArrays
* PR #2702: Make DummyArray do High Dimensional Reshapes
* PR #2714: Use CFFI to Reuse Code
CUDA fixes:
* PR #2667: Fix CUDA DeviceNDArray slicing
* PR #2686: Fix #2663: incorrect offset when indexing cuda array.
* PR #2687: Ensure Constructed Stream Bound
* PR #2706: Workaround for unexpected warp divergence due to exception raising
code
* PR #2707: Fix regression: cuda test submodules not loading properly in
runtests
* PR #2731: Use more challenging values in slice tests.
* PR #2720: A quick testsuite fix to not run the new cuda testcase in the
multiprocess pool
Contributors:
The following people contributed to this release.
* Coutinho Menezes Nilo
* Daniel
* Ehsan Totoni
* Nick White
* Paul H. Liu
* Siu Kwan Lam
* Stan Seibert
* Stuart Archibald
* Todd A. Anderson
Version 0.36.2
--------------
This is a bugfix release that provides minor changes to address:
* PR #2645: Avoid CPython bug with ``exec`` in older 2.7.x.
* PR #2652: Add support for CUDA 9.
Version 0.36.1
--------------
This release continues to add new features to the work undertaken in partnership
with Intel on ParallelAccelerator technology. Other changes of note include the
compilation chain being updated to use LLVM 5.0 and the production of conda
packages using conda-build 3 and the new compilers that ship with it.
NOTE: A version 0.36.0 was tagged for internal use but not released.
ParallelAccelerator:
NOTE: The ParallelAccelerator technology is under active development and should
be considered experimental.
New features relating to ParallelAccelerator, from work undertaken with Intel,
include the addition of the `@stencil` decorator for ease of implementation of
stencil-like computations, support for general reductions, and slice and
range fusion for parallel slice/bit-array assignments. Documentation on both the
use and implementation of the above has been added. Further, a new debug
environment variable `NUMBA_DEBUG_ARRAY_OPT_STATS` is made available to give
information about which operators/calls are converted to parallel for-loops.
ParallelAccelerator features:
* PR #2457: Stencil Computations in ParallelAccelerator
* PR #2548: Slice and range fusion, parallelizing bitarray and slice assignment
* PR #2516: Support general reductions in ParallelAccelerator
ParallelAccelerator fixes:
* PR #2540: Fix bug #2537
* PR #2566: Fix issue #2564.
* PR #2599: Fix nested multi-dimensional parfor type inference issue
* PR #2604: Fixes for stencil tests and cmath sin().
* PR #2605: Fixes issue #2603.
Additional features of note:
This release of Numba (and llvmlite) is updated to use LLVM version 5.0 as the
compiler back end, the main change to Numba to support this was the addition of
a custom symbol tracker to avoid the calls to LLVM's `ExecutionEngine` that was
crashing when asking for non-existent symbol addresses. Further, the conda
packages for this release of Numba are built using conda build version 3 and the
new compilers/recipe grammar that are present in that release.
* PR #2568: Update for LLVM 5
* PR #2607: Fixes abort when getting address to "nrt_unresolved_abort"
* PR #2615: Working towards conda build 3
Thanks to community feedback and bug reports, the following fixes were also
made.
Misc fixes/enhancements:
* PR #2534: Add tuple support to np.take.
* PR #2551: Rebranding fix
* PR #2552: relative doc links
* PR #2570: Fix issue #2561, handle missing successor on loop exit
* PR #2588: Fix #2555. Disable libpython.so linking on linux
* PR #2601: Update llvmlite version dependency.
* PR #2608: Fix potential cache file collision
* PR #2612: Fix NRT test failure due to increased overhead when running in coverage
* PR #2619: Fix dubious pthread_cond_signal not in lock
* PR #2622: Fix `np.nanmedian` for all NaN case.
* PR #2633: Fix markdown in CONTRIBUTING.md
* PR #2635: Make the dependency on compilers for AOT optional.
CUDA support fixes:
* PR #2523: Fix invalid cuda context in memory transfer calls in another thread
* PR #2575: Use CPU to initialize xoroshiro states for GPU RNG. Fixes #2573
* PR #2581: Fix cuda gufunc mishandling of scalar arg as array and out argument
Version 0.35.0
--------------
This release includes some exciting new features as part of the work
performed in partnership with Intel on ParallelAccelerator technology.
There are also some additions made to Numpy support and small but
significant fixes made as a result of considerable effort spent chasing bugs
and implementing stability improvements.
ParallelAccelerator:
NOTE: The ParallelAccelerator technology is under active development and should
be considered experimental.
New features relating to ParallelAccelerator, from work undertaken with Intel,
include support for a larger range of `np.random` functions in `parallel`
mode, printing Numpy arrays in no Python mode, the capacity to initialize Numpy
arrays directly from list comprehensions, and the axis argument to `.sum()`.
Documentation on the ParallelAccelerator technology implementation has also
been added. Further, a large amount of work on equivalence relations was
undertaken to enable runtime checks of broadcasting behaviours in parallel mode.
ParallelAccelerator features:
* PR #2400: Array comprehension
* PR #2405: Support printing Numpy arrays
* PR #2438: from Support more np.random functions in ParallelAccelerator
* PR #2482: Support for sum with axis in nopython mode.
* PR #2487: Adding developer documentation for ParallelAccelerator technology.
* PR #2492: Core PA refactor adds assertions for broadcast semantics
ParallelAccelerator fixes:
* PR #2478: Rename cfg before parfor translation (#2477)
* PR #2479: Fix broken array comprehension tests on unsupported platforms
* PR #2484: Fix array comprehension test on win64
* PR #2506: Fix for 32-bit machines.
Additional features of note:
Support for `np.take`, `np.finfo`, `np.iinfo` and `np.MachAr` in no Python
mode is added. Further, three new environment variables are added, two for
overriding CPU target/features and another to warn if `parallel=True` was set
no such transform was possible.
* PR #2490: Implement np.take and ndarray.take
* PR #2493: Display a warning if parallel=True is set but not possible.
* PR #2513: Add np.MachAr, np.finfo, np.iinfo
* PR #2515: Allow environ overriding of cpu target and cpu features.
Due to expansion of the test farm and a focus on fixing bugs, the following
fixes were also made.
Misc fixes/enhancements:
* PR #2455: add contextual information to runtime errors
* PR #2470: Fixes #2458, poor performance in np.median
* PR #2471: Ensure LLVM threadsafety in {g,}ufunc building.
* PR #2494: Update doc theme
* PR #2503: Remove hacky code added in 2482 and feature enhancement
* PR #2505: Serialise env mutation tests during multithreaded testing.
* PR #2520: Fix failing cpu-target override tests
CUDA support fixes:
* PR #2504: Enable CUDA toolkit version testing
* PR #2509: Disable tests generating code unavailable in lower CC versions.
* PR #2511: Fix Windows 64 bit CUDA tests.
Version 0.34.0
--------------
This release adds a significant set of new features arising from combined work
with Intel on ParallelAccelerator technology. It also adds list comprehension
and closure support, support for Numpy 1.13 and a new, faster, CUDA reduction
algorithm. For Linux users this release is the first to be built on Centos 6,
which will be the new base platform for future releases. Finally a number of
thread-safety, type inference and other smaller enhancements and bugs have been
fixed.
ParallelAccelerator features:
NOTE: The ParallelAccelerator technology is under active development and should
be considered experimental.
The ParallelAccelerator technology is accessed via a new "nopython" mode option
"parallel". The ParallelAccelerator technology attempts to identify operations
which have parallel semantics (for instance adding a scalar to a vector), fuse
together adjacent such operations, and then parallelize their execution across
a number of CPU cores. This is essentially auto-parallelization.
In addition to the auto-parallelization feature, explicit loop based
parallelism is made available through the use of `prange` in place of `range`
as a loop iterator.
More information and examples on both auto-parallelization and `prange` are
available in the documentation and examples directory respectively.
As part of the necessary work for ParallelAccelerator, support for closures
and list comprehensions is added:
* PR #2318: Transfer ParallelAccelerator technology to Numba
* PR #2379: ParallelAccelerator Core Improvements
* PR #2367: Add support for len(range(...))
* PR #2369: List comprehension
* PR #2391: Explicit Parallel Loop Support (prange)
The ParallelAccelerator features are available on all supported platforms and
Python versions with the exceptions of (with view of supporting in a future
release):
* The combination of Windows operating systems with Python 2.7.
* Systems running 32 bit Python.
CUDA support enhancements:
* PR #2377: New GPU reduction algorithm
CUDA support fixes:
* PR #2397: Fix #2393, always set alignment of cuda static memory regions
Misc Fixes:
* PR #2373, Issue #2372: 32-bit compatibility fix for parfor related code
* PR #2376: Fix #2375 missing stdint.h for py2.7 vc9
* PR #2378: Fix deadlock in parallel gufunc when kernel acquires the GIL.
* PR #2382: Forbid unsafe casting in bitwise operation
* PR #2385: docs: fix Sphinx errors
* PR #2396: Use 64-bit RHS operand for shift
* PR #2404: Fix threadsafety logic issue in ufunc compilation cache.
* PR #2424: Ensure consistent iteration order of blocks for type inference.
* PR #2425: Guard code to prevent the use of 'parallel' on win32 + py27
* PR #2426: Basic test for Enum member type recovery.
* PR #2433: Fix up the parfors tests with respect to windows py2.7
* PR #2442: Skip tests that need BLAS/LAPACK if scipy is not available.
* PR #2444: Add test for invalid array setitem
* PR #2449: Make the runtime initialiser threadsafe
* PR #2452: Skip CFG test on 64bit windows
Misc Enhancements:
* PR #2366: Improvements to IR utils
* PR #2388: Update README.rst to indicate the proper version of LLVM
* PR #2394: Upgrade to llvmlite 0.19.*
* PR #2395: Update llvmlite version to 0.19
* PR #2406: Expose environment object to ufuncs
* PR #2407: Expose environment object to target-context inside lowerer
* PR #2413: Add flags to pass through to conda build for buildbot
* PR #2414: Add cross compile flags to local recipe
* PR #2415: A few cleanups for rewrites
* PR #2418: Add getitem support for Enum classes
* PR #2419: Add support for returning enums in vectorize
* PR #2421: Add copyright notice for Intel contributed files.
* PR #2422: Patch code base to work with np 1.13 release
* PR #2448: Adds in warning message when using 'parallel' if cache=True
* PR #2450: Add test for keyword arg on .sum-like and .cumsum-like array
methods
Version 0.33.0
--------------
This release resolved several performance issues caused by atomic
reference counting operations inside loop bodies. New optimization
passes have been added to reduce the impact of these operations. We
observe speed improvements between 2x-10x in affected programs due to
the removal of unnecessary reference counting operations.
There are also several enhancements to the CUDA GPU support:
* A GPU random number generator based on `xoroshiro128+ algorithm <http://xoroshiro.di.unimi.it/>`_ is added.
See details and examples in :ref:`documentation <cuda-random>`.
* ``@cuda.jit`` CUDA kernels can now call ``@jit`` and ``@njit``
CPU functions and they will automatically be compiled as CUDA device
functions.
* CUDA IPC memory API is exposed for sharing memory between proceses.
See usage details in :ref:`documentation <cuda-ipc-memory>`.
Reference counting enhancements:
* PR #2346, Issue #2345, #2248: Add extra refcount pruning after inlining
* PR #2349: Fix refct pruning not removing refct op with tail call.
* PR #2352, Issue #2350: Add refcount pruning pass for function that does not need refcount
CUDA support enhancements:
* PR #2023: Supports CUDA IPC for device array
* PR #2343, Issue #2335: Allow CPU jit decorated function to be used as cuda device function
* PR #2347: Add random number generator support for CUDA device code
* PR #2361: Update autotune table for CC: 5.3, 6.0, 6.1, 6.2
Misc fixes:
* PR #2362: Avoid test failure due to typing to int32 on 32-bit platforms
* PR #2359: Fixed nogil example that threw a TypeError when executed.
* PR #2357, Issue #2356: Fix fragile test that depends on how the script is executed.
* PR #2355: Fix cpu dispatcher referenced as attribute of another module
* PR #2354: Fixes an issue with caching when function needs NRT and refcount pruning
* PR #2342, Issue #2339: Add warnings to inspection when it is used on unserialized cached code
* PR #2329, Issue #2250: Better handling of missing op codes
Misc enhancements:
* PR #2360: Adds missing values in error mesasge interp.
* PR #2353: Handle when get_host_cpu_features() raises RuntimeError
* PR #2351: Enable SVML for erf/erfc/gamma/lgamma/log2
* PR #2344: Expose error_model setting in jit decorator
* PR #2337: Align blocking terminate support for fork() with new TBB version
* PR #2336: Bump llvmlite version to 0.18
* PR #2330: Core changes in PR #2318
Version 0.32.0
--------------
In this release, we are upgrading to LLVM 4.0. A lot of work has been done
to fix many race-condition issues inside LLVM when the compiler is
used concurrently, which is likely when Numba is used with Dask.
Improvements:
* PR #2322: Suppress test error due to unknown but consistent error with tgamma
* PR #2320: Update llvmlite dependency to 0.17
* PR #2308: Add details to error message on why cuda support is disabled.
* PR #2302: Add os x to travis
* PR #2294: Disable remove_module on MCJIT due to memory leak inside LLVM
* PR #2291: Split parallel tests and recycle workers to tame memory usage
* PR #2253: Remove the pointer-stuffing hack for storing meminfos in lists
Fixes:
* PR #2331: Fix a bug in the GPU array indexing
* PR #2326: Fix #2321 docs referring to non-existing function.
* PR #2316: Fixing more race-condition problems
* PR #2315: Fix #2314. Relax strict type check to allow optional type.
* PR #2310: Fix race condition due to concurrent compilation and cache loading
* PR #2304: Fix intrinsic 1st arg not a typing.Context as stated by the docs.
* PR #2287: Fix int64 atomic min-max
* PR #2286: Fix #2285 `@overload_method` not linking dependent libs
* PR #2303: Missing import statements to interval-example.rst
Version 0.31.0
--------------
In this release, we added preliminary support for debugging with GDB
version >= 7.0. The feature is enabled by setting the ``debug=True`` compiler
option, which causes GDB compatible debug info to be generated.
The CUDA backend also gained limited debugging support so that source locations
are showed in memory-checking and profiling tools.
For details, see :ref:`numba-troubleshooting`.
Also, we added the ``fastmath=True`` compiler option to enable unsafe
floating-point transformations, which allows LLVM to auto-vectorize more code.
Other important changes include upgrading to LLVM 3.9.1 and adding support for
Numpy 1.12.
Improvements:
* PR #2281: Update for numpy1.12
* PR #2278: Add CUDA atomic.{max, min, compare_and_swap}
* PR #2277: Add about section to conda recipies to identify license and other
metadata in Anaconda Cloud
* PR #2271: Adopt itanium C++-style mangling for CPU and CUDA targets
* PR #2267: Add fastmath flags
* PR #2261: Support dtype.type
* PR #2249: Changes for llvm3.9
* PR #2234: Bump llvmlite requirement to 0.16 and add install_name_tool_fixer to
mviewbuf for OS X
* PR #2230: Add python3.6 to TravisCi
* PR #2227: Enable caching for gufunc wrapper
* PR #2170: Add debugging support
* PR #2037: inspect_cfg() for easier visualization of the function operation
Fixes:
* PR #2274: Fix nvvm ir patch in mishandling "load"
* PR #2272: Fix breakage to cuda7.5
* PR #2269: Fix caching of copy_strides kernel in cuda.reduce
* PR #2265: Fix #2263: error when linking two modules with dynamic globals
* PR #2252: Fix path separator in test
* PR #2246: Fix overuse of memory in some system with fork
* PR #2241: Fix #2240: __module__ in dynamically created function not a str
* PR #2239: Fix fingerprint computation failure preventing fallback
Version 0.30.1
--------------
This is a bug-fix release to enable Python 3.6 support. In addition,
there is now early Intel TBB support for parallel ufuncs when building from
source with TBBROOT defined. The TBB feature is not enabled in our official
builds.
Fixes:
* PR #2232: Fix name clashes with _Py_hashtable_xxx in Python 3.6.
Improvements:
* PR #2217: Add Intel TBB threadpool implementation for parallel ufunc.
Version 0.30.0
--------------
This release adds preliminary support for Python 3.6, but no official build is
available yet. A new system reporting tool (``numba --sysinfo``) is added to
provide system information to help core developers in replication and debugging.
See below for other improvements and bug fixes.
Improvements:
* PR #2209: Support Python 3.6.
* PR #2175: Support ``np.trace()``, ``np.outer()`` and ``np.kron()``.
* PR #2197: Support ``np.nanprod()``.
* PR #2190: Support caching for ufunc.
* PR #2186: Add system reporting tool.
Fixes:
* PR #2214, Issue #2212: Fix memory error with ndenumerate and flat iterators.
* PR #2206, Issue #2163: Fix ``zip()`` consuming extra elements in early
exhaustion.
* PR #2185, Issue #2159, #2169: Fix rewrite pass affecting objmode fallback.
* PR #2204, Issue #2178: Fix annotation for liftedloop.
* PR #2203: Fix Appveyor segfault with Python 3.5.
* PR #2202, Issue #2198: Fix target context not initialized when loading from
ufunc cache.
* PR #2172, Issue #2171: Fix optional type unpacking.
* PR #2189, Issue #2188: Disable freezing of big (>1MB) global arrays.
* PR #2180, Issue #2179: Fix invalid variable version in looplifting.
* PR #2156, Issue #2155: Fix divmod, floordiv segfault on CUDA.
Version 0.29.0
--------------
This release extends the support of recursive functions to include direct and
indirect recursion without explicit function type annotations. See new example
in `examples/mergesort.py`. Newly supported numpy features include array
stacking functions, np.linalg.eig* functions, np.linalg.matrix_power, np.roots
and array to array broadcasting in assignments.
This release depends on llvmlite 0.14.0 and supports CUDA 8 but it is not
required.
Improvements:
* PR #2130, #2137: Add type-inferred recursion with docs and examples.
* PR #2134: Add ``np.linalg.matrix_power``.
* PR #2125: Add ``np.roots``.
* PR #2129: Add ``np.linalg.{eigvals,eigh,eigvalsh}``.
* PR #2126: Add array-to-array broadcasting.
* PR #2069: Add hstack and related functions.
* PR #2128: Allow for vectorizing a jitted function. (thanks to @dhirschfeld)
* PR #2117: Update examples and make them test-able.
* PR #2127: Refactor interpreter class and its results.
Fixes:
* PR #2149: Workaround MSVC9.0 SP1 fmod bug kb982107.
* PR #2145, Issue #2009: Fixes kwargs for jitclass ``__init__`` method.
* PR #2150: Fix slowdown in objmode fallback.
* PR #2050, Issue #1259: Fix liveness problem with some generator loops.
* PR #2072, Issue #1995: Right shift of unsigned LHS should be logical.
* PR #2115, Issue #1466: Fix inspect_types() error due to mangled variable name.
* PR #2119, Issue #2118: Fix array type created from record-dtype.
* PR #2122, Issue #1808: Fix returning a generator due to datamodel error.
Version 0.28.1
--------------
This is a bug-fix release to resolve packaging issues with setuptools
dependency.
Version 0.28.0
--------------
Amongst other improvements, this version improves again the level of
support for linear algebra -- functions from the :mod:`numpy.linalg`
module. Also, our random generator is now guaranteed to be thread-safe
and fork-safe.
Improvements:
* PR #2019: Add the ``@intrinsic`` decorator to define low-level
subroutines callable from JIT functions (this is considered
a private API for now).
* PR #2059: Implement ``np.concatenate`` and ``np.stack``.
* PR #2048: Make random generation fork-safe and thread-safe, producing
independent streams of random numbers for each thread or process.
* PR #2031: Add documentation of floating-point pitfalls.
* Issue #2053: Avoid polling in parallel CPU target (fixes severe performance
regression on Windows).
* Issue #2029: Make default arguments fast.
* PR #2052: Add logging to the CUDA driver.
* PR #2049: Implement the built-in ``divmod()`` function.
* PR #2036: Implement the ``argsort()`` method on arrays.
* PR #2046: Improving CUDA memory management by deferring deallocations
until certain thresholds are reached, so as to avoid breaking asynchronous
execution.
* PR #2040: Switch the CUDA driver implementation to use CUDA's
"primary context" API.
* PR #2017: Allow ``min(tuple)`` and ``max(tuple)``.
* PR #2039: Reduce fork() detection overhead in CUDA.
* PR #2021: Handle structured dtypes with titles.
* PR #1996: Rewrite looplifting as a transformation on Numba IR.
* PR #2014: Implement ``np.linalg.matrix_rank``.
* PR #2012: Implement ``np.linalg.cond``.
* PR #1985: Rewrite even trivial array expressions, which opens the door
for other optimizations (for example, ``array ** 2`` can be converted
into ``array * array``).
* PR #1950: Have ``typeof()`` always raise ValueError on failure.
Previously, it would either raise or return None, depending on the input.
* PR #1994: Implement ``np.linalg.norm``.
* PR #1987: Implement ``np.linalg.det`` and ``np.linalg.slogdet``.
* Issue #1979: Document integer width inference and how to workaround.
* PR #1938: Numba is now compatible with LLVM 3.8.
* PR #1967: Restrict ``np.linalg`` functions to homogeneous dtypes. Users
wanting to pass mixed-typed inputs have to convert explicitly, which
makes the performance implications more obvious.
Fixes:
* PR #2006: ``array(float32) ** int`` should return ``array(float32)``.
* PR #2044: Allow reshaping empty arrays.
* Issue #2051: Fix refcounting issue when concatenating tuples.
* Issue #2000: Make Numpy optional for setup.py, to allow ``pip install``
to work without Numpy pre-installed.
* PR #1989: Fix assertion in ``Dispatcher.disable_compile()``.
* Issue #2028: Ignore filesystem errors when caching from multiple processes.
* Issue #2003: Allow unicode variable and function names (on Python 3).
* Issue #1998: Fix deadlock in parallel ufuncs that reacquire the GIL.
* PR #1997: Fix random crashes when AOT compiling on certain Windows platforms.
* Issue #1988: Propagate jitclass docstring.
* Issue #1933: Ensure array constants are emitted with the right alignment.
Version 0.27.0
--------------
Improvements:
* Issue #1976: improve error message when non-integral dimensions are given
to a CUDA kernel.
* PR #1970: Optimize the power operator with a static exponent.
* PR #1710: Improve contextual information for compiler errors.
* PR #1961: Support printing constant strings.
* PR #1959: Support more types in the print() function.
* PR #1823: Support ``compute_50`` in CUDA backend.
* PR #1955: Support ``np.linalg.pinv``.
* PR #1896: Improve the ``SmartArray`` API.
* PR #1947: Support ``np.linalg.solve``.
* Issue #1943: Improve error message when an argument fails typing.4
* PR #1927: Support ``np.linalg.lstsq``.
* PR #1934: Use system functions for hypot() where possible, instead of our
own implementation.
* PR #1929: Add cffi support to ``@cfunc`` objects.
* PR #1932: Add user-controllable thread pool limits for parallel CPU target.
* PR #1928: Support self-recursion when the signature is explicit.
* PR #1890: List all lowering implementations in the developer docs.
* Issue #1884: Support ``np.lib.stride_tricks.as_strided()``.
Fixes:
* Issue #1960: Fix sliced assignment when source and destination areas are
overlapping.
* PR #1963: Make CUDA print() atomic.
* PR #1956: Allow 0d array constants.
* Issue #1945: Allow using Numpy ufuncs in AOT compiled code.
* Issue #1916: Fix documentation example for ``@generated_jit``.
* Issue #1926: Fix regression when caching functions in an IPython session.
* Issue #1923: Allow non-intp integer arguments to carray() and farray().
* Issue #1908: Accept non-ASCII unicode docstrings on Python 2.
* Issue #1874: Allow ``del container[key]`` in object mode.
* Issue #1913: Fix set insertion bug when the lookup chain contains deleted
entries.
* Issue #1911: Allow function annotations on jitclass methods.
Version 0.26.0
--------------
This release adds support for ``cfunc`` decorator for exporting numba jitted
functions to 3rd party API that takes C callbacks. Most of the overhead of
using jitclasses inside the interpreter are eliminated. Support for
decompositions in ``numpy.linalg`` are added. Finally, Numpy 1.11 is
supported.
Improvements:
* PR #1889: Export BLAS and LAPACK wrappers for pycc.
* PR #1888: Faster array power.
* Issue #1867: Allow "out" keyword arg for dufuncs.
* PR #1871: ``carray()`` and ``farray()`` for creating arrays from pointers.
* PR #1855: ``@cfunc`` decorator for exporting as ctypes function.
* PR #1862: Add support for ``numpy.linalg.qr``.
* PR #1851: jitclass support for '_' and '__' prefixed attributes.
* PR #1842: Optimize jitclass in Python interpreter.
* Issue #1837: Fix CUDA simulator issues with device function.
* PR #1839: Add support for decompositions from ``numpy.linalg``.
* PR #1829: Support Python enums.
* PR #1828: Add support for ``numpy.random.rand()``` and
``numpy.random.randn()``
* Issue #1825: Use of 0-darray in place of scalar index.
* Issue #1824: Scalar arguments to object mode gufuncs.
* Issue #1813: Let bitwise bool operators return booleans, not integers.
* Issue #1760: Optional arguments in generators.
* PR #1780: Numpy 1.11 support.
Version 0.25.0
--------------
This release adds support for ``set`` objects in nopython mode. It also
adds support for many missing Numpy features and functions. It improves
Numba's compatibility and performance when using a distributed execution
framework such as dask, distributed or Spark. Finally, it removes
compatibility with Python 2.6, Python 3.3 and Numpy 1.6.
Improvements:
* Issue #1800: Add erf(), erfc(), gamma() and lgamma() to CUDA targets.
* PR #1793: Implement more Numpy functions: np.bincount(), np.diff(),
np.digitize(), np.histogram(), np.searchsorted() as well as NaN-aware
reduction functions (np.nansum(), np.nanmedian(), etc.)
* PR #1789: Optimize some reduction functions such as np.sum(), np.prod(),
np.median(), etc.
* PR #1752: Make CUDA features work in dask, distributed and Spark.
* PR #1787: Support np.nditer() for fast multi-array indexing with
broadcasting.
* PR #1799: Report JIT-compiled functions as regular Python functions
when profiling (allowing to see the filename and line number where a
function is defined).
* PR #1782: Support np.any() and np.all().
* Issue #1788: Support the iter() and next() built-in functions.
* PR #1778: Support array.astype().
* Issue #1775: Allow the user to set the target CPU model for AOT compilation.
* PR #1758: Support creating random arrays using the ``size`` parameter
to the np.random APIs.
* PR #1757: Support len() on array.flat objects.
* PR #1749: Remove Numpy 1.6 compatibility.
* PR #1748: Remove Python 2.6 and 3.3 compatibility.
* PR #1735: Support the ``not in`` operator as well as operator.contains().
* PR #1724: Support homogeneous sets in nopython mode.
* Issue #875: make compilation of array constants faster.
Fixes:
* PR #1795: Fix a massive performance issue when calling Numba functions
with distributed, Spark or a similar mechanism using serialization.
* Issue #1784: Make jitclasses usable with NUMBA_DISABLE_JIT=1.
* Issue #1786: Allow using linear algebra functions when profiling.
* Issue #1796: Fix np.dot() memory leak on non-contiguous inputs.
* PR #1792: Fix static negative indexing of tuples.
* Issue #1771: Use fallback cache directory when __pycache__ isn't writable,
such as when user code is installed in a system location.
* Issue #1223: Use Numpy error model in array expressions (e.g. division
by zero returns ``inf`` or ``nan`` instead of raising an error).
* Issue #1640: Fix np.random.binomial() for large n values.
* Issue #1643: Improve error reporting when passing an invalid spec to
``@jitclass``.
* PR #1756: Fix slicing with a negative step and an omitted start.
Version 0.24.0
--------------
This release introduces several major changes, including the ``@generated_jit``
decorator for flexible specializations as with Julia's "``@generated``" macro,
or the SmartArray array wrapper type that allows seamless transfer of array
data between the CPU and the GPU.
This will be the last version to support Python 2.6, Python 3.3 and Numpy 1.6.
Improvements:
* PR #1723: Improve compatibility of JIT functions with the Python profiler.
* PR #1509: Support array.ravel() and array.flatten().
* PR #1676: Add SmartArray type to support transparent data management in
multiple address spaces (host & GPU).
* PR #1689: Reduce startup overhead of importing Numba.
* PR #1705: Support registration of CFFI types as corresponding to known
Numba types.
* PR #1686: Document the extension API.
* PR #1698: Improve warnings raised during type inference.
* PR #1697: Support np.dot() and friends on non-contiguous arrays.
* PR #1692: cffi.from_buffer() improvements (allow more pointer types,
allow non-Numpy buffer objects).
* PR #1648: Add the ``@generated_jit`` decorator.
* PR #1651: Implementation of np.linalg.inv using LAPACK. Thanks to
Matthieu Dartiailh.
* PR #1674: Support np.diag().
* PR #1673: Improve error message when looking up an attribute on an
unknown global.
* Issue #1569: Implement runtime check for the LLVM locale bug.
* PR #1612: Switch to LLVM 3.7 in sync with llvmlite.
* PR #1624: Allow slice assignment of sequence to array.
* PR #1622: Support slicing tuples with a constant slice.
Fixes:
* Issue #1722: Fix returning an optional boolean (bool or None).
* Issue #1734: NRT decref bug when variable is del'ed before being defined,
leading to a possible memory leak.
* PR #1732: Fix tuple getitem regression for CUDA target.
* PR #1718: Mishandling of optional to optional casting.
* PR #1714: Fix .compile() on a JIT function not respecting ._can_compile.
* Issue #1667: Fix np.angle() on arrays.
* Issue #1690: Fix slicing with an omitted stop and a negative step value.
* PR #1693: Fix gufunc bug in handling scalar formal arg with non-scalar
input value.
* PR #1683: Fix parallel testing under Windows.
* Issue #1616: Use system-provided versions of C99 math where possible.
* Issue #1652: Reductions of bool arrays (e.g. sum() or mean()) should
return integers or floats, not bools.
* Issue #1664: Fix regression when indexing a record array with a constant
index.
* PR #1661: Disable AVX on old Linux kernels.
* Issue #1636: Allow raising an exception looked up on a module.
Version 0.23.1
--------------
This is a bug-fix release to address several regressions introduced
in the 0.23.0 release, and a couple other issues.
Fixes:
* Issue #1645: CUDA ufuncs were broken in 0.23.0.
* Issue #1638: Check tuple sizes when passing a list of tuples.
* Issue #1630: Parallel ufunc would keep eating CPU even after finishing
under Windows.
* Issue #1628: Fix ctypes and cffi tests under Windows with Python 3.5.
* Issue #1627: Fix xrange() support.
* PR #1611: Rewrite variable liveness analysis.
* Issue #1610: Allow nested calls between explicitly-typed ufuncs.
* Issue #1593: Fix `*args` in object mode.
Version 0.23.0
--------------
This release introduces JIT classes using the new ``@jitclass`` decorator,
allowing user-defined structures for nopython mode. Other improvements
and bug fixes are listed below.
Improvements:
* PR #1609: Speed up some simple math functions by inlining them
in their caller
* PR #1571: Implement JIT classes
* PR #1584: Improve typing of array indexing
* PR #1583: Allow printing booleans
* PR #1542: Allow negative values in np.reshape()
* PR #1560: Support vector and matrix dot product, including ``np.dot()``
and the ``@`` operator in Python 3.5
* PR #1546: Support field lookup on record arrays and scalars (i.e.
``array['field']`` in addition to ``array.field``)
* PR #1440: Support the HSA wavebarrier() and activelanepermute_wavewidth()
intrinsics
* PR #1540: Support np.angle()
* PR #1543: Implement CPU multithreaded gufuncs (target="parallel")
* PR #1551: Allow scalar arguments in np.where(), np.empty_like().
* PR #1516: Add some more examples from NumbaPro
* PR #1517: Support np.sinc()
Fixes:
* Issue #1603: Fix calling a non-cached function from a cached function
* Issue #1594: Ensure a list is homogeneous when unboxing
* Issue #1595: Replace deprecated use of get_pointer_to_function()
* Issue #1586: Allow tests to be run by different users on the same machine
* Issue #1587: Make CudaAPIError picklable
* Issue #1568: Fix using Numba from inside Visual Studio 2015
* Issue #1559: Fix serializing a jit function referring a renamed module
* PR #1508: Let reshape() accept integer argument(s), not just a tuple
* Issue #1545: Improve error checking when unboxing list objects
* Issue #1538: Fix array broadcasting in CUDA gufuncs
* Issue #1526: Fix a reference count handling bug
Version 0.22.1
--------------
This is a bug-fix release to resolve some packaging issues and other
problems found in the 0.22.0 release.
Fixes:
* PR #1515: Include MANIFEST.in in MANIFEST.in so that sdist still works from
source tar files.
* PR #1518: Fix reference counting bug caused by hidden alias
* PR #1519: Fix erroneous assert when passing nopython=True to guvectorize.
* PR #1521: Fix cuda.test()
Version 0.22.0
--------------
This release features several highlights: Python 3.5 support, Numpy 1.10
support, Ahead-of-Time compilation of extension modules, additional
vectorization features that were previously only available with the
proprietary extension NumbaPro, improvements in array indexing.
Improvements:
* PR #1497: Allow scalar input type instead of size-1 array to @guvectorize
* PR #1480: Add distutils support for AOT compilation
* PR #1460: Create a new API for Ahead-of-Time (AOT) compilation
* PR #1451: Allow passing Python lists to JIT-compiled functions, and
reflect mutations on function return
* PR #1387: Numpy 1.10 support
* PR #1464: Support cffi.FFI.from_buffer()
* PR #1437: Propagate errors raised from Numba-compiled ufuncs; also,
let "division by zero" and other math errors produce a warning instead
of exiting the function early
* PR #1445: Support a subset of fancy indexing
* PR #1454: Support "out-of-line" CFFI modules
* PR #1442: Improve array indexing to support more kinds of basic slicing
* PR #1409: Support explicit CUDA memory fences
* PR #1435: Add support for vectorize() and guvectorize() with HSA
* PR #1432: Implement numpy.nonzero() and numpy.where()
* PR #1416: Add support for vectorize() and guvectorize() with CUDA,
as originally provided in NumbaPro
* PR #1424: Support in-place array operators
* PR #1414: Python 3.5 support
* PR #1404: Add the parallel ufunc functionality originally provided in
NumbaPro
* PR #1393: Implement sorting on arrays and lists
* PR #1415: Add functions to estimate the occupancy of a CUDA kernel
* PR #1360: The JIT cache now stores the compiled object code, yielding
even larger speedups.
* PR #1402: Fixes for the ARMv7 (armv7l) architecture under Linux
* PR #1400: Add the cuda.reduce() decorator originally provided in NumbaPro
Fixes:
* PR #1483: Allow np.empty_like() and friends on non-contiguous arrays
* Issue #1471: Allow caching JIT functions defined in IPython
* PR #1457: Fix flat indexing of boolean arrays
* PR #1421: Allow calling Numpy ufuncs, without an explicit output, on
non-contiguous arrays
* Issue #1411: Fix crash when unpacking a tuple containing a Numba-allocated array
* Issue #1394: Allow unifying range_state32 and range_state64
* Issue #1373: Fix code generation error on lists of bools
Version 0.21.0
--------------
This release introduces support for AMD's Heterogeneous System Architecture,
which allows memory to be shared directly between the CPU and the GPU.
Other major enhancements are support for lists and the introduction of
an opt-in compilation cache.
Improvements:
* PR #1391: Implement print() for CUDA code
* PR #1366: Implement integer typing enhancement proposal (NBEP 1)
* PR #1380: Support the one-argument type() builtin
* PR #1375: Allow boolean evaluation of lists and tuples
* PR #1371: Support array.view() in CUDA mode
* PR #1369: Support named tuples in nopython mode
* PR #1250: Implement numpy.median().
* PR #1289: Make dispatching faster when calling a JIT-compiled function
from regular Python
* Issue #1226: Improve performance of integer power
* PR #1321: Document features supported with CUDA
* PR #1345: HSA support
* PR #1343: Support lists in nopython mode
* PR #1356: Make Numba-allocated memory visible to tracemalloc
* PR #1363: Add an environment variable NUMBA_DEBUG_TYPEINFER
* PR #1051: Add an opt-in, per-function compilation cache
Fixes:
* Issue #1372: Some array expressions would fail rewriting when involved
the same variable more than once, or a unary operator
* Issue #1385: Allow CUDA local arrays to be declared anywhere in a function
* Issue #1285: Support datetime64 and timedelta64 in Numpy reduction functions
* Issue #1332: Handle the EXTENDED_ARG opcode.
* PR #1329: Handle the ``in`` operator in object mode
* Issue #1322: Fix augmented slice assignment on Python 2
* PR #1357: Fix slicing with some negative bounds or step values.
Version 0.20.0
--------------
This release updates Numba to use LLVM 3.6 and CUDA 7 for CUDA support.
Following the platform deprecation in CUDA 7, Numba's CUDA feature is no
longer supported on 32-bit platforms. The oldest supported version of
Windows is Windows 7.
Improvements:
* Issue #1203: Support indexing ndarray.flat
* PR #1200: Migrate cgutils to llvmlite
* PR #1190: Support more array methods: .transpose(), .T, .copy(), .reshape(), .view()
* PR #1214: Simplify setup.py and avoid manual maintenance
* PR #1217: Support datetime64 and timedelta64 constants
* PR #1236: Reload environment variables when compiling
* PR #1225: Various speed improvements in generated code
* PR #1252: Support cmath module in CUDA
* PR #1238: Use 32-byte aligned allocator to optimize for AVX
* PR #1258: Support numpy.frombuffer()
* PR #1274: Use TravisCI container infrastructure for lower wait time
* PR #1279: Micro-optimize overload resolution in call dispatch
* Issue #1248: Improve error message when return type unification fails
Fixes:
* Issue #1131: Handling of negative zeros in np.conjugate() and np.arccos()
* Issue #1188: Fix slow array return
* Issue #1164: Avoid warnings from CUDA context at shutdown
* Issue #1229: Respect the writeable flag in arrays
* Issue #1244: Fix bug in refcount pruning pass
* Issue #1251: Fix partial left-indexing of Fortran contiguous array
* Issue #1264: Fix compilation error in array expression
* Issue #1254: Fix error when yielding array objects
* Issue #1276: Fix nested generator use
Version 0.19.2
--------------
This release fixes the source distribution on pypi. The only change is in the
setup.py file. We do not plan to provide a conda package as this release is
essentially the same as 0.19.1 for conda users.
Version 0.19.1
--------------
* Issue #1196:
* fix double-free segfault due to redundant variable deletion in the
Numba IR (#1195)
* fix use-after-delete in array expression rewrite pass
Version 0.19.0
--------------
This version introduces memory management in the Numba runtime, allowing to
allocate new arrays inside Numba-compiled functions. There is also a rework
of the ufunc infrastructure, and an optimization pass to collapse cascading
array operations into a single efficient loop.
.. warning::
Support for Windows XP and Vista with all compiler targets and support
for 32-bit platforms (Win/Mac/Linux) with the CUDA compiler target are
deprecated. In the next release of Numba, the oldest version of Windows
supported will be Windows 7. CPU compilation will remain supported
on 32-bit Linux and Windows platforms.
Known issues:
* There are some performance regressions in very short running ``nopython``
functions due to the additional overhead incurred by memory management.
We will work to reduce this overhead in future releases.
Features:
* Issue #1181: Add a Frequently Asked Questions section to the documentation.
* Issue #1162: Support the ``cumsum()`` and ``cumprod()`` methods on Numpy
arrays.
* Issue #1152: Support the ``*args`` argument-passing style.
* Issue #1147: Allow passing character sequences as arguments to
JIT-compiled functions.
* Issue #1110: Shortcut deforestation and loop fusion for array expressions.
* Issue #1136: Support various Numpy array constructors, for example
numpy.zeros() and numpy.zeros_like().
* Issue #1127: Add a CUDA simulator running on the CPU, enabled with the
NUMBA_ENABLE_CUDASIM environment variable.
* Issue #1086: Allow calling standard Numpy ufuncs without an explicit
output array from ``nopython`` functions.
* Issue #1113: Support keyword arguments when calling numpy.empty()
and related functions.
* Issue #1108: Support the ``ctypes.data`` attribute of Numpy arrays.
* Issue #1077: Memory management for array allocations in ``nopython`` mode.
* Issue #1105: Support calling a ctypes function that takes ctypes.py_object
parameters.
* Issue #1084: Environment variable NUMBA_DISABLE_JIT disables compilation
of ``@jit`` functions, instead calling into the Python interpreter
when called. This allows easier debugging of multiple jitted functions.
* Issue #927: Allow gufuncs with no output array.
* Issue #1097: Support comparisons between tuples.
* Issue #1075: Numba-generated ufuncs can now be called from ``nopython``
functions.
* Issue #1062: ``@vectorize`` now allows omitting the signatures, and will
compile the required specializations on the fly (like ``@jit`` does).
* Issue #1027: Support numpy.round().
* Issue #1085: Allow returning a character sequence (as fetched from a
structured array) from a JIT-compiled function.
Fixes:
* Issue #1170: Ensure ``ndindex()``, ``ndenumerate()`` and ``ndarray.flat``
work properly inside generators.
* Issue #1151: Disallow unpacking of tuples with the wrong size.
* Issue #1141: Specify install dependencies in setup.py.
* Issue #1106: Loop-lifting would fail when the lifted loop does not
produce any output values for the function tail.
* Issue #1103: Fix mishandling of some inputs when a JIT-compiled function
is called with multiple array layouts.
* Issue #1089: Fix range() with large unsigned integers.
* Issue #1088: Install entry-point scripts (numba, pycc) from the conda
build recipe.
* Issue #1081: Constant structured scalars now work properly.
* Issue #1080: Fix automatic promotion of booleans to integers.
Version 0.18.2
--------------
Bug fixes:
* Issue #1073: Fixes missing template file for HTML annotation
* Issue #1074: Fixes CUDA support on Windows machine due to NVVM API mismatch
Version 0.18.1
--------------
Version 0.18.0 is not officially released.
This version removes the old deprecated and undocumented ``argtypes`` and
``restype`` arguments to the ``@jit`` decorator. Function signatures
should always be passed as the first argument to ``@jit``.
Features:
* Issue #960: Add inspect_llvm() and inspect_asm() methods to JIT-compiled
functions: they output the LLVM IR and the native assembler source of the
compiled function, respectively.
* Issue #990: Allow passing tuples as arguments to JIT-compiled functions
in ``nopython`` mode.
* Issue #774: Support two-argument round() in ``nopython`` mode.
* Issue #987: Support missing functions from the math module in nopython
mode: frexp(), ldexp(), gamma(), lgamma(), erf(), erfc().
* Issue #995: Improve code generation for round() on Python 3.
* Issue #981: Support functions from the random and numpy.random modules
in ``nopython`` mode.
* Issue #979: Add cuda.atomic.max().
* Issue #1006: Improve exception raising and reporting. It is now allowed
to raise an exception with an error message in ``nopython`` mode.
* Issue #821: Allow ctypes- and cffi-defined functions as arguments to
``nopython`` functions.
* Issue #901: Allow multiple explicit signatures with ``@jit``. The
signatures must be passed in a list, as with ``@vectorize``.
* Issue #884: Better error message when a JIT-compiled function is called
with the wrong types.
* Issue #1010: Simpler and faster CUDA argument marshalling thanks to a
refactoring of the data model.
* Issue #1018: Support arrays of scalars inside Numpy structured types.
* Issue #808: Reduce Numba import time by half.
* Issue #1021: Support the buffer protocol in ``nopython`` mode.
Buffer-providing objects, such as ``bytearray``, ``array.array`` or
``memoryview`` support array-like operations such as indexing and iterating.
Furthermore, some standard attributes on the ``memoryview`` object are
supported.
* Issue #1030: Support nested arrays in Numpy structured arrays.
* Issue #1033: Implement the inspect_types(), inspect_llvm() and inspect_asm()
methods for CUDA kernels.
* Issue #1029: Support Numpy structured arrays with CUDA as well.
* Issue #1034: Support for generators in nopython and object mode.
* Issue #1044: Support default argument values when calling Numba-compiled
functions.
* Issue #1048: Allow calling Numpy scalar constructors from CUDA functions.
* Issue #1047: Allow indexing a multi-dimensional array with a single integer,
to take a view.
* Issue #1050: Support len() on tuples.
* Issue #1011: Revive HTML annotation.
Fixes:
* Issue #977: Assignment optimization was too aggressive.
* Issue #561: One-argument round() now returns an int on Python 3.
* Issue #1001: Fix an unlikely bug where two closures with the same name
and id() would compile to the same LLVM function name, despite different
closure values.
* Issue #1006: Fix reference leak when a JIT-compiled function is disposed of.
* Issue #1017: Update instructions for CUDA in the README.
* Issue #1008: Generate shorter LLVM type names to avoid segfaults with CUDA.
* Issue #1005: Properly clean up references when raising an exception from
object mode.
* Issue #1041: Fix incompatibility between Numba and the third-party
library "future".
* Issue #1053: Fix the size attribute of CUDA shared arrays.
Version 0.17.0
--------------
The major focus in this release has been a rewrite of the documentation.
The new documentation is better structured and has more detailed coverage
of Numba features and APIs. It can be found online at
https://numba.pydata.org/numba-doc/dev/index.html
Features:
* Issue #895: LLVM can now inline nested function calls in ``nopython`` mode.
* Issue #863: CUDA kernels can now infer the types of their arguments
("autojit"-like).
* Issue #833: Support numpy.{min,max,argmin,argmax,sum,mean,var,std}
in ``nopython`` mode.
* Issue #905: Add a ``nogil`` argument to the ``@jit`` decorator, to
release the GIL in ``nopython`` mode.
* Issue #829: Add a ``identity`` argument to ``@vectorize`` and
``@guvectorize``, to set the identity value of the ufunc.
* Issue #843: Allow indexing 0-d arrays with the empty tuple.
* Issue #933: Allow named arguments, not only positional arguments, when
calling a Numba-compiled function.
* Issue #902: Support numpy.ndenumerate() in ``nopython`` mode.
* Issue #950: AVX is now enabled by default except on Sandy Bridge and
Ivy Bridge CPUs, where it can produce slower code than SSE.
* Issue #956: Support constant arrays of structured type.
* Issue #959: Indexing arrays with floating-point numbers isn't allowed
anymore.
* Issue #955: Add support for 3D CUDA grids and thread blocks.
* Issue #902: Support numpy.ndindex() in ``nopython`` mode.
* Issue #951: Numpy number types (``numpy.int8``, etc.) can be used as
constructors for type conversion in ``nopython`` mode.
Fixes:
* Issue #889: Fix ``NUMBA_DUMP_ASSEMBLY`` for the CUDA backend.
* Issue #903: Fix calling of stdcall functions with ctypes under Windows.
* Issue #908: Allow lazy-compiling from several threads at once.
* Issue #868: Wrong error message when multiplying a scalar by a non-scalar.
* Issue #917: Allow vectorizing with datetime64 and timedelta64 in the
signature (only with unit-less values, though, because of a Numpy limitation).
* Issue #431: Allow overloading of cuda device function.
* Issue #917: Print out errors occurred in object mode ufuncs.
* Issue #923: Numba-compiled ufuncs now inherit the name and doc of the
original Python function.
* Issue #928: Fix boolean return value in nested calls.
* Issue #915: ``@jit`` called with an explicit signature with a mismatching
type of arguments now raises an error.
* Issue #784: Fix the truth value of NaNs.
* Issue #953: Fix using shared memory in more than one function (kernel or
device).
* Issue #970: Fix an uncommon double to uint64 conversion bug on CentOS5
32-bit (C compiler issue).
Version 0.16.0
--------------
This release contains a major refactor to switch from llvmpy to `llvmlite <https://github.com/numba/llvmlite>`_
as our code generation backend. The switch is necessary to reconcile
different compiler requirements for LLVM 3.5 (needs C++11) and Python
extensions (need specific compiler versions on Windows). As a bonus, we have
found the use of llvmlite speeds up compilation by a factor of 2!
Other Major Changes:
* Faster dispatch for numpy structured arrays
* Optimized array.flat()
* Improved CPU feature selection
* Fix constant tuple regression in macro expansion code
Known Issues:
* AVX code generation is still disabled by default due to performance
regressions when operating on misaligned NumPy arrays. We hope to have a
workaround in the future.
* In *extremely* rare circumstances, a `known issue with LLVM 3.5 <http://llvm.org/bugs/show_bug.cgi?id=21423>`_
code generation can cause an ELF relocation error on 64-bit Linux systems.
Version 0.15.1
--------------
(This was a bug-fix release that superceded version 0.15 before it was
announced.)
Fixes:
* Workaround for missing __ftol2 on Windows XP.
* Do not lift loops for compilation that contain break statements.
* Fix a bug in loop-lifting when multiple values need to be returned to
the enclosing scope.
* Handle the loop-lifting case where an accumulator needs to be updated when
the loop count is zero.
Version 0.15
------------
Features:
* Support for the Python ``cmath`` module. (NumPy complex functions were
already supported.)
* Support for ``.real``, ``.imag``, and `.conjugate()`` on non-complex
numbers.
* Add support for ``math.isfinite()`` and ``math.copysign()``.
* Compatibility mode: If enabled (off by default), a failure to compile in
object mode will fall back to using the pure Python implementation of the
function.
* *Experimental* support for serializing JIT functions with cloudpickle.
* Loop-jitting in object mode now works with loops that modify scalars that
are accessed after the loop, such as accumulators.
* ``@vectorize`` functions can be compiled in object mode.
* Numba can now be built using the `Visual C++ Compiler for Python 2.7 <http://aka.ms/vcpython27>`_
on Windows platforms.
* CUDA JIT functions can be returned by factory functions with variables in
the closure frozen as constants.
* Support for "optional" types in nopython mode, which allow ``None`` to be a
valid value.
Fixes:
* If nopython mode compilation fails for any reason, automatically fall back
to object mode (unless nopython=True is passed to @jit) rather than raise
an exeception.
* Allow function objects to be returned from a function compiled in object
mode.
* Fix a linking problem that caused slower platform math functions (such as
``exp()``) to be used on Windows, leading to performance regressions against
NumPy.
* ``min()`` and ``max()`` no longer accept scalars arguments in nopython mode.
* Fix handling of ambigous type promotion among several compiled versions of a
JIT function. The dispatcher will now compile a new version to resolve the
problem. (issue #776)
* Fix float32 to uint64 casting bug on 32-bit Linux.
* Fix type inference to allow forced casting of return types.
* Allow the shape of a 1D ``cuda.shared.array`` and ``cuda.local.array`` to be
a one-element tuple.
* More correct handling of signed zeros.
* Add custom implementation of ``atan2()`` on Windows to handle special cases
properly.
* Eliminated race condition in the handling of the pagelocked staging area
used when transferring CUDA arrays.
* Fix non-deterministic type unification leading to varying performance.
(issue #797)
Version 0.14
------------
Features:
* Support for nearly all the Numpy math functions (including comparison,
logical, bitwise and some previously missing float functions) in nopython mode.
* The Numpy datetime64 and timedelta64 dtypes are supported in nopython mode
with Numpy 1.7 and later.
* Support for Numpy math functions on complex numbers in nopython mode.
* ndarray.sum() is supported in nopython mode.
* Better error messages when unsupported types are used in Numpy math functions.
* Set NUMBA_WARNINGS=1 in the environment to see which functions are compiled
in object mode vs. nopython mode.
* Add support for the two-argument pow() builtin function in nopython mode.
* New developer documentation describing how Numba works, and how to
add new types.
* Support for Numpy record arrays on the GPU. (Note: Improper alignment of dtype
fields will cause an exception to be raised.)
* Slices on GPU device arrays.
* GPU objects can be used as Python context managers to select the active
device in a block.
* GPU device arrays can be bound to a CUDA stream. All subsequent operations
(such as memory copies) will be queued on that stream instead of the default.
This can prevent unnecessary synchronization with other streams.
Fixes:
* Generation of AVX instructions has been disabled to avoid performance bugs
when calling external math functions that may use SSE instructions,
especially on OS X.
* JIT functions can be removed by the garbage collector when they are no
longer accessible.
* Various other reference counting fixes to prevent memory leaks.
* Fixed handling of exception when input argument is out of range.
* Prevent autojit functions from making unsafe numeric conversions when
called with different numeric types.
* Fix a compilation error when an unhashable global value is accessed.
* Gracefully handle failure to enable faulthandler in the IPython Notebook.
* Fix a bug that caused loop lifting to fail if the loop was inside an
``else`` block.
* Fixed a problem with selecting CUDA devices in multithreaded programs on
Linux.
* The ``pow()`` function (and ``**`` operation) applied to two integers now
returns an integer rather than a float.
* Numpy arrays using the object dtype no longer cause an exception in the
autojit.
* Attempts to write to a global array will cause compilation to fall back
to object mode, rather than attempt and fail at nopython mode.
* ``range()`` works with all negative arguments (ex: ``range(-10, -12, -1)``)
Version 0.13.4
--------------
Features:
* Setting and deleting attributes in object mode
* Added documentation of supported and currently unsupported numpy ufuncs
* Assignment to 1-D numpy array slices
* Closure variables and functions can be used in object mode
* All numeric global values in modules can be used as constants in JIT
compiled code
* Support for the start argument in enumerate()
* Inplace arithmetic operations (+=, -=, etc.)
* Direct iteration over a 1D numpy array (e.g. "for x in array: ...")
in nopython mode
Fixes:
* Support for NVIDIA compute capability 5.0 devices (such as the GTX 750)
* Vectorize no longer crashes/gives an error when bool\_ is used as return type
* Return the correct dictionary when globals() is used in JIT functions
* Fix crash bug when creating dictionary literals in object
* Report more informative error message on import if llvmpy is too old
* Temporarily disable pycc --header, which generates incorrect function
signatures.
Version 0.13.3
--------------
Features:
* Support for enumerate() and zip() in nopython mode
* Increased LLVM optimization of JIT functions to -O1, enabling automatic
vectorization of compiled code in some cases
* Iteration over tuples and unpacking of tuples in nopython mode
* Support for dict and set (Python >= 2.7) literals in object mode
Fixes:
* JIT functions have the same __name__ and __doc__ as the original function.
* Numerous improvements to better match the data types and behavior of Python
math functions in JIT compiled code on different platforms.
* Importing Numba will no longer throw an exception if the CUDA driver is
present, but cannot be initialized.
* guvectorize now properly supports functions with scalar arguments.
* CUDA driver is lazily initialized
Version 0.13.2
--------------
Features:
* @vectorize ufunc now can generate SIMD fast path for unit strided array
* Added cuda.gridsize
* Added preliminary exception handling (raise exception class)
Fixes:
* UNARY_POSITIVE
* Handling of closures and dynamically generated functions
* Global None value
Version 0.13.1
--------------
Features:
* Initial support for CUDA array slicing
Fixes:
* Indirectly fixes numbapro when the system has a incompatible CUDA driver
* Fix numba.cuda.detect
* Export numba.intp and numba.intc
Version 0.13
------------
Features:
* Opensourcing NumbaPro CUDA python support in `numba.cuda`
* Add support for ufunc array broadcasting
* Add support for mixed input types for ufuncs
* Add support for returning tuple from jitted function
Fixes:
* Fix store slice bytecode handling for Python2
* Fix inplace subtract
* Fix pycc so that correct header is emitted
* Allow vectorize to work on functions with jit decorator
Version 0.12.2
--------------
Fixes:
* Improved NumPy ufunc support in nopython mode
* Misc bug fixes
Version 0.12.1
--------------
This version fixed many regressions reported by user for the 0.12 release.
This release contains a new loop-lifting mechanism that specializes certains
loop patterns for nopython mode compilation. This avoid direct support
for heap-allocating and other very dynamic operations.
Improvements:
* Add loop-lifting--jit-ing loops in nopython for object mode code. This allows
functions to allocate NumPy arrays and use Python objects, while the tight
loops in the function can still be compiled in nopython mode. Any arrays that
the tight loop uses should be created before the loop is entered.
Fixes:
* Add support for majority of "math" module functions
* Fix for...else handling
* Add support for builtin round()
* Fix tenary if...else support
* Revive "numba" script
* Fix problems with some boolean expressions
* Add support for more NumPy ufuncs
Version 0.12
------------
Version 0.12 contains a big refactor of the compiler. The main objective for
this refactor was to simplify the code base to create a better foundation for
further work. A secondary objective was to improve the worst case performance
to ensure that compiled functions in object mode never run slower than pure
Python code (this was a problem in several cases with the old code base). This
refactor is still a work in progress and further testing is needed.
Main improvements:
* Major refactor of compiler for performance and maintenance reasons
* Better fallback to object mode when native mode fails
* Improved worst case performance in object mode
The public interface of numba has been slightly changed. The idea is to
make it cleaner and more rational:
* jit decorator has been modified, so that it can be called without a signature.
When called without a signature, it behaves as the old autojit. Autojit
has been deprecated in favour of this approach.
* Jitted functions can now be overloaded.
* Added a "njit" decorator that behaves like "jit" decorator with nopython=True.
* The numba.vectorize namespace is gone. The vectorize decorator will
be in the main numba namespace.
* Added a guvectorize decorator in the main numba namespace. It is
similar to numba.vectorize, but takes a dimension signature. It
generates gufuncs. This is a replacement for the GUVectorize gufunc
factory which has been deprecated.
Main regressions (will be fixed in a future release):
* Creating new NumPy arrays is not supported in nopython mode
* Returning NumPy arrays is not supported in nopython mode
* NumPy array slicing is not supported in nopython mode
* lists and tuples are not supported in nopython mode
* string, datetime, cdecimal, and struct types are not implemented yet
* Extension types (classes) are not supported in nopython mode
* Closures are not supported
* Raise keyword is not supported
* Recursion is not support in nopython mode
Version 0.11
------------
* Experimental support for NumPy datetime type
Version 0.10
------------
* Annotation tool (./bin/numba --annotate --fancy) (thanks to Jay Bourque)
* Open sourced prange
* Support for raise statement
* Pluggable array representation
* Support for enumerate and zip (thanks to Eugene Toder)
* Better string formatting support (thanks to Eugene Toder)
* Builtins min(), max() and bool() (thanks to Eugene Toder)
* Fix some code reloading issues (thanks to Björn Linse)
* Recognize NumPy scalar objects (thanks to Björn Linse)
Version 0.9
-----------
* Improved math support
* Open sourced generalized ufuncs
* Improved array expressions
Version 0.8
-----------
* Support for autojit classes
* Inheritance not yet supported
* Python 3 support for pycc
* Allow retrieval of ctypes function wrapper
* And hence support retrieval of a pointer to the function
* Fixed a memory leak of array slicing views
Version 0.7.2
-------------
* Official Python 3 support (python 3.2 and 3.3)
* Support for intrinsics and instructions
* Various bug fixes (see https://github.com/numba/numba/issues?milestone=7&state=closed)
Version 0.7.1
-------------
* Various bug fixes
Version 0.7
-----------
* Open sourced single-threaded ufunc vectorizer
* Open sourced NumPy array expression compilation
* Open sourced fast NumPy array slicing
* Experimental Python 3 support
* Support for typed containers
* typed lists and tuples
* Support for iteration over objects
* Support object comparisons
* Preliminary CFFI support
* Jit calls to CFFI functions (passed into autojit functions)
* TODO: Recognize ffi_lib.my_func attributes
* Improved support for ctypes
* Allow declaring extension attribute types as through class attributes
* Support for type casting in Python
* Get the same semantics with or without numba compilation
* Support for recursion
* For jit methods and extension classes
* Allow jit functions as C callbacks
* Friendlier error reporting
* Internal improvements
* A variety of bug fixes
Version 0.6.1
--------------
* Support for bitwise operations
Version 0.6
--------------
* Python 2.6 support
* Programmable typing
* Allow users to add type inference for external code
* Better NumPy type inference
* outer, inner, dot, vdot, tensordot, nonzero, where,
binary ufuncs + methods (reduce, accumulate, reduceat, outer)
* Type based alias analysis
* Support for strict aliasing
* Much faster autojit dispatch when calling from Python
* Faster numerical loops through data and stride pre-loading
* Integral overflow and underflow checking for conversions from objects
* Make Meta dependency optional
Version 0.5
--------------
* SSA-based type inference
* Allows variable reuse
* Allow referring to variables before lexical definition
* Support multiple comparisons
* Support for template types
* List comprehensions
* Support for pointers
* Many bug fixes
* Added user documentation
Version 0.4
--------------
Version 0.3.2
--------------
* Add support for object arithmetic (issue 56).
* Bug fixes (issue 55).
Version 0.3
--------------
* Changed default compilation approach to ast
* Added support for cross-module linking
* Added support for closures (can jit inner functions and return them) (see examples/closure.py)
* Added support for dtype structures (can access elements of structure with attribute access) (see examples/structures.py)
* Added support for extension types (numba classes) (see examples/numbaclasses.py)
* Added support for general Python code (use nopython to raise an error if Python C-API is used to avoid unexpected slowness because of lack of implementation defaulting to generic Python)
* Fixed many bugs
* Added support to detect math operations.
* Added with python and with nopython contexts
* Added more examples
Many features need to be documented still. Look at examples and tests for more information.
Version 0.2
--------------
* Added an ast approach to compilation
* Removed d, f, i, b from numba namespace (use f8, f4, i4, b1)
* Changed function to autojit2
* Added autojit function to decorate calls to the function and use types of the variable to create compiled versions.
* changed keyword arguments to jit and autojit functions to restype and argtypes to be consistent with ctypes module.
* Added pycc -- a python to shared library compiler
|