File: release-notes.rst

package info (click to toggle)
numba 0.61.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 17,316 kB
  • sloc: python: 211,580; ansic: 15,233; cpp: 6,544; javascript: 424; sh: 322; makefile: 173
file content (6209 lines) | stat: -rw-r--r-- 350,288 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
Version 0.57.1 (21 June, 2023)
------------------------------

Pull-Requests:

* PR `#8964 <https://github.com/numba/numba/pull/8964>`_: fix missing nopython keyword in cuda random module (`esc <https://github.com/esc>`_)
* PR `#8965 <https://github.com/numba/numba/pull/8965>`_: fix return dtype for np.angle (`guilhermeleobas <https://github.com/guilhermeleobas>`_ `esc <https://github.com/esc>`_)
* PR `#8982 <https://github.com/numba/numba/pull/8982>`_: Don't do the parfor diagnostics pass for the parfor gufunc. (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8996 <https://github.com/numba/numba/pull/8996>`_: adding a test for 8940 (`esc <https://github.com/esc>`_)
* PR `#8958 <https://github.com/numba/numba/pull/8958>`_: resurrect the import, this time in the registry initialization (`esc <https://github.com/esc>`_)
* PR `#8947 <https://github.com/numba/numba/pull/8947>`_: Introduce internal _isinstance_no_warn (`guilhermeleobas <https://github.com/guilhermeleobas>`_ `esc <https://github.com/esc>`_)
* PR `#8998 <https://github.com/numba/numba/pull/8998>`_: Fix 8939 (second attempt) (`esc <https://github.com/esc>`_)
* PR `#8978 <https://github.com/numba/numba/pull/8978>`_: Import MVC packages when using MVCLinker. (`bdice <https://github.com/bdice>`_)
* PR `#8895 <https://github.com/numba/numba/pull/8895>`_: CUDA: Enable caching functions that use CG (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8976 <https://github.com/numba/numba/pull/8976>`_: Fix index URL for ptxcompiler/cubinlinker packages. (`bdice <https://github.com/bdice>`_)
* PR `#9004 <https://github.com/numba/numba/pull/9004>`_: Skip MVC test when libraries unavailable (`gmarkall <https://github.com/gmarkall>`_ `esc <https://github.com/esc>`_)
* PR `#9006 <https://github.com/numba/numba/pull/9006>`_: link to version support table instead of using explicit versions (`esc <https://github.com/esc>`_)
* PR `#9005 <https://github.com/numba/numba/pull/9005>`_: Fix: Issue #8923 - avoid spurious device-to-host transfers in CUDA ufuncs (`gmarkall <https://github.com/gmarkall>`_)


Authors:

* `bdice <https://github.com/bdice>`_
* `DrTodd13 <https://github.com/DrTodd13>`_
* `esc <https://github.com/esc>`_
* `gmarkall <https://github.com/gmarkall>`_

Version 0.57.0 (1 May, 2023)
----------------------------

This release continues to add new features, bug fixes and stability improvements
to Numba. Please note that this release contains a significant number of both
deprecation and pending-deprecation notices with view of making it easier to
develop new technology for Numba in the future. Also note that this will be the
last release to support Windows 32-bit packages produced by the Numba team.

Highlights of core dependency upgrades:

* Support for Python 3.11 (minimum is moved to 3.8)
* Support for NumPy 1.24 (minimum is moved to 1.21)

Python language support enhancements:

* Exception classes now support arguments that are not compile time constant.
* The built-in functions ``hasattr`` and ``getattr`` are supported for compile
  time constant attributes.
* The built-in functions ``str`` and ``repr`` are now implemented similarly to
  their Python implementations. Custom ``__str__`` and ``__repr__``
  functions can be associated with types and work as expected.
* Numba's unicode functionality in ``str.startswith`` now supports kwargs
  ``start`` and ``end``.
* ``min`` and ``max`` now support boolean types.
* Support is added for the ``dict(iterable)`` constructor.

NumPy features/enhancements:

* The largest set of new features is within the ``numpy.random.Generator``
  support, the vast majority of commonly used distributions are now supported.
  Namely:

  * ``Generator.beta``
  * ``Generator.chisquare``
  * ``Generator.exponential``
  * ``Generator.f``
  * ``Generator.gamma``
  * ``Generator.geometric``
  * ``Generator.integers``
  * ``Generator.laplace``
  * ``Generator.logistic``
  * ``Generator.lognormal``
  * ``Generator.logseries``
  * ``Generator.negative_binomial``
  * ``Generator.noncentral_chisquare``
  * ``Generator.noncentral_f``
  * ``Generator.normal``
  * ``Generator.pareto``
  * ``Generator.permutation``
  * ``Generator.poisson``
  * ``Generator.power``
  * ``Generator.random``
  * ``Generator.rayleigh``
  * ``Generator.shuffle``
  * ``Generator.standard_cauchy``
  * ``Generator.standard_exponential``
  * ``Generator.standard_gamma``
  * ``Generator.standard_normal``
  * ``Generator.standard_t``
  * ``Generator.triangular``
  * ``Generator.uniform``
  * ``Generator.wald``
  * ``Generator.weibull``
  * ``Generator.zipf``

* The ``nbytes`` property on NumPy ``ndarray`` types is implemented.
* Nesting of nested-array types is now supported.
* ``datetime`` and ``timedelta`` types can be cast to ``int``.
* ``F``-order iteration is supported in ``ufunc`` generation for increased
  performance when using combinations of predominantly ``F``-order arrays.
* The following functions are also now supported:

  * ``np.argpartition``
  * ``np.isclose``
  * ``np.nan_to_num``
  * ``np.new_axis``
  * ``np.union1d``

Highlights of core changes:

* A large amount of refactoring has taken place to convert many of Numba's
  internal implementations, of both Python and NumPy functions, from the
  low-level extension API to the high-level extension API (``numba.extending``).
* The ``__repr__`` method is supported for Numba types.
* The default ``target`` for applicable functions in the extension API
  (``numba.extending``) is now ``"generic"``. This means that ``@overload*`` and
  ``@intrinsic`` functions will by default be accepted by both the CPU and CUDA
  targets.
* The use of ``__getitem__`` on Numba types is now supported in compiled code.
  i.e. ``types.float64[:, ::1]`` is now compilable.

Performance:

* The performance of ``str.find()`` and ``str.rfind()`` has been improved.
* Unicode support for ``__getitem__`` now avoids allocation and returns a view.
* The ``numba.typed.Dict`` dictionary now accepts an ``n_keys`` option to enable
  allocating the dictionary instance to a predetermined initial size (useful to
  avoid resizes!).
* The Numba Run-time (NRT) has been improved in terms of performance and safety:

  * The NRT internal statistics counters are now off by default (removes atomic
    lock contentions).
  * Debug cache line filling is off by default.
  * The NRT is only compiled once a compilation starts opposed to at function
    decoration time, this improves import speed.
  * The NRT allocation calls are all made through a "checked" layer by default.

CUDA:

* New NVIDIA hardware and software compatibility / support:

  * Toolkits: CUDA 11.8 and 12, with Minor Version Compatibility for 11.x.
  * Packaging: NVIDIA-packaged CUDA toolkit conda packages.
  * Hardware: Hopper, Ada Lovelace, and AGX Orin.

* ``float16`` support:

  * Arithmetic operations are now fully supported.
  * A new method, ``is_fp16_supported()``, and device property,
    ``supports_float16``, for checking the availability of ``float16`` support.

* Functionality:

  * The high-level extension API is now fully-supported in the CUDA target.
  * Eager compilation of multiple signatures, multiple outputs from generalized
    ufuncs, and specifying the return type of ufuncs are now supported.
  * A limited set of NumPy ufuncs (trigonometric functions) can now be called
    inside kernels.

* Lineinfo quality improvement: enabling lineinfo no longer results in any
  changes to generated code.

Deprecations:

* The ``numba.pycc`` module and everything in it is now pending deprecation.
* The long awaited full deprecation of ``object mode`` `fall-back` is
  underway. This change means ``@jit`` with no keyword arguments will eventually
  alias ``@njit``.
* The ``@generated_jit`` decorator is deprecated as the Numba extension API
  provides a better supported superset of the same functionality, particularly
  through ``@numba.extending.overload``.

Version support/dependency changes:

* The ``setuptools`` package is now an optional run-time dependency opposed to a
  required run-time dependency.
* The TBB threading-layer now requires version 2021.6 or later.
* LLVM 14 is now supported on all platforms via ``llvmlite``.

Pull-Requests:

* PR `#5113 <https://github.com/numba/numba/pull/5113>`_: Fix error handling in the Interval extending example (`esc <https://github.com/esc>`_ `eric-wieser <https://github.com/eric-wieser>`_)
* PR `#5544 <https://github.com/numba/numba/pull/5544>`_: Add support for np.union1d (`shangbol <https://github.com/shangbol>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#7009 <https://github.com/numba/numba/pull/7009>`_: Add writable args (`dmbelov <https://github.com/dmbelov>`_)
* PR `#7067 <https://github.com/numba/numba/pull/7067>`_: Implement np.isclose (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#7255 <https://github.com/numba/numba/pull/7255>`_: CUDA: Support CUDA Toolkit conda packages from NVIDIA (`gmarkall <https://github.com/gmarkall>`_)
* PR `#7622 <https://github.com/numba/numba/pull/7622>`_: Support fortran loop ordering for ufunc generation (`sklam <https://github.com/sklam>`_)
* PR `#7733 <https://github.com/numba/numba/pull/7733>`_: fix for /tmp/tmp access issues (`ChiCheng45 <https://github.com/ChiCheng45>`_)
* PR `#7884 <https://github.com/numba/numba/pull/7884>`_: Implement getattr builtin. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7885 <https://github.com/numba/numba/pull/7885>`_: Adds CUDA FP16 arithmetic operators (`testhound <https://github.com/testhound>`_)
* PR `#7920 <https://github.com/numba/numba/pull/7920>`_: Drop pre-3.7 code path (CPU only) (`sklam <https://github.com/sklam>`_)
* PR `#8001 <https://github.com/numba/numba/pull/8001>`_: CUDA fp16 math functions (`testhound <https://github.com/testhound>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8010 <https://github.com/numba/numba/pull/8010>`_: Add support for fp16 comparison native operators (`testhound <https://github.com/testhound>`_)
* PR `#8024 <https://github.com/numba/numba/pull/8024>`_: Allow converting NumPy datetimes to int (`apmasell <https://github.com/apmasell>`_)
* PR `#8038 <https://github.com/numba/numba/pull/8038>`_: Support for Numpy BitGenerators PR#2: Standard Distributions support (`kc611 <https://github.com/kc611>`_)
* PR `#8040 <https://github.com/numba/numba/pull/8040>`_: Support for Numpy BitGenerators PR#3: Advanced Distributions Support. (`kc611 <https://github.com/kc611>`_)
* PR `#8041 <https://github.com/numba/numba/pull/8041>`_: Support for Numpy BitGenerators PR#4: Generator().integers() Support. (`kc611 <https://github.com/kc611>`_)
* PR `#8042 <https://github.com/numba/numba/pull/8042>`_: Support for NumPy BitGenerators PR#5: Generator Shuffling Methods. (`kc611 <https://github.com/kc611>`_)
* PR `#8061 <https://github.com/numba/numba/pull/8061>`_: Migrate random ``glue_lowering`` to ``overload`` where easy (`apmasell <https://github.com/apmasell>`_)
* PR `#8106 <https://github.com/numba/numba/pull/8106>`_: Remove injection of atomic JIT functions into NRT memsys. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8120 <https://github.com/numba/numba/pull/8120>`_: Support nesting of nested array types (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8134 <https://github.com/numba/numba/pull/8134>`_: Support non-constant exception values in JIT (`guilhermeleobas <https://github.com/guilhermeleobas>`_ `sklam <https://github.com/sklam>`_)
* PR `#8147 <https://github.com/numba/numba/pull/8147>`_: Adds size variable at runtime for arrays that cannot be inferred  (`njriasan <https://github.com/njriasan>`_)
* PR `#8154 <https://github.com/numba/numba/pull/8154>`_: Testhound/native cast 8138 (`testhound <https://github.com/testhound>`_)
* PR `#8158 <https://github.com/numba/numba/pull/8158>`_: adding -pthread for linux-ppc64le in setup.py (`esc <https://github.com/esc>`_)
* PR `#8164 <https://github.com/numba/numba/pull/8164>`_: remove myself from automatic reviewer assignment (`esc <https://github.com/esc>`_)
* PR `#8167 <https://github.com/numba/numba/pull/8167>`_: CUDA: Facilitate and document passing arrays / pointers to foreign functions (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8180 <https://github.com/numba/numba/pull/8180>`_: CUDA: Initial support for Minor Version Compatibility (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8183 <https://github.com/numba/numba/pull/8183>`_: Add ``n_keys`` option to Dict.empty() (`stefanfed <https://github.com/stefanfed>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8198 <https://github.com/numba/numba/pull/8198>`_: Update the release template to include updating the version table. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8200 <https://github.com/numba/numba/pull/8200>`_: Make the NRT use the "unsafe" allocation API by default. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8201 <https://github.com/numba/numba/pull/8201>`_: Bump llvmlite dependency to 0.40.dev0 for Numba 0.57.0dev0 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8207 <https://github.com/numba/numba/pull/8207>`_: development tag should be in monofont (`esc <https://github.com/esc>`_)
* PR `#8212 <https://github.com/numba/numba/pull/8212>`_: release checklist: include a note to ping @RC_testers on discourse (`esc <https://github.com/esc>`_)
* PR `#8216 <https://github.com/numba/numba/pull/8216>`_: chore: Set permissions for GitHub actions (`naveensrinivasan <https://github.com/naveensrinivasan>`_)
* PR `#8217 <https://github.com/numba/numba/pull/8217>`_: Fix syntax in docs (`jorgepiloto <https://github.com/jorgepiloto>`_)
* PR `#8220 <https://github.com/numba/numba/pull/8220>`_: Added the interval example as doctest (`kc611 <https://github.com/kc611>`_)
* PR `#8221 <https://github.com/numba/numba/pull/8221>`_: CUDA stubs docstring: Replace illegal escape sequence (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8228 <https://github.com/numba/numba/pull/8228>`_: Fix typo in @vectorize docstring and a NumPy spelling. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8229 <https://github.com/numba/numba/pull/8229>`_: Remove ``mk_unique_var`` in ``inline_closurecall.py`` (`sklam <https://github.com/sklam>`_)
* PR `#8234 <https://github.com/numba/numba/pull/8234>`_: Replace @overload_glue by @overload for 20 NumPy functions (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8235 <https://github.com/numba/numba/pull/8235>`_: Make the NRT stats counters optional. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8238 <https://github.com/numba/numba/pull/8238>`_: Advanced Indexing Support #1 (`kc611 <https://github.com/kc611>`_)
* PR `#8240 <https://github.com/numba/numba/pull/8240>`_: Add get_shared_mem_per_block method to Dispatcher  (`testhound <https://github.com/testhound>`_)
* PR `#8241 <https://github.com/numba/numba/pull/8241>`_: Reorder typeof checks to avoid infinite loops on StructrefProxy  __hash__ (`DannyWeitekamp <https://github.com/DannyWeitekamp>`_)
* PR `#8243 <https://github.com/numba/numba/pull/8243>`_: Add a note to ``reference/numpysupported.rst`` ()
* PR `#8245 <https://github.com/numba/numba/pull/8245>`_: Fix links in ``CONTRIBUTING.md`` ()
* PR `#8247 <https://github.com/numba/numba/pull/8247>`_: Fix issue 8127 (`bszollosinagy <https://github.com/bszollosinagy>`_)
* PR `#8250 <https://github.com/numba/numba/pull/8250>`_: Fix issue 8161 (`bszollosinagy <https://github.com/bszollosinagy>`_)
* PR `#8253 <https://github.com/numba/numba/pull/8253>`_: CUDA: Verify NVVM IR prior to compilation (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8255 <https://github.com/numba/numba/pull/8255>`_: CUDA: Make numba.cuda.tests.doc_examples.ffi a module to fix #8252 (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8256 <https://github.com/numba/numba/pull/8256>`_: Migrate linear algebra functions from glue_lowering (`apmasell <https://github.com/apmasell>`_)
* PR `#8258 <https://github.com/numba/numba/pull/8258>`_: refactor np.where to use overload (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8259 <https://github.com/numba/numba/pull/8259>`_: Add ``np.broadcast_to(scalar_array, ())`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8264 <https://github.com/numba/numba/pull/8264>`_: remove ``mk_unique_var`` from ``parfor_lowering_utils.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8265 <https://github.com/numba/numba/pull/8265>`_: Remove ``mk_unique_var`` from ``array_analysis.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8266 <https://github.com/numba/numba/pull/8266>`_: Remove ``mk_unique_var`` in ``untyped_passes.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8267 <https://github.com/numba/numba/pull/8267>`_: Fix segfault for invalid axes in np.split (`aseyboldt <https://github.com/aseyboldt>`_)
* PR `#8271 <https://github.com/numba/numba/pull/8271>`_: Implement some CUDA intrinsics with ``@overload``, ``@overload_attribute``, and ``@intrinsic`` (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8274 <https://github.com/numba/numba/pull/8274>`_: Update version support table doc for 0.56. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8275 <https://github.com/numba/numba/pull/8275>`_: Update CHANGE_LOG for 0.56.0 final (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8283 <https://github.com/numba/numba/pull/8283>`_: Clean up / remove support for old NumPy versions (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8287 <https://github.com/numba/numba/pull/8287>`_: Drop CUDA 10.2 (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8289 <https://github.com/numba/numba/pull/8289>`_: Revert #8265. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8290 <https://github.com/numba/numba/pull/8290>`_: CUDA: Replace use of deprecated NVVM IR features, questionable constructs (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8292 <https://github.com/numba/numba/pull/8292>`_: update checklist (`esc <https://github.com/esc>`_)
* PR `#8294 <https://github.com/numba/numba/pull/8294>`_: CUDA: Add trig ufunc support (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8295 <https://github.com/numba/numba/pull/8295>`_: Add get_const_mem_size method to Dispatcher (`testhound <https://github.com/testhound>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8297 <https://github.com/numba/numba/pull/8297>`_: Add __name__ attribute to CUDAUFuncDispatcher and test case (`testhound <https://github.com/testhound>`_)
* PR `#8299 <https://github.com/numba/numba/pull/8299>`_: Fix build for mingw toolchain (`Biswa96 <https://github.com/Biswa96>`_)
* PR `#8302 <https://github.com/numba/numba/pull/8302>`_: CUDA: Revert numba_nvvm intrinsic name workaround (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8308 <https://github.com/numba/numba/pull/8308>`_: CUDA: Support for multiple signatures (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8315 <https://github.com/numba/numba/pull/8315>`_: Add get_local_mem_per_thread method to Dispatcher (`testhound <https://github.com/testhound>`_)
* PR `#8319 <https://github.com/numba/numba/pull/8319>`_: Bump minimum supported Python version to 3.8 (`esc <https://github.com/esc>`_ `stuartarchibald <https://github.com/stuartarchibald>`_ `jamesobutler <https://github.com/jamesobutler>`_)
* PR `#8320 <https://github.com/numba/numba/pull/8320>`_: Add __name__ support for GUFuncs (`testhound <https://github.com/testhound>`_)
* PR `#8321 <https://github.com/numba/numba/pull/8321>`_: Fix literal_unroll pass erroneously exiting on non-conformant loop. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8325 <https://github.com/numba/numba/pull/8325>`_: Remove use of mk_unique_var in stencil.py (`bszollosinagy <https://github.com/bszollosinagy>`_)
* PR `#8326 <https://github.com/numba/numba/pull/8326>`_: Remove ``mk_unique_var`` from ``parfor_lowering.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8331 <https://github.com/numba/numba/pull/8331>`_: Extend docs with info on how to call C functions from Numba (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8334 <https://github.com/numba/numba/pull/8334>`_: Add dict(\*iterable) constructor (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8335 <https://github.com/numba/numba/pull/8335>`_: Remove deprecated pycc script and related source. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8336 <https://github.com/numba/numba/pull/8336>`_: Fix typos of "Generalized" in GUFunc-related code (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8338 <https://github.com/numba/numba/pull/8338>`_: Calculate reductions before fusion so that use of reduction vars can stop fusion. (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8339 <https://github.com/numba/numba/pull/8339>`_: Fix #8291 parfor leak of redtoset variable (`sklam <https://github.com/sklam>`_)
* PR `#8341 <https://github.com/numba/numba/pull/8341>`_: CUDA: Support multiple outputs for Generalized Ufuncs (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8343 <https://github.com/numba/numba/pull/8343>`_: Eliminate references to type annotation in compile_ptx (`testhound <https://github.com/testhound>`_)
* PR `#8348 <https://github.com/numba/numba/pull/8348>`_: Add get_max_threads_per_block method to Dispatcher (`testhound <https://github.com/testhound>`_)
* PR `#8354 <https://github.com/numba/numba/pull/8354>`_: pin setuptools to < 65 and switch from mamba to conda on RTD (`esc <https://github.com/esc>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8357 <https://github.com/numba/numba/pull/8357>`_: Clean up the buildscripts directory. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8359 <https://github.com/numba/numba/pull/8359>`_: adding warnings about cache behaviour (`luk-f-a <https://github.com/luk-f-a>`_)
* PR `#8368 <https://github.com/numba/numba/pull/8368>`_: Remove ``glue_lowering`` in random math that requires IR (`apmasell <https://github.com/apmasell>`_)
* PR `#8376 <https://github.com/numba/numba/pull/8376>`_: Fix issue 8370 (`bszollosinagy <https://github.com/bszollosinagy>`_)
* PR `#8387 <https://github.com/numba/numba/pull/8387>`_: Add support for compute capability in IR Lowering (`testhound <https://github.com/testhound>`_)
* PR `#8388 <https://github.com/numba/numba/pull/8388>`_: Remove more references to the pycc binary. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8389 <https://github.com/numba/numba/pull/8389>`_: Make C++ extensions compile with correct compiler (`apmasell <https://github.com/apmasell>`_)
* PR `#8390 <https://github.com/numba/numba/pull/8390>`_: Use NumPy logic for lessthan in sort to move NaNs to the back. (`sklam <https://github.com/sklam>`_)
* PR `#8401 <https://github.com/numba/numba/pull/8401>`_: Remove Cuda toolkit version check (`testhound <https://github.com/testhound>`_)
* PR `#8415 <https://github.com/numba/numba/pull/8415>`_: Refactor ``numba.np.arraymath`` methods from lower_builtins to overloads (`kc611 <https://github.com/kc611>`_)
* PR `#8418 <https://github.com/numba/numba/pull/8418>`_: Fixes ravel failure on 1d arrays (#5229) (`cako <https://github.com/cako>`_)
* PR `#8421 <https://github.com/numba/numba/pull/8421>`_: Update release checklist: add a task to check dependency pinnings on subsequent releases (e.g. PATCH) (`esc <https://github.com/esc>`_)
* PR `#8422 <https://github.com/numba/numba/pull/8422>`_: Switch public CI builds to use gdb from conda packages. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8423 <https://github.com/numba/numba/pull/8423>`_: Remove public facing and CI references to 32 bit linux support. (`stuartarchibald <https://github.com/stuartarchibald>`_,
  in addition, we are grateful for the contribution of `jamesobutler <https://github.com/jamesobutler>`_ towards a similar goal in PR `#8319 <https://github.com/numba/numba/pull/8319>`_)
* PR `#8425 <https://github.com/numba/numba/pull/8425>`_: Post 0.56.2 cleanup (`esc <https://github.com/esc>`_)
* PR `#8427 <https://github.com/numba/numba/pull/8427>`_: Shorten the time to verify test discovery. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8429 <https://github.com/numba/numba/pull/8429>`_: changelog generator script (`esc <https://github.com/esc>`_)
* PR `#8431 <https://github.com/numba/numba/pull/8431>`_: Replace ``@overload_glue`` by ``@overload`` for ``np.linspace`` and ``np.take`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8432 <https://github.com/numba/numba/pull/8432>`_: Refactor carray/farray to use @overload (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8435 <https://github.com/numba/numba/pull/8435>`_: Migrate ``np.atleast_?`` functions from ``glue_lowering`` to ``overload`` (`apmasell <https://github.com/apmasell>`_)
* PR `#8438 <https://github.com/numba/numba/pull/8438>`_: Make the initialisation of the NRT more lazy for the njit decorator. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8439 <https://github.com/numba/numba/pull/8439>`_: Update the contributing docs to include a policy on formatting changes. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8440 <https://github.com/numba/numba/pull/8440>`_: [DOC]: Replaces icc_rt with intel-cmplr-lib-rt (`oleksandr-pavlyk <https://github.com/oleksandr-pavlyk>`_)
* PR `#8442 <https://github.com/numba/numba/pull/8442>`_: Implement hasattr(), str() and repr(). (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8446 <https://github.com/numba/numba/pull/8446>`_: add version info in ImportError's (`raybellwaves <https://github.com/raybellwaves>`_)
* PR `#8450 <https://github.com/numba/numba/pull/8450>`_: remove GitHub username from changelog generation script (`esc <https://github.com/esc>`_)
* PR `#8467 <https://github.com/numba/numba/pull/8467>`_: Convert implementations using generated_jit to overload (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8468 <https://github.com/numba/numba/pull/8468>`_: Reference test suite in installation documentation (`apmasell <https://github.com/apmasell>`_)
* PR `#8469 <https://github.com/numba/numba/pull/8469>`_: Correctly handle optional types in parfors lowering (`apmasell <https://github.com/apmasell>`_)
* PR `#8473 <https://github.com/numba/numba/pull/8473>`_: change the include style in _pymodule.h and remove unused or duplicate headers in two header files ()
* PR `#8476 <https://github.com/numba/numba/pull/8476>`_: Make setuptools optional at runtime. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8490 <https://github.com/numba/numba/pull/8490>`_: Restore installing SciPy from defaults instead of conda-forge on public CI (`esc <https://github.com/esc>`_)
* PR `#8494 <https://github.com/numba/numba/pull/8494>`_: Remove ``context.compile_internal`` where easy on ``numba/cpython/cmathimpl.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8495 <https://github.com/numba/numba/pull/8495>`_: Removes context.compile_internal where easy on ``numba/cpython/listobj.py`` (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8496 <https://github.com/numba/numba/pull/8496>`_: Rewrite most of the set API to use overloads (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8499 <https://github.com/numba/numba/pull/8499>`_: Deprecate numba.generated_jit (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8508 <https://github.com/numba/numba/pull/8508>`_: This updates the release checklists to capture some more checks. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8513 <https://github.com/numba/numba/pull/8513>`_: Added support for numpy.newaxis (`kc611 <https://github.com/kc611>`_)
* PR `#8517 <https://github.com/numba/numba/pull/8517>`_: make some typedlist C-APIs public ()
* PR `#8518 <https://github.com/numba/numba/pull/8518>`_: Adjust stencil tests to use hardcoded python source opposed to AST. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8520 <https://github.com/numba/numba/pull/8520>`_: Added noncentral-chisquared, noncentral-f and logseries distributions (`kc611 <https://github.com/kc611>`_)
* PR `#8522 <https://github.com/numba/numba/pull/8522>`_: Import jitclass from numba.experimental in jitclass documentation (`armgabrielyan <https://github.com/armgabrielyan>`_)
* PR `#8524 <https://github.com/numba/numba/pull/8524>`_: Fix grammar in stencil.rst (`armgabrielyan <https://github.com/armgabrielyan>`_)
* PR `#8525 <https://github.com/numba/numba/pull/8525>`_: Making CUDA specific datamodel manager (`sklam <https://github.com/sklam>`_)
* PR `#8526 <https://github.com/numba/numba/pull/8526>`_: Fix broken url (`Nimrod0901 <https://github.com/Nimrod0901>`_)
* PR `#8527 <https://github.com/numba/numba/pull/8527>`_: Fix grammar in troubleshoot.rst (`armgabrielyan <https://github.com/armgabrielyan>`_)
* PR `#8532 <https://github.com/numba/numba/pull/8532>`_: Vary NumPy version on gpuCI (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8535 <https://github.com/numba/numba/pull/8535>`_: LLVM14 (`apmasell <https://github.com/apmasell>`_)
* PR `#8536 <https://github.com/numba/numba/pull/8536>`_: Fix fusion bug. (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8539 <https://github.com/numba/numba/pull/8539>`_: Fix #8534, np.broadcast_to should update array size attr. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8541 <https://github.com/numba/numba/pull/8541>`_: Remove restoration of "free" channel in Azure CI windows builds. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8542 <https://github.com/numba/numba/pull/8542>`_: CUDA: Make arg optional for Stream.add_callback() (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8544 <https://github.com/numba/numba/pull/8544>`_: Remove reliance on npy_<impl> ufunc loops. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8545 <https://github.com/numba/numba/pull/8545>`_: Py3.11 basic support (`esc <https://github.com/esc>`_ `sklam <https://github.com/sklam>`_)
* PR `#8547 <https://github.com/numba/numba/pull/8547>`_: [Unicode] Add more string view usages for unicode operations ()
* PR `#8549 <https://github.com/numba/numba/pull/8549>`_: Fix rstcheck in Azure CI builds, update sphinx dep and docs to match (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8550 <https://github.com/numba/numba/pull/8550>`_: Changes how tests are split between test instances (`apmasell <https://github.com/apmasell>`_)
* PR `#8554 <https://github.com/numba/numba/pull/8554>`_: Make target for ``@overload`` have 'generic' as default. (`stuartarchibald <https://github.com/stuartarchibald>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8557 <https://github.com/numba/numba/pull/8557>`_: [Unicode] support startswith with args, start and end. ()
* PR `#8566 <https://github.com/numba/numba/pull/8566>`_: Update workqueue abort message on concurrent access. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8572 <https://github.com/numba/numba/pull/8572>`_: CUDA: Reduce memory pressure from local memory tests (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8579 <https://github.com/numba/numba/pull/8579>`_: CUDA: Add CUDA 11.8 / Hopper support and required fixes (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8580 <https://github.com/numba/numba/pull/8580>`_: adding note about doing a wheel test build prior to tagging (`esc <https://github.com/esc>`_)
* PR `#8583 <https://github.com/numba/numba/pull/8583>`_: Skip tests that contribute to M1 RuntimeDyLd Assertion error  (`sklam <https://github.com/sklam>`_)
* PR `#8587 <https://github.com/numba/numba/pull/8587>`_: Remove unused refcount removal code, clean ``core/cpu.py`` module. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8588 <https://github.com/numba/numba/pull/8588>`_: Remove lowering extension hooks, replace with pass infrastructure. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8590 <https://github.com/numba/numba/pull/8590>`_: Py3.11 support continues (`sklam <https://github.com/sklam>`_)
* PR `#8592 <https://github.com/numba/numba/pull/8592>`_: fix failure of test_cache_invalidate due to read-only install (`tpwrules <https://github.com/tpwrules>`_)
* PR `#8593 <https://github.com/numba/numba/pull/8593>`_: Adjusted ULP precesion for noncentral distribution test (`kc611 <https://github.com/kc611>`_)
* PR `#8594 <https://github.com/numba/numba/pull/8594>`_: Fix various CUDA lineinfo issues (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8597 <https://github.com/numba/numba/pull/8597>`_: Prevent use of NumPy's MaskedArray. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8598 <https://github.com/numba/numba/pull/8598>`_: Setup Azure CI to test py3.11 (`sklam <https://github.com/sklam>`_)
* PR `#8600 <https://github.com/numba/numba/pull/8600>`_: Chrome trace timestamp should be in microseconds not seconds. (`sklam <https://github.com/sklam>`_)
* PR `#8602 <https://github.com/numba/numba/pull/8602>`_: Throw error for unsupported dunder methods (`apmasell <https://github.com/apmasell>`_)
* PR `#8605 <https://github.com/numba/numba/pull/8605>`_: Support for CUDA fp16 math functions (part 1) (`testhound <https://github.com/testhound>`_)
* PR `#8606 <https://github.com/numba/numba/pull/8606>`_: [Doc] Make the RewriteArrayExprs doc more precise ()
* PR `#8619 <https://github.com/numba/numba/pull/8619>`_: Added flat iteration logic for random distributions (`kc611 <https://github.com/kc611>`_)
* PR `#8623 <https://github.com/numba/numba/pull/8623>`_: Adds support for np.nan_to_num (`thomasjpfan <https://github.com/thomasjpfan>`_)
* PR `#8624 <https://github.com/numba/numba/pull/8624>`_: DOC: Add guvectorize scalar return example (`Matt711 <https://github.com/Matt711>`_)
* PR `#8625 <https://github.com/numba/numba/pull/8625>`_: Refactor ``test_ufuncs`` (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8626 <https://github.com/numba/numba/pull/8626>`_: [unicode-PERF]: use optmized BM algorithm to replace the brute-force finder (`dlee992 <https://github.com/dlee992>`_)
* PR `#8630 <https://github.com/numba/numba/pull/8630>`_: Fix #8628: Don't test math.trunc with non-float64 NumPy scalars (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8634 <https://github.com/numba/numba/pull/8634>`_: Add new method is_fp16_supported (`testhound <https://github.com/testhound>`_)
* PR `#8636 <https://github.com/numba/numba/pull/8636>`_: CUDA: Skip ``test_ptds`` on Windows (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8639 <https://github.com/numba/numba/pull/8639>`_: Python 3.11 - fix majority of remaining test failures. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8644 <https://github.com/numba/numba/pull/8644>`_: Fix bare reraise support (`sklam <https://github.com/sklam>`_)
* PR `#8649 <https://github.com/numba/numba/pull/8649>`_: Remove ``numba.core.overload_glue`` module. (`apmasell <https://github.com/apmasell>`_)
* PR `#8659 <https://github.com/numba/numba/pull/8659>`_: Preserve module name of jitted class (`neilflood <https://github.com/neilflood>`_)
* PR `#8661 <https://github.com/numba/numba/pull/8661>`_: Make external compiler discovery lazy in the test suite. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8662 <https://github.com/numba/numba/pull/8662>`_: Add support for ``.nbytes`` accessor for numpy arrays (`alanhdu <https://github.com/alanhdu>`_)
* PR `#8666 <https://github.com/numba/numba/pull/8666>`_: Updates for Python 3.8 baseline/Python 3.11 migration (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8673 <https://github.com/numba/numba/pull/8673>`_: Enable the CUDA simulator tests on Windows builds in Azure CI. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8675 <https://github.com/numba/numba/pull/8675>`_: Make ``always_run`` test decorator a tag and improve shard tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8677 <https://github.com/numba/numba/pull/8677>`_: Add support for min and max on boolean types. (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8680 <https://github.com/numba/numba/pull/8680>`_: Adjust flake8 config to be compatible with flake8=6.0.0 (`thomasjpfan <https://github.com/thomasjpfan>`_)
* PR `#8685 <https://github.com/numba/numba/pull/8685>`_: Implement ``__repr__`` for numba types (`luk-f-a <https://github.com/luk-f-a>`_)
* PR `#8691 <https://github.com/numba/numba/pull/8691>`_: NumPy 1.24 (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8697 <https://github.com/numba/numba/pull/8697>`_: Close stale issues after 7 days (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8701 <https://github.com/numba/numba/pull/8701>`_: Relaxed ULP testing precision for NumPy Generator tests across all systems (`kc611 <https://github.com/kc611>`_)
* PR `#8702 <https://github.com/numba/numba/pull/8702>`_: Supply concrete timeline for objmode fallback deprecation/removal. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8706 <https://github.com/numba/numba/pull/8706>`_: Fix doctest for ``@vectorize`` (`sklam <https://github.com/sklam>`_)
* PR `#8711 <https://github.com/numba/numba/pull/8711>`_: Python 3.11 tracing support (continuation of #8670). (`AndrewVallette <https://github.com/AndrewVallette>`_ `sklam <https://github.com/sklam>`_)
* PR `#8716 <https://github.com/numba/numba/pull/8716>`_: CI: Use ``set -e`` in "Before Install" step and fix install (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8720 <https://github.com/numba/numba/pull/8720>`_: Enable coverage for subprocess testing (`sklam <https://github.com/sklam>`_)
* PR `#8723 <https://github.com/numba/numba/pull/8723>`_: Check for void return type in ``cuda.compile_ptx`` (`brandonwillard <https://github.com/brandonwillard>`_)
* PR `#8726 <https://github.com/numba/numba/pull/8726>`_: Make Numba dependency check run ahead of Numba internal imports. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8728 <https://github.com/numba/numba/pull/8728>`_: Fix flake8 checks since upgrade to flake8=6.x (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8729 <https://github.com/numba/numba/pull/8729>`_: Run flake8 CI step in multiple processes. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8732 <https://github.com/numba/numba/pull/8732>`_: Add numpy argpartition function support ()
* PR `#8735 <https://github.com/numba/numba/pull/8735>`_: Update bot to close PRs waiting on authors for more than 3 months (`guilhermeleobas <https://github.com/guilhermeleobas>`_)
* PR `#8736 <https://github.com/numba/numba/pull/8736>`_: Implement np.lib.stride_tricks.sliding_window_view ()
* PR `#8744 <https://github.com/numba/numba/pull/8744>`_: Update CtypesLinker::add_cu error message to include fp16 usage (`testhound <https://github.com/testhound>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8746 <https://github.com/numba/numba/pull/8746>`_: Fix failing test_dispatcher test case (`testhound <https://github.com/testhound>`_)
* PR `#8748 <https://github.com/numba/numba/pull/8748>`_: Suppress known test failures for py3.11 (`sklam <https://github.com/sklam>`_)
* PR `#8751 <https://github.com/numba/numba/pull/8751>`_: Recycle test runners more aggressively (`apmasell <https://github.com/apmasell>`_)
* PR `#8752 <https://github.com/numba/numba/pull/8752>`_: Flake8 fixes for py311 branch (`esc <https://github.com/esc>`_ `sklam <https://github.com/sklam>`_)
* PR `#8760 <https://github.com/numba/numba/pull/8760>`_: Bump llvmlite PR in py3.11 branch testing (`sklam <https://github.com/sklam>`_)
* PR `#8764 <https://github.com/numba/numba/pull/8764>`_: CUDA tidy-up: remove some unneeded methods (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8765 <https://github.com/numba/numba/pull/8765>`_: BLD: remove distutils (`fangchenli <https://github.com/fangchenli>`_)
* PR `#8766 <https://github.com/numba/numba/pull/8766>`_: Stale bot: Use ``abandoned - stale`` label for closed PRs (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8771 <https://github.com/numba/numba/pull/8771>`_: Update vendored Versioneer from 0.14 to 0.28 (`oscargus <https://github.com/oscargus>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8775 <https://github.com/numba/numba/pull/8775>`_: Revert PR#8751 for buildfarm stability (`sklam <https://github.com/sklam>`_)
* PR `#8780 <https://github.com/numba/numba/pull/8780>`_: Improved documentation for Atomic CAS (`MiloniAtal <https://github.com/MiloniAtal>`_)
* PR `#8781 <https://github.com/numba/numba/pull/8781>`_: Ensure gc.collect() is called before checking refcount in tests. (`sklam <https://github.com/sklam>`_)
* PR `#8782 <https://github.com/numba/numba/pull/8782>`_: Changed wording of the escape error (`MiloniAtal <https://github.com/MiloniAtal>`_)
* PR `#8786 <https://github.com/numba/numba/pull/8786>`_: Upgrade stale GitHub action (`apmasell <https://github.com/apmasell>`_)
* PR `#8788 <https://github.com/numba/numba/pull/8788>`_: CUDA: Fix returned dtype of vectorized functions (Issue #8400) (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8790 <https://github.com/numba/numba/pull/8790>`_: CUDA compare and swap with index (`ianthomas23 <https://github.com/ianthomas23>`_)
* PR `#8795 <https://github.com/numba/numba/pull/8795>`_: Add pending-deprecation warnings for ``numba.pycc`` (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8802 <https://github.com/numba/numba/pull/8802>`_: Move the minimum supported NumPy version to 1.21 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8803 <https://github.com/numba/numba/pull/8803>`_: Attempted fix to #8789 by changing ``compile_ptx`` to accept a signature instead of argument tuple (`KyanCheung <https://github.com/KyanCheung>`_)
* PR `#8804 <https://github.com/numba/numba/pull/8804>`_: Split parfor pass into 3 parts (`DrTodd13 <https://github.com/DrTodd13>`_)
* PR `#8809 <https://github.com/numba/numba/pull/8809>`_: Update LLVM versions for 0.57 release (`apmasell <https://github.com/apmasell>`_)
* PR `#8810 <https://github.com/numba/numba/pull/8810>`_: Fix llvmlite dependency in meta.yaml (`sklam <https://github.com/sklam>`_)
* PR `#8816 <https://github.com/numba/numba/pull/8816>`_: Fix some buildfarm test failures (`sklam <https://github.com/sklam>`_)
* PR `#8819 <https://github.com/numba/numba/pull/8819>`_: Support "static" __getitem__ on Numba types in ``@njit`` code. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8822 <https://github.com/numba/numba/pull/8822>`_: Merge py3.11 branch to main (`esc <https://github.com/esc>`_ `AndrewVallette <https://github.com/AndrewVallette>`_ `stuartarchibald <https://github.com/stuartarchibald>`_ `sklam <https://github.com/sklam>`_)
* PR `#8826 <https://github.com/numba/numba/pull/8826>`_: CUDA CFFI test: conditionally require cffi module (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8831 <https://github.com/numba/numba/pull/8831>`_: Redo py3.11 sync branch with main (`sklam <https://github.com/sklam>`_)
* PR `#8833 <https://github.com/numba/numba/pull/8833>`_: Fix typeguard import hook location. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8836 <https://github.com/numba/numba/pull/8836>`_: Fix failing typeguard test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8837 <https://github.com/numba/numba/pull/8837>`_: Update AzureCI matrix for Python 3.11/NumPy 1.21..1.24 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8839 <https://github.com/numba/numba/pull/8839>`_: Add Dynamic Shared Memory example. (`k1m190r <https://github.com/k1m190r>`_)
* PR `#8842 <https://github.com/numba/numba/pull/8842>`_: Fix buildscripts, setup.py, docs for setuptools becoming optional. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8843 <https://github.com/numba/numba/pull/8843>`_: Pin typeguard to 3.0.1 in AzureCI. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8848 <https://github.com/numba/numba/pull/8848>`_: added lifted loops to glossary term (`cherieliu <https://github.com/cherieliu>`_)
* PR `#8852 <https://github.com/numba/numba/pull/8852>`_: Disable SLP vectorisation due to miscompilations. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8855 <https://github.com/numba/numba/pull/8855>`_: DOC: ``pip`` into double backticks in installing.rst (`F3eQnxN3RriK <https://github.com/F3eQnxN3RriK>`_)
* PR `#8856 <https://github.com/numba/numba/pull/8856>`_: Update TBB to use >= 2021.6 by default.  (`kozlov-alexey <https://github.com/kozlov-alexey>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8858 <https://github.com/numba/numba/pull/8858>`_: Update deprecation notice for objmode fallback RE ``@jit`` use. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8864 <https://github.com/numba/numba/pull/8864>`_: Remove obsolete deprecation notices (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8866 <https://github.com/numba/numba/pull/8866>`_: Revise CUDA deprecation notices (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8869 <https://github.com/numba/numba/pull/8869>`_: Update CHANGE_LOG for 0.57.0rc1 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_ `gmarkall <https://github.com/gmarkall>`_)
* PR `#8870 <https://github.com/numba/numba/pull/8870>`_: Fix opcode "spelling" change since Python 3.11 in CUDA debug test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8879 <https://github.com/numba/numba/pull/8879>`_: Remove use of ``compile_isolated`` from generator tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8880 <https://github.com/numba/numba/pull/8880>`_: Fix missing dependency guard on pyyaml in ``test_azure_config``. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8881 <https://github.com/numba/numba/pull/8881>`_: Replace use of compile_isolated in test_obj_lifetime (`sklam <https://github.com/sklam>`_)
* PR `#8884 <https://github.com/numba/numba/pull/8884>`_: Pin llvmlite and NumPy on release branch (`sklam <https://github.com/sklam>`_)
* PR `#8887 <https://github.com/numba/numba/pull/8887>`_: Update PyPI supported version tags (`bryant1410 <https://github.com/bryant1410>`_)
* PR `#8896 <https://github.com/numba/numba/pull/8896>`_: Remove codecov install (now deleted from PyPI) (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8902 <https://github.com/numba/numba/pull/8902>`_: Enable CALL_FUNCTION_EX fix for py3.11 (`sklam <https://github.com/sklam>`_)
* PR `#8907 <https://github.com/numba/numba/pull/8907>`_: Work around issue #8898. Defer ``exp2`` (and ``log2``) calls to Numba internal symbols. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8909 <https://github.com/numba/numba/pull/8909>`_: Fix #8903. ``NumbaDeprecationWarning``s raised from ``@{gu,}vectorize``. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8929 <https://github.com/numba/numba/pull/8929>`_: Update CHANGE_LOG for 0.57.0 final. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8930 <https://github.com/numba/numba/pull/8930>`_: Fix year in change log (`jtilly <https://github.com/jtilly>`_)
* PR `#8932 <https://github.com/numba/numba/pull/8932>`_: Fix 0.57 release changelog (`sklam <https://github.com/sklam>`_)

Authors:

* `alanhdu <https://github.com/alanhdu>`_
* `AndrewVallette <https://github.com/AndrewVallette>`_
* `apmasell <https://github.com/apmasell>`_
* `armgabrielyan <https://github.com/armgabrielyan>`_
* `aseyboldt <https://github.com/aseyboldt>`_
* `Biswa96 <https://github.com/Biswa96>`_
* `brandonwillard <https://github.com/brandonwillard>`_
* `bryant1410 <https://github.com/bryant1410>`_
* `bszollosinagy <https://github.com/bszollosinagy>`_
* `cako <https://github.com/cako>`_
* `cherieliu <https://github.com/cherieliu>`_
* `ChiCheng45 <https://github.com/ChiCheng45>`_
* `DannyWeitekamp <https://github.com/DannyWeitekamp>`_
* `dlee992 <https://github.com/dlee992>`_
* `dmbelov <https://github.com/dmbelov>`_
* `DrTodd13 <https://github.com/DrTodd13>`_
* `eric-wieser <https://github.com/eric-wieser>`_
* `esc <https://github.com/esc>`_
* `F3eQnxN3RriK <https://github.com/F3eQnxN3RriK>`_
* `fangchenli <https://github.com/fangchenli>`_
* `gmarkall <https://github.com/gmarkall>`_
* `guilhermeleobas <https://github.com/guilhermeleobas>`_
* `ianthomas23 <https://github.com/ianthomas23>`_
* `jamesobutler <https://github.com/jamesobutler>`_
* `jorgepiloto <https://github.com/jorgepiloto>`_
* `jtilly <https://github.com/jtilly>`_
* `k1m190r <https://github.com/k1m190r>`_
* `kc611 <https://github.com/kc611>`_
* `kozlov-alexey <https://github.com/kozlov-alexey>`_
* `KyanCheung <https://github.com/KyanCheung>`_
* `luk-f-a <https://github.com/luk-f-a>`_
* `Matt711 <https://github.com/Matt711>`_
* `MiloniAtal <https://github.com/MiloniAtal>`_
* `naveensrinivasan <https://github.com/naveensrinivasan>`_
* `neilflood <https://github.com/neilflood>`_
* `Nimrod0901 <https://github.com/Nimrod0901>`_
* `njriasan <https://github.com/njriasan>`_
* `oleksandr-pavlyk <https://github.com/oleksandr-pavlyk>`_
* `oscargus <https://github.com/oscargus>`_
* `raybellwaves <https://github.com/raybellwaves>`_
* `shangbol <https://github.com/shangbol>`_
* `sklam <https://github.com/sklam>`_
* `stefanfed <https://github.com/stefanfed>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
* `testhound <https://github.com/testhound>`_
* `thomasjpfan <https://github.com/thomasjpfan>`_
* `tpwrules <https://github.com/tpwrules>`_

Version 0.56.4 (3 November, 2022)
---------------------------------

This is a bugfix release to fix a regression in the CUDA target in relation to
the ``.view()`` method on CUDA device arrays that is present when using NumPy
version 1.23.0 or later.

Pull-Requests:

* PR `#8537 <https://github.com/numba/numba/pull/8537>`_: Make ol_compatible_view accessible on all targets (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8552 <https://github.com/numba/numba/pull/8552>`_: Update version support table for 0.56.4. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8553 <https://github.com/numba/numba/pull/8553>`_: Update CHANGE_LOG for 0.56.4 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8570 <https://github.com/numba/numba/pull/8570>`_: Release 0.56 branch: Fix overloads with ``target="generic"`` for CUDA (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8571 <https://github.com/numba/numba/pull/8571>`_: Additional update to CHANGE_LOG for 0.56.4 (`stuartarchibald <https://github.com/stuartarchibald>`_)

Authors:

* `gmarkall <https://github.com/gmarkall>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_

Version 0.56.3 (13 October, 2022)
---------------------------------

This is a bugfix release to remove the version restriction applied to the
``setuptools`` package and to fix a bug in the CUDA target in relation to
copying zero length device arrays to zero length host arrays.

Pull-Requests:

* PR `#8475 <https://github.com/numba/numba/pull/8475>`_: Remove setuptools version pin (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8482 <https://github.com/numba/numba/pull/8482>`_: Fix #8477: Allow copies with different strides for 0-length data (`gmarkall <https://github.com/gmarkall>`_)
* PR `#8486 <https://github.com/numba/numba/pull/8486>`_: Restrict the TBB development package to supported version in Azure. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8503 <https://github.com/numba/numba/pull/8503>`_: Update version support table for 0.56.3 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8504 <https://github.com/numba/numba/pull/8504>`_: Update CHANGE_LOG for 0.56.3 (`stuartarchibald <https://github.com/stuartarchibald>`_)

Authors:

* `gmarkall <https://github.com/gmarkall>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_

Version 0.56.2 (1 September, 2022)
----------------------------------

This is a bugfix release that supports NumPy 1.23 and fixes CUDA function
caching.

Pull-Requests:

* PR `#8239 <https://github.com/numba/numba/pull/8239>`_: Add decorator to run a test in a subprocess (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8276 <https://github.com/numba/numba/pull/8276>`_: Move Azure to use macos-11 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8310 <https://github.com/numba/numba/pull/8310>`_: CUDA: Fix Issue #8309 - atomics don't work on complex components (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8342 <https://github.com/numba/numba/pull/8342>`_: Upgrade to ubuntu-20.04 for azure pipeline CI (`jamesobutler <https://github.com/jamesobutler>`_)
* PR `#8356 <https://github.com/numba/numba/pull/8356>`_: Update setup.py, buildscripts, CI and docs to require setuptools<60 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8374 <https://github.com/numba/numba/pull/8374>`_: Don't pickle LLVM IR for CUDA code libraries (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8377 <https://github.com/numba/numba/pull/8377>`_: Add support for NumPy 1.23 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8384 <https://github.com/numba/numba/pull/8384>`_: Move strace() check into tests that actually need it (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8386 <https://github.com/numba/numba/pull/8386>`_: Fix the docs for numba.get_thread_id (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8407 <https://github.com/numba/numba/pull/8407>`_: Pin NumPy version to 1.18-1.24 (`Andre Masella <https://github.com/apmasell>`_)
* PR `#8411 <https://github.com/numba/numba/pull/8411>`_: update version support table for 0.56.1 (`esc <https://github.com/esc>`_)
* PR `#8412 <https://github.com/numba/numba/pull/8412>`_: Create changelog for 0.56.1 (`Andre Masella <https://github.com/apmasell>`_)
* PR `#8413 <https://github.com/numba/numba/pull/8413>`_: Fix Azure CI for NumPy 1.23 and use conda-forge scipy (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8414 <https://github.com/numba/numba/pull/8413>`_: Hotfix for 0.56.2 (`Siu Kwan Lam <https://github.com/sklam>`_)

Authors:

* `Andre Masella <https://github.com/apmasell>`_
* `esc <https://github.com/esc>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `jamesobutler <https://github.com/jamesobutler>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_

Version 0.56.1 (NO RELEASE)
---------------------------

The release was skipped due to issues during the release process.

Version 0.56.0 (25 July, 2022)
------------------------------

This release continues to add new features, bug fixes and stability improvements
to Numba. Please note that this will be the last release that has support for
Python 3.7 as the next release series (Numba 0.57) will support Python 3.11!
Also note that, this will be the last release to support linux-32 packages
produced by the Numba team.

Python language support enhancements:

* Previously missing support for large, in-line dictionaries and internal calls
  to functions with large numbers of keyword arguments in Python 3.10 has been
  added.
* ``operator.mul`` now works for ``list`` s.
* Literal slices, e.g. ``slice(1, 10, 2)`` can be returned from ``nopython``
  mode functions.
* The ``len`` function now works on ``dict_keys``, ``dict_values`` and
  ``dict_items`` .
* Numba's ``set`` implementation now supports reference counted items e.g.
  strings.

Numba specific feature enhancements:

* The experimental ``jitclass`` feature gains support for a large number of
  ``builtin`` methods e.g. declaring ``__hash__`` or ``__getitem__`` for a
  ``jitclass`` type.
* It's now possible to use ``@vectorize`` on an already ``@jit`` family
  decorated function.
* Name mangling has been updated to emit compiled function names that exactly
  match the function name in Python. This means debuggers, like GDB, can be set
  to break directly on Python function names.
* A GDB "pretty printing" support module has been added, when loaded into GDB
  Numba's internal representations of Python/NumPy types are rendered inside GDB
  as they would be in Python.
* An experimental option is added to the ``@jit`` family decorators to entirely
  turn off LLVM's optimisation passes for a given function (see
  ``_dbg_optnone`` kwarg in the ``@jit`` decorator family).
* A new environment variable is added ``NUMBA_EXTEND_VARIABLE_LIFETIMES``, which
  if set will extend the lifetime of variables to the end of their basic block,
  this to permit a debugging experience in GDB similar to that found in compiled
  C/C++/Fortran code.

NumPy features/enhancements:

* Initial support for passing, using and returning ``numpy.random.Generator``
  instances has been added, this currently includes support for the ``random``
  distribution.
* The broadcasting functions ``np.broadcast_shapes`` and ``np.broadcast_arrays``
  are now supported.
* The ``min`` and ``max`` functions now work with ``np.timedelta64`` and
  ``np.datetime64`` types.
* Sorting multi-dimensional arrays along the last axis is now supported in
  ``np.sort()``.
* The ``np.clip`` function is updated to accept NumPy arrays for the ``a_min``
  and ``a_max`` arguments.
* The NumPy allocation routines (``np.empty`` , ``np.ones`` etc.) support shape
  arguments specified using members of ``enum.IntEnum`` s.
* The function ``np.random.noncentral_chisquare`` is now supported.
* The performance of functions ``np.full`` and ``np.ones`` has been improved.

Parallel Accelerator enhancements:

* The ``parallel=True`` functionality is enhanced through the addition of the
  functions ``numba.set_parallel_chunksize`` and
  ``numba.get_parallel_chunksize`` to permit a more fine grained scheduling of
  work defined in a parallel region. There is also support for adjusting the
  ``chunksize`` via a context manager.
* The ``ID`` of a thread is now defined to be predictable and within a known
  range, it is available through calling the function ``numba.get_thread_id``.
* The performance of ``@stencil`` s has been improved in both serial and
  parallel execution.

CUDA enhancements:

* New functionality:

  * Self-recursive device functions.
  * Vector type support (``float4``, ``int2``, etc.).
  * Shared / local arrays of extension types can now be created.
  * Support for linking CUDA C / C++ device functions into Python kernels.
  * PTX generation for Compute Capabilities 8.6 and 8.7 - e.g. RTX A series,
    GTX 3000 series.
  * Comparison operations for ``float16`` types.

* Performance improvements:

  * Context queries are no longer made during launch configuration.
  * Launch configurations are now LRU cached.
  * On-disk caching of CUDA kernels is now supported.

* Documentation: many new examples added.

Docs:

* Numba now has an official "mission statement".
* There's now a "version support table" in the documentation to act as an easy
  to use, single reference point, for looking up information about Numba
  releases and their required/supported dependencies.

General Enhancements:

* Numba imports more quickly in environments with large numbers of packages as
  it now uses ``importlib-metadata`` for querying other packages.
* Emission of chrome tracing output is now supported for the internal
  compilation event handling system.
* This release is tested and known to work when using the
  `Pyston <https://www.pyston.org/>`_ Python interpreter.

Pull-Requests:

* PR `#5209 <https://github.com/numba/numba/pull/5209>`_: Use importlib to load numba extensions (`Stepan Rakitin <https://github.com/svrakitin>`_ `Graham Markall <https://github.com/gmarkall>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#5877 <https://github.com/numba/numba/pull/5877>`_: Jitclass builtin methods (`Ethan Pronovost <https://github.com/EPronovost>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#6490 <https://github.com/numba/numba/pull/6490>`_: Stencil output allocated with np.empty now and new code to initialize the borders. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7005 <https://github.com/numba/numba/pull/7005>`_: Make `numpy.searchsorted` match NumPy when first argument is unsorted (`Brandon T. Willard <https://github.com/brandonwillard>`_)
* PR `#7363 <https://github.com/numba/numba/pull/7363>`_: Update cuda.local.array to clarify "simple constant expression" (e.g. no NumPy ints) (`Sterling Baird <https://github.com/sgbaird>`_)
* PR `#7364 <https://github.com/numba/numba/pull/7364>`_: Removes an instance of signed integer overflow undefined behaviour. (`Tobias Sargeant <https://github.com/folded>`_)
* PR `#7537 <https://github.com/numba/numba/pull/7537>`_: Add chrome tracing (`Hadia Ahmed <https://github.com/hadia206>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7556 <https://github.com/numba/numba/pull/7556>`_: Testhound/fp16 comparison (`Michael Collison <https://github.com/testhound>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7586 <https://github.com/numba/numba/pull/7586>`_: Support for len on dict.keys, dict.values, and dict.items (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7617 <https://github.com/numba/numba/pull/7617>`_: Numba gdb-python extension for printing (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7619 <https://github.com/numba/numba/pull/7619>`_: CUDA: Fix linking with PTX when compiling lazily (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7621 <https://github.com/numba/numba/pull/7621>`_: Add support for linking CUDA C / C++ with `@cuda.jit` kernels (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7625 <https://github.com/numba/numba/pull/7625>`_: Combined parfor chunking and caching PRs. (`stuartarchibald <https://github.com/stuartarchibald>`_ `Todd A. Anderson <https://github.com/DrTodd13>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7651 <https://github.com/numba/numba/pull/7651>`_: DOC: pypi and conda-forge badges (`Ray Bell <https://github.com/raybellwaves>`_)
* PR `#7660 <https://github.com/numba/numba/pull/7660>`_: Add support for np.broadcast_arrays (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#7664 <https://github.com/numba/numba/pull/7664>`_: Flatten mangling dicts into a single dict (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7680 <https://github.com/numba/numba/pull/7680>`_: CUDA Docs: include example calling slow matmul (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7682 <https://github.com/numba/numba/pull/7682>`_: performance improvements to np.full and np.ones (`Rishi Kulkarni <https://github.com/rishi-kulkarni>`_)
* PR `#7684 <https://github.com/numba/numba/pull/7684>`_: DOC: remove incorrect warning in np.random reference (`Rishi Kulkarni <https://github.com/rishi-kulkarni>`_)
* PR `#7685 <https://github.com/numba/numba/pull/7685>`_: Don't convert setitems that have dimension mismatches to parfors. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7690 <https://github.com/numba/numba/pull/7690>`_: Implemented np.random.noncentral_chisquare for all size arguments (`Rishi Kulkarni <https://github.com/rishi-kulkarni>`_)
* PR `#7695 <https://github.com/numba/numba/pull/7695>`_: `IntEnumMember` support for  `np.empty`, `np.zeros`, and `np.ones` (`Benjamin Graham <https://github.com/benwilliamgraham>`_)
* PR `#7699 <https://github.com/numba/numba/pull/7699>`_: CUDA: Provide helpful error if the return type is missing for `declare_device` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7700 <https://github.com/numba/numba/pull/7700>`_: Support for scalar arguments in Np.ascontiguousarray  (`Dhruv Patel <https://github.com/DhruvPatel01>`_)
* PR `#7703 <https://github.com/numba/numba/pull/7703>`_: Ignore unsupported types in `ShapeEquivSet._getnames()` (`Benjamin Graham <https://github.com/benwilliamgraham>`_)
* PR `#7704 <https://github.com/numba/numba/pull/7704>`_: Move the type annotation pass to post legalization. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7709 <https://github.com/numba/numba/pull/7709>`_: CUDA: Fixes missing type annotation pass following #7704 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7712 <https://github.com/numba/numba/pull/7712>`_: Fixing issue 7693 (`stuartarchibald <https://github.com/stuartarchibald>`_ `Graham Markall <https://github.com/gmarkall>`_ `luk-f-a <https://github.com/luk-f-a>`_)
* PR `#7714 <https://github.com/numba/numba/pull/7714>`_: Support for boxing SliceLiteral type (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7718 <https://github.com/numba/numba/pull/7718>`_: Bump llvmlite dependency to 0.39.0dev0 for Numba 0.56.0dev0 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7724 <https://github.com/numba/numba/pull/7724>`_: Update URLs in error messages to refer to RTD docs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7728 <https://github.com/numba/numba/pull/7728>`_: Document that AOT-compiled functions do not check arg types (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7729 <https://github.com/numba/numba/pull/7729>`_: Handle Omitted/OmittedArgDataModel in DI generation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7732 <https://github.com/numba/numba/pull/7732>`_: update release checklist following 0.55.0 RC1 (`esc <https://github.com/esc>`_)
* PR `#7736 <https://github.com/numba/numba/pull/7736>`_: Update CHANGE_LOG for 0.55.0 final. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7740 <https://github.com/numba/numba/pull/7740>`_: CUDA Python 11.6 support (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7744 <https://github.com/numba/numba/pull/7744>`_: Fix issues with locating/parsing source during DebugInfo emission. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7745 <https://github.com/numba/numba/pull/7745>`_: Fix the release year for Numba 0.55 change log entry. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7748 <https://github.com/numba/numba/pull/7748>`_: Fix #7713: Ensure _prng_random_hash return has correct bitwidth (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7749 <https://github.com/numba/numba/pull/7749>`_: Refactor threading layer priority tests to not use stdout/stderr (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7752 <https://github.com/numba/numba/pull/7752>`_: Fix #7751: Use original filename for array exprs (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7755 <https://github.com/numba/numba/pull/7755>`_: CUDA: Deprecate support for CC < 5.3 and CTK < 10.2 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7763 <https://github.com/numba/numba/pull/7763>`_: Update Read the Docs configuration (automatic) (`readthedocs-assistant <https://github.com/readthedocs-assistant>`_)
* PR `#7764 <https://github.com/numba/numba/pull/7764>`_: Add dbg_optnone and dbg_extend_lifetimes flags (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7771 <https://github.com/numba/numba/pull/7771>`_: Move function unique ID to abi-tags (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7772 <https://github.com/numba/numba/pull/7772>`_: CUDA: Add Support to Creating `StructModel` Array (`Michael Wang <https://github.com/isVoid>`_)
* PR `#7776 <https://github.com/numba/numba/pull/7776>`_: Updates coverage.py config (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7777 <https://github.com/numba/numba/pull/7777>`_: Remove reference existing issue from GH template. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7778 <https://github.com/numba/numba/pull/7778>`_: Remove long deprecated flags from the CLI. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7780 <https://github.com/numba/numba/pull/7780>`_: Fix sets with reference counted items (`Benjamin Graham <https://github.com/benwilliamgraham>`_)
* PR `#7782 <https://github.com/numba/numba/pull/7782>`_: adding reminder to check on deprecations (`esc <https://github.com/esc>`_)
* PR `#7783 <https://github.com/numba/numba/pull/7783>`_: remove upper limit on Python version (`esc <https://github.com/esc>`_)
* PR `#7786 <https://github.com/numba/numba/pull/7786>`_: Remove dependency on intel-openmp for OSX (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7788 <https://github.com/numba/numba/pull/7788>`_: Avoid issue with DI gen for arrayexprs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7796 <https://github.com/numba/numba/pull/7796>`_: update change-log for 0.55.1 (`esc <https://github.com/esc>`_)
* PR `#7797 <https://github.com/numba/numba/pull/7797>`_: prune README (`esc <https://github.com/esc>`_)
* PR `#7799 <https://github.com/numba/numba/pull/7799>`_: update the release checklist post 0.55.1 (`esc <https://github.com/esc>`_)
* PR `#7801 <https://github.com/numba/numba/pull/7801>`_: add sdist command and umask reminder (`esc <https://github.com/esc>`_)
* PR `#7804 <https://github.com/numba/numba/pull/7804>`_: update local references from master -> main (`esc <https://github.com/esc>`_)
* PR `#7805 <https://github.com/numba/numba/pull/7805>`_: Enhance source line finding logic for debuginfo (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7809 <https://github.com/numba/numba/pull/7809>`_: Updates the gdb configuration to accept a binary name or a path. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7813 <https://github.com/numba/numba/pull/7813>`_: Extend parfors test timeout for aarch64. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7814 <https://github.com/numba/numba/pull/7814>`_: CUDA Dispatcher refactor (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7815 <https://github.com/numba/numba/pull/7815>`_: CUDA Dispatcher refactor 2: inherit from `dispatcher.Dispatcher` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7817 <https://github.com/numba/numba/pull/7817>`_: Update intersphinx URLs for NumPy and llvmlite. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7823 <https://github.com/numba/numba/pull/7823>`_: Add renamed vars to callee scope such that it is self consistent. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7829 <https://github.com/numba/numba/pull/7829>`_: CUDA: Support `Enum/IntEnum` in Kernel (`Michael Wang <https://github.com/isVoid>`_)
* PR `#7833 <https://github.com/numba/numba/pull/7833>`_: Add version support information table to docs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7835 <https://github.com/numba/numba/pull/7835>`_: Fix pickling error when module cannot be imported (`idorrington <https://github.com/idorrington>`_)
* PR `#7836 <https://github.com/numba/numba/pull/7836>`_: min() and max() support for np.datetime and np.timedelta (`Benjamin Graham <https://github.com/benwilliamgraham>`_)
* PR `#7837 <https://github.com/numba/numba/pull/7837>`_: Initial refactoring of parfor reduction lowering  (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7845 <https://github.com/numba/numba/pull/7845>`_: change time.time() to time.perf_counter() in docs (`Nopileos2 <https://github.com/Nopileos2>`_)
* PR `#7846 <https://github.com/numba/numba/pull/7846>`_: Fix CUDA enum vectorize test on Windows (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7848 <https://github.com/numba/numba/pull/7848>`_: Support for int * list (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7850 <https://github.com/numba/numba/pull/7850>`_: CUDA: Pass `fastmath` compiler flag down to `compile_ptx` and `compile_device`; Improve `fastmath` tests (`Michael Wang <https://github.com/isVoid>`_)
* PR `#7855 <https://github.com/numba/numba/pull/7855>`_: Ensure np.argmin/no.argmax return type is intp (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7858 <https://github.com/numba/numba/pull/7858>`_: CUDA: Deprecate `ptx` Attribute and Update Tests (`Graham Markall <https://github.com/gmarkall>`_ `Michael Wang <https://github.com/isVoid>`_)
* PR `#7861 <https://github.com/numba/numba/pull/7861>`_: Fix a spelling mistake in README (`Zizheng Guo <https://github.com/gzz2000>`_)
* PR `#7864 <https://github.com/numba/numba/pull/7864>`_: Fix cross_iter_dep check. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7865 <https://github.com/numba/numba/pull/7865>`_: Remove add_user_function (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7866 <https://github.com/numba/numba/pull/7866>`_: Support for large numbers of args/kws with Python 3.10 (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7878 <https://github.com/numba/numba/pull/7878>`_: CUDA: Remove some deprecated support, add CC 8.6 and 8.7 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7893 <https://github.com/numba/numba/pull/7893>`_: Use uuid.uuid4() as the key in serialization. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7895 <https://github.com/numba/numba/pull/7895>`_: Remove use of `llvmlite.llvmpy` (`Andre Masella <https://github.com/apmasell>`_)
* PR `#7898 <https://github.com/numba/numba/pull/7898>`_: Skip test_ptds under cuda-memcheck (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7901 <https://github.com/numba/numba/pull/7901>`_: Pyston compatibility for the test suite (`Kevin Modzelewski <https://github.com/kmod>`_)
* PR `#7904 <https://github.com/numba/numba/pull/7904>`_: Support m1 (`esc <https://github.com/esc>`_)
* PR `#7911 <https://github.com/numba/numba/pull/7911>`_: added sys import (`Nightfurex <https://github.com/Nightfurex>`_)
* PR `#7915 <https://github.com/numba/numba/pull/7915>`_: CUDA: Fix test checking debug info rendering. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7918 <https://github.com/numba/numba/pull/7918>`_: Add JIT examples to CUDA docs (`brandon-b-miller <https://github.com/brandon-b-miller>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7919 <https://github.com/numba/numba/pull/7919>`_: Disallow //= reductions in pranges. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7924 <https://github.com/numba/numba/pull/7924>`_: Retain non-modified index tuple components. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7939 <https://github.com/numba/numba/pull/7939>`_: Fix rendering in feature request template. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7940 <https://github.com/numba/numba/pull/7940>`_: Implemented `np.allclose` in `numba/np/arraymath.py` (`Gagandeep Singh <https://github.com/czgdp1807>`_)
* PR `#7941 <https://github.com/numba/numba/pull/7941>`_: Remove debug dump output from closure inlining pass. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7946 <https://github.com/numba/numba/pull/7946>`_: instructions for creating a build environment were outdated (`esc <https://github.com/esc>`_)
* PR `#7949 <https://github.com/numba/numba/pull/7949>`_: Add Cuda Vector Types (`Michael Wang <https://github.com/isVoid>`_)
* PR `#7950 <https://github.com/numba/numba/pull/7950>`_: mission statement (`esc <https://github.com/esc>`_)
* PR `#7956 <https://github.com/numba/numba/pull/7956>`_: Stop using pip for 3.10 on public ci (Revert "start testing Python 3.10 on public CI") (`esc <https://github.com/esc>`_)
* PR `#7957 <https://github.com/numba/numba/pull/7957>`_: Use cloudpickle for disk caches (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7958 <https://github.com/numba/numba/pull/7958>`_: `numpy.clip` accept `numpy.array` for `a_min`, `a_max` (`Gagandeep Singh <https://github.com/czgdp1807>`_)
* PR `#7959 <https://github.com/numba/numba/pull/7959>`_: Permit a new array model to have a super set of array model fields. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7961 <https://github.com/numba/numba/pull/7961>`_: `numba.typed.typeddict.Dict.get` uses `castedkey` to avoid returning default value even if the key is present (`Gagandeep Singh <https://github.com/czgdp1807>`_)
* PR `#7963 <https://github.com/numba/numba/pull/7963>`_: remove the roadmap from the sphinx based docs (`esc <https://github.com/esc>`_)
* PR `#7964 <https://github.com/numba/numba/pull/7964>`_: Support for large constant dictionaries in Python 3.10 (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7965 <https://github.com/numba/numba/pull/7965>`_: Use uuid4 instead of PID in cache temp name to prevent collisions. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7971 <https://github.com/numba/numba/pull/7971>`_: lru cache for configure call (`Tingkai Liu <https://github.com/TK-21st>`_)
* PR `#7972 <https://github.com/numba/numba/pull/7972>`_: Fix fp16 support for cuda shared array (`Michael Collison <https://github.com/testhound>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7986 <https://github.com/numba/numba/pull/7986>`_: Small caching refactor to support target cache implementations (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7994 <https://github.com/numba/numba/pull/7994>`_: Supporting multidimensional arrays in quick sort (`Gagandeep Singh <https://github.com/czgdp1807>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7996 <https://github.com/numba/numba/pull/7996>`_: Fix binding logic in `@overload_glue`. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7999 <https://github.com/numba/numba/pull/7999>`_: Remove `@overload_glue` for NumPy allocators. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8003 <https://github.com/numba/numba/pull/8003>`_: Add np.broadcast_shapes (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#8004 <https://github.com/numba/numba/pull/8004>`_: CUDA fixes for Windows (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8014 <https://github.com/numba/numba/pull/8014>`_: Fix support for {real,imag} array attrs in Parfors. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8016 <https://github.com/numba/numba/pull/8016>`_: [Docs] [Very Minor] Make `numba.jit` boundscheck doc line consistent (`Kyle Martin <https://github.com/martinky24>`_)
* PR `#8017 <https://github.com/numba/numba/pull/8017>`_: Update FAQ to include details about using debug-only option (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#8027 <https://github.com/numba/numba/pull/8027>`_: Support for NumPy 1.22 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8031 <https://github.com/numba/numba/pull/8031>`_: Support for Numpy BitGenerators PR#1 - Core Generator Support (`Kaustubh <https://github.com/kc611>`_)
* PR `#8035 <https://github.com/numba/numba/pull/8035>`_: Fix a couple of typos RE implementation (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8037 <https://github.com/numba/numba/pull/8037>`_: CUDA self-recursion tests (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8044 <https://github.com/numba/numba/pull/8044>`_: Make Python 3.10 kwarg peephole less restrictive (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#8046 <https://github.com/numba/numba/pull/8046>`_: Fix caching test failures (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8049 <https://github.com/numba/numba/pull/8049>`_: support str(bool) syntax (`LI Da <https://github.com/dlee992>`_)
* PR `#8052 <https://github.com/numba/numba/pull/8052>`_: Ensure pthread is linked in when building for ppc64le. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8056 <https://github.com/numba/numba/pull/8056>`_: Move caching tests from test_dispatcher to test_caching (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8057 <https://github.com/numba/numba/pull/8057>`_: Fix coverage checking (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8064 <https://github.com/numba/numba/pull/8064>`_: Rename "nb:run_pass" to "numba:run_pass" and document it. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8065 <https://github.com/numba/numba/pull/8065>`_: Fix PyLowering mishandling starargs (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8068 <https://github.com/numba/numba/pull/8068>`_: update changelog for 0.55.2 (`esc <https://github.com/esc>`_)
* PR `#8077 <https://github.com/numba/numba/pull/8077>`_: change return type of np.broadcast_shapes to a tuple (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#8080 <https://github.com/numba/numba/pull/8080>`_: Fix windows test failure due to timeout when the machine is slow poss… (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8081 <https://github.com/numba/numba/pull/8081>`_: Fix erroneous array count in parallel gufunc kernel generation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8089 <https://github.com/numba/numba/pull/8089>`_: Support on-disk caching in the CUDA target (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8097 <https://github.com/numba/numba/pull/8097>`_: Exclude libopenblas 0.3.20 on osx-arm64 (`esc <https://github.com/esc>`_)
* PR `#8099 <https://github.com/numba/numba/pull/8099>`_: Fix Py_DECREF use in case of error state (for devicearray). (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8102 <https://github.com/numba/numba/pull/8102>`_: Combine numpy run_constrained in meta.yaml to the run requirements (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8109 <https://github.com/numba/numba/pull/8109>`_: Pin TBB support with respect to incompatible 2021.6 API. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8118 <https://github.com/numba/numba/pull/8118>`_: Update release checklists post 0.55.2 (`esc <https://github.com/esc>`_)
* PR `#8123 <https://github.com/numba/numba/pull/8123>`_: Fix CUDA print tests on Windows (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8124 <https://github.com/numba/numba/pull/8124>`_: Add explicit checks to all allocators in the NRT. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8126 <https://github.com/numba/numba/pull/8126>`_: Mark gufuncs as having mutable outputs (`Andre Masella <https://github.com/apmasell>`_)
* PR `#8133 <https://github.com/numba/numba/pull/8133>`_: Fix #8132. Regression in Record.make_c_struct for handling nestedarray (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8137 <https://github.com/numba/numba/pull/8137>`_: CUDA: Fix #7806, Division by zero stops the kernel (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8142 <https://github.com/numba/numba/pull/8142>`_: CUDA: Fix some missed changes from dropping 9.2 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8144 <https://github.com/numba/numba/pull/8144>`_: Fix NumPy capitalisation in docs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8145 <https://github.com/numba/numba/pull/8145>`_: Allow ufunc builder to use previously JITed function (`Andre Masella <https://github.com/apmasell>`_)
* PR `#8151 <https://github.com/numba/numba/pull/8151>`_: pin NumPy to build 0 of 1.19.2 on public CI (`esc <https://github.com/esc>`_)
* PR `#8163 <https://github.com/numba/numba/pull/8163>`_: CUDA: Remove context query in launch config (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8165 <https://github.com/numba/numba/pull/8165>`_: Restrict strace based tests to be linux only via support feature. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8170 <https://github.com/numba/numba/pull/8170>`_: CUDA: Fix missing space in low occupancy warning (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8175 <https://github.com/numba/numba/pull/8175>`_: make build and upload order consistent (`esc <https://github.com/esc>`_)
* PR `#8181 <https://github.com/numba/numba/pull/8181>`_: Fix various typos (`luzpaz <https://github.com/luzpaz>`_)
* PR `#8187 <https://github.com/numba/numba/pull/8187>`_: Update CHANGE_LOG for 0.55.2 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_)
* PR `#8189 <https://github.com/numba/numba/pull/8189>`_: updated version support information for 0.55.2/0.57 (`esc <https://github.com/esc>`_)
* PR `#8191 <https://github.com/numba/numba/pull/8191>`_: CUDA: Update deprecation notes for 0.56. (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8192 <https://github.com/numba/numba/pull/8192>`_: Update CHANGE_LOG for 0.56.0 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8195 <https://github.com/numba/numba/pull/8195>`_: Make the workqueue threading backend once again fork safe. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8196 <https://github.com/numba/numba/pull/8196>`_: Fix numerical tolerance in parfors caching test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8197 <https://github.com/numba/numba/pull/8197>`_: Fix `isinstance` warning check test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8203 <https://github.com/numba/numba/pull/8203>`_: pin llvmlite 0.39 for public CI builds (`esc <https://github.com/esc>`_)
* PR `#8255 <https://github.com/numba/numba/pull/8255>`_: CUDA: Make numba.cuda.tests.doc_examples.ffi a module to fix #8252 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#8274 <https://github.com/numba/numba/pull/8274>`_: Update version support table doc for 0.56. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8275 <https://github.com/numba/numba/pull/8275>`_: Update CHANGE_LOG for 0.56.0 final (`stuartarchibald <https://github.com/stuartarchibald>`_)

Authors:

* `Andre Masella <https://github.com/apmasell>`_
* `Benjamin Graham <https://github.com/benwilliamgraham>`_
* `brandon-b-miller <https://github.com/brandon-b-miller>`_
* `Brandon T. Willard <https://github.com/brandonwillard>`_
* `Gagandeep Singh <https://github.com/czgdp1807>`_
* `Dhruv Patel <https://github.com/DhruvPatel01>`_
* `LI Da <https://github.com/dlee992>`_
* `Todd A. Anderson <https://github.com/DrTodd13>`_
* `Ethan Pronovost <https://github.com/EPronovost>`_
* `esc <https://github.com/esc>`_
* `Tobias Sargeant <https://github.com/folded>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `Guilherme Leobas <https://github.com/guilhermeleobas>`_
* `Zizheng Guo <https://github.com/gzz2000>`_
* `Hadia Ahmed <https://github.com/hadia206>`_
* `idorrington <https://github.com/idorrington>`_
* `Michael Wang <https://github.com/isVoid>`_
* `Kaustubh <https://github.com/kc611>`_
* `Kevin Modzelewski <https://github.com/kmod>`_
* `luk-f-a <https://github.com/luk-f-a>`_
* `luzpaz <https://github.com/luzpaz>`_
* `Kyle Martin <https://github.com/martinky24>`_
* `Nightfurex <https://github.com/Nightfurex>`_
* `Nick Riasanovsky <https://github.com/njriasan>`_
* `Nopileos2 <https://github.com/Nopileos2>`_
* `Ray Bell <https://github.com/raybellwaves>`_
* `readthedocs-assistant <https://github.com/readthedocs-assistant>`_
* `Rishi Kulkarni <https://github.com/rishi-kulkarni>`_
* `Sterling Baird <https://github.com/sgbaird>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
* `Stepan Rakitin <https://github.com/svrakitin>`_
* `Michael Collison <https://github.com/testhound>`_
* `Tingkai Liu <https://github.com/TK-21st>`_

Version 0.55.2 (25 May, 2022)
-----------------------------

This is a maintenance release to support NumPy 1.22 and Apple M1.

Pull-Requests:

* PR `#8067 <https://github.com/numba/numba/pull/8067>`_: Backport #8027: Support for NumPy 1.22 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8069 <https://github.com/numba/numba/pull/8069>`_: Install llvmlite 0.38 for Numba 0.55.* (`esc <https://github.com/esc>`_)
* PR `#8075 <https://github.com/numba/numba/pull/8075>`_: update max NumPy for 0.55.2 (`esc <https://github.com/esc>`_)
* PR `#8078 <https://github.com/numba/numba/pull/8078>`_: Backport #7804: update local references from master -> main (`esc <https://github.com/esc>`_)
* PR `#8082 <https://github.com/numba/numba/pull/8082>`_: Backport #8080: fix windows failure due to timeout (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8084 <https://github.com/numba/numba/pull/8084>`_: Pin meta.yaml to llvmlite 0.38 series (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8093 <https://github.com/numba/numba/pull/8093>`_: Backport #7904: Support m1 (`esc <https://github.com/esc>`_)
* PR `#8094 <https://github.com/numba/numba/pull/8094>`_: Backport #8052 Ensure pthread is linked in when building for ppc64le. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8098 <https://github.com/numba/numba/pull/8098>`_: Backport #8097: Exclude libopenblas 0.3.20 on osx-arm64 (`esc <https://github.com/esc>`_)
* PR `#8100 <https://github.com/numba/numba/pull/8100>`_: Backport #7786 for 0.55.2: Remove dependency on intel-openmp for OSX  (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#8103 <https://github.com/numba/numba/pull/8103>`_: Backport #8102 to fix numpy requirements (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#8114 <https://github.com/numba/numba/pull/8114>`_: Backport #8109 Pin TBB support with respect to incompatible 2021.6 API. (`stuartarchibald <https://github.com/stuartarchibald>`_)

Total PRs: 12

Authors:

* `esc <https://github.com/esc>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_

Total authors: 3

Version 0.55.1 (27 January, 2022)
---------------------------------

This is a bugfix release that closes all the remaining issues from the
accelerated release of 0.55.0 and also any release critical regressions
discovered since then.

CUDA target deprecation notices:

* Support for CUDA toolkits < 10.2 is deprecated and will be removed in Numba
  0.56.
* Support for devices with Compute Capability < 5.3 is deprecated and will be
  removed in Numba 0.56.


Pull-Requests:

* PR `#7755 <https://github.com/numba/numba/pull/7755>`_: CUDA: Deprecate support for CC < 5.3 and CTK < 10.2 (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7749 <https://github.com/numba/numba/pull/7749>`_: Refactor threading layer priority tests to not use stdout/stderr (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7744 <https://github.com/numba/numba/pull/7744>`_: Fix issues with locating/parsing source during DebugInfo emission. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7712 <https://github.com/numba/numba/pull/7712>`_: Fixing issue 7693 (`Graham Markall <https://github.com/gmarkall>`_ `luk-f-a <https://github.com/luk-f-a>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7729 <https://github.com/numba/numba/pull/7729>`_: Handle Omitted/OmittedArgDataModel in DI generation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7788 <https://github.com/numba/numba/pull/7788>`_: Avoid issue with DI gen for arrayexprs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7752 <https://github.com/numba/numba/pull/7752>`_: Fix #7751: Use original filename for array exprs (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7748 <https://github.com/numba/numba/pull/7748>`_: Fix #7713: Ensure _prng_random_hash return has correct bitwidth (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7745 <https://github.com/numba/numba/pull/7745>`_: Fix the release year for Numba 0.55 change log entry. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7740 <https://github.com/numba/numba/pull/7740>`_: CUDA Python 11.6 support (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7724 <https://github.com/numba/numba/pull/7724>`_: Update URLs in error messages to refer to RTD docs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7709 <https://github.com/numba/numba/pull/7709>`_: CUDA: Fixes missing type annotation pass following #7704 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7704 <https://github.com/numba/numba/pull/7704>`_: Move the type annotation pass to post legalization. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7619 <https://github.com/numba/numba/pull/7619>`_: CUDA: Fix linking with PTX when compiling lazily (`Graham Markall <https://github.com/gmarkall>`_)

Authors:

* `Graham Markall <https://github.com/gmarkall>`_
* `luk-f-a <https://github.com/luk-f-a>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_

Version 0.55.0 (13 January, 2022)
---------------------------------

This release includes a significant number important dependency upgrades along
with a number of new features and bug fixes.

NOTE: Due to NumPy CVE-2021-33430 this release has bypassed the usual release
process so as to promptly provide a Numba release that supports NumPy 1.21. A
single release candidate (RC1) was made and a few issues were reported, these
are summarised as follows and will be fixed in a subsequent 0.55.1 release.

Known issues with this release:

* Incorrect result copying array-typed field of structured array (`#7693 <https://github.com/numba/numba/pull/7693>`_)
* Two issues in DebugInfo generation (`#7726 <https://github.com/numba/numba/pull/7726>`_, `#7730 <https://github.com/numba/numba/pull/7730>`_)
* Compilation failure for ``hash`` of floating point values on 32 bit Windows
  when using Python 3.10 (`#7713 <https://github.com/numba/numba/pull/7713>`_).

Highlights of core dependency upgrades:

* Support for Python 3.10
* Support for NumPy 1.21

Python language support enhancements:

* Experimental support for ``isinstance``.

NumPy features/enhancements:

The following functions are now supported:

* ``np.broadcast_to``
* ``np.float_power``
* ``np.cbrt``
* ``np.logspace``
* ``np.take_along_axis``
* ``np.average``
* ``np.argmin`` gains support for the ``axis`` kwarg.
* ``np.ndarray.astype`` gains support for types expressed as literal strings.

Highlights of core changes:

* For users of the Numba extension API, Numba now has a new error handling mode
  whereby it will treat all exceptions that do not inherit from
  ``numba.errors.NumbaException`` as a "hard error" and immediately unwind the
  stack. This makes it much easier to debug when writing ``@overload``\s etc
  from the extension API as there's now no confusion between Python errors and
  Numba errors. This feature can be enabled by setting the environment
  variable: ``NUMBA_CAPTURED_ERRORS='new_style'``.
* The threading layer selection priority can now be changed via the environment
  variable ``NUMBA_THREADING_LAYER_PRIORITY``.

Highlights of changes for the CUDA target:

* Support for NVIDIA's CUDA Python bindings.
* Support for 16-bit floating point numbers and their basic operations via
  intrinsics.
* Streams are provided in the ``Stream.async_done`` result, making it easier to
  implement asynchronous work queues.
* Support for structured types in device arrays, character sequences in NumPy
  arrays, and some array operations on nested arrays.
* Much underlying refactoring to align the CUDA target more closely with the
  CPU target, which lays the groudwork for supporting the high level extension
  API in CUDA in future releases.

Intel also kindly sponsored research and development into native debug (DWARF)
support and handling per-function compilation flags:

* Line number/location tracking is much improved.
* Numba's internal representation of containers (e.g. tuples, arrays) are now
  encoded as structures.
* Numba's per-function compilation flags are encoded into the ABI field of the
  mangled name of the function such that it's possible to compile and
  differentiate between versions of the same function with different flags set.

General deprecation notices:

* There are no new general deprecations.

CUDA target deprecation notices:

* There are no new CUDA target deprecations.

Version support/dependency changes:

* Python 3.10 is supported.
* NumPy version 1.21 is supported.
* The minimum supported NumPy version is raised to 1.18 for runtime (compilation
  however remains compatible with NumPy 1.11).


Pull-Requests:

* PR `#6075 <https://github.com/numba/numba/pull/6075>`_: add np.float_power and np.cbrt (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#7047 <https://github.com/numba/numba/pull/7047>`_: Support __hash__ for numpy.datetime64 (`Guilherme Leobas <https://github.com/guilhermeleobas>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7057 <https://github.com/numba/numba/pull/7057>`_: Fix #7041: Add charseq registry to CUDA target (`Graham Markall <https://github.com/gmarkall>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7082 <https://github.com/numba/numba/pull/7082>`_: Added Add/Sub between datetime64 array and timedelta64 scalar (`Nick Riasanovsky <https://github.com/njriasan>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7119 <https://github.com/numba/numba/pull/7119>`_: Add support for `np.broadcast_to` (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#7129 <https://github.com/numba/numba/pull/7129>`_: Add support for axis keyword argument to np.argmin() (`Itamar Turner-Trauring <https://github.com/itamarst>`_)
* PR `#7132 <https://github.com/numba/numba/pull/7132>`_: gh #7131 Support for astype with literal strings (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7177 <https://github.com/numba/numba/pull/7177>`_: Add debug infomation support based on datamodel. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7185 <https://github.com/numba/numba/pull/7185>`_: Add get_impl_key as abstract method to types.Callable (`Alexey Kozlov <https://github.com/kozlov-alexey>`_)
* PR `#7186 <https://github.com/numba/numba/pull/7186>`_: Add support for np.logspace. (`Guoqiang QI <https://github.com/guoqiangqi>`_)
* PR `#7189 <https://github.com/numba/numba/pull/7189>`_: CUDA: Skip IPC tests on ARM (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7190 <https://github.com/numba/numba/pull/7190>`_: CUDA: Fix test_pinned on Jetson (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7192 <https://github.com/numba/numba/pull/7192>`_: Fix missing import in array.argsort impl and add more tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7196 <https://github.com/numba/numba/pull/7196>`_: Fixes for lineinfo emission (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7197 <https://github.com/numba/numba/pull/7197>`_: don't post to python announce on the first RC (`esc <https://github.com/esc>`_)
* PR `#7202 <https://github.com/numba/numba/pull/7202>`_: Initial implementation of np.take_along_axis (`Itamar Turner-Trauring <https://github.com/itamarst>`_)
* PR `#7203 <https://github.com/numba/numba/pull/7203>`_: remove duplicate changelog entries (`esc <https://github.com/esc>`_)
* PR `#7216 <https://github.com/numba/numba/pull/7216>`_: Update CHANGE_LOG for 0.54.0rc2 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7219 <https://github.com/numba/numba/pull/7219>`_: bump llvmlite dependency to 0.38.0dev0 for Numba 0.55.0dev0 (`esc <https://github.com/esc>`_)
* PR `#7220 <https://github.com/numba/numba/pull/7220>`_: update release checklist post 0.54rc1+2 (`esc <https://github.com/esc>`_)
* PR `#7221 <https://github.com/numba/numba/pull/7221>`_: Show GPU UUIDs in cuda.detect() output (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7222 <https://github.com/numba/numba/pull/7222>`_: CUDA: Warn when debug=True and opt=True (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7223 <https://github.com/numba/numba/pull/7223>`_: Replace assertion errors on IR assumption violation (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7226 <https://github.com/numba/numba/pull/7226>`_: Add support for structured types in Device Arrays (`Michael Collison <https://github.com/testhound>`_)
* PR `#7227 <https://github.com/numba/numba/pull/7227>`_: FIX: Typo (`Srinath Kailasa <https://github.com/skailasa>`_)
* PR `#7230 <https://github.com/numba/numba/pull/7230>`_: PR #7171 bugfix only (`stuartarchibald <https://github.com/stuartarchibald>`_ `Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7234 <https://github.com/numba/numba/pull/7234>`_: add THREADING_LAYER_PRIORITY & NUMBA_THREADING_LAYER_PRIORITY (`Kolen Cheung <https://github.com/ickc>`_)
* PR `#7235 <https://github.com/numba/numba/pull/7235>`_: replace wordings of WIP by draft PR (`Kolen Cheung <https://github.com/ickc>`_)
* PR `#7236 <https://github.com/numba/numba/pull/7236>`_: CUDA: Skip managed alloc tests on ARM (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7237 <https://github.com/numba/numba/pull/7237>`_: fix a typo in a string (`Kolen Cheung <https://github.com/ickc>`_)
* PR `#7241 <https://github.com/numba/numba/pull/7241>`_: Set aliasing information for inplace_binops.. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7242 <https://github.com/numba/numba/pull/7242>`_: FIX: typo (`Srinath Kailasa <https://github.com/skailasa>`_)
* PR `#7244 <https://github.com/numba/numba/pull/7244>`_: Implement partial literal propagation pass (support 'isinstance') (`Guilherme Leobas <https://github.com/guilhermeleobas>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7247 <https://github.com/numba/numba/pull/7247>`_: Solve memory leak to fix issue #7210  (`Siu Kwan Lam <https://github.com/sklam>`_ `Graham Markall <https://github.com/gmarkall>`_ `ysheffer <https://github.com/ysheffer>`_)
* PR `#7251 <https://github.com/numba/numba/pull/7251>`_: Fix #6001: typed.List ignores ctor arguments with JIT disabled (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7256 <https://github.com/numba/numba/pull/7256>`_: Fix link to the discourse forum in README (`Kenichi Maehashi <https://github.com/kmaehashi>`_)
* PR `#7257 <https://github.com/numba/numba/pull/7257>`_: Use normal list constructor in List.__new__() (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7260 <https://github.com/numba/numba/pull/7260>`_: Support typed lists in `heapq` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7263 <https://github.com/numba/numba/pull/7263>`_: Updated issue URL for error messages #7261 (`DeviousLab <https://github.com/DeviousLab>`_)
* PR `#7265 <https://github.com/numba/numba/pull/7265>`_: Fix linspace to use np.divide and clamp to stop. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7266 <https://github.com/numba/numba/pull/7266>`_: CUDA: Skip multi-GPU copy test with peer access disabled (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7267 <https://github.com/numba/numba/pull/7267>`_: Fix #7258. Bug in SROA optimization (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7271 <https://github.com/numba/numba/pull/7271>`_: Update 3rd party license text. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7272 <https://github.com/numba/numba/pull/7272>`_: Allow annotations in njit-ed functions (`LunarLanding <https://github.com/LunarLanding>`_)
* PR `#7273 <https://github.com/numba/numba/pull/7273>`_: Update CHANGE_LOG for 0.54.0rc3. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7283 <https://github.com/numba/numba/pull/7283>`_: Added NPM to Glossary and linked to mentions (`Nihal Shetty <https://github.com/nihalshetty-boop>`_)
* PR `#7285 <https://github.com/numba/numba/pull/7285>`_: CUDA: Fix OOB in test_kernel_arg (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7288 <https://github.com/numba/numba/pull/7288>`_: Handle cval as a np attr in stencil generation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7294 <https://github.com/numba/numba/pull/7294>`_: Continuation of PR #7280, fixing lifetime of TBB task_scheduler_handle (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7296 <https://github.com/numba/numba/pull/7296>`_: Fix generator lowering not casting to the actual yielded type (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7298 <https://github.com/numba/numba/pull/7298>`_: Use CBC to pin GCC to 7 on most linux and 9 on aarch64. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7304 <https://github.com/numba/numba/pull/7304>`_: Continue PR#3655: add support for np.average (`Hadia Ahmed <https://github.com/hadia206>`_ `slnguyen <https://github.com/slnguyen>`_)
* PR `#7307 <https://github.com/numba/numba/pull/7307>`_: Prevent mutation of arrays in global tuples. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7309 <https://github.com/numba/numba/pull/7309>`_: Update MapConstraint to handle type coercion for typed.Dict correctly. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7312 <https://github.com/numba/numba/pull/7312>`_: Fix #7302. Workaround missing pthread problem on ppc64le (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7315 <https://github.com/numba/numba/pull/7315>`_: Link ELF obj as DSO for radare2 disassembly CFG (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7316 <https://github.com/numba/numba/pull/7316>`_: Use float64 for consistent typing in heapq tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7317 <https://github.com/numba/numba/pull/7317>`_: In TBB tsh test switch os.fork for mp fork ctx (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7319 <https://github.com/numba/numba/pull/7319>`_: Update CHANGE_LOG for 0.54.0 final. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7329 <https://github.com/numba/numba/pull/7329>`_: Improve documentation in reference to CUDA local memory (`Sterling Baird <https://github.com/sgbaird>`_)
* PR `#7330 <https://github.com/numba/numba/pull/7330>`_: Cuda matmul docs (`Sterling Baird <https://github.com/sgbaird>`_)
* PR `#7340 <https://github.com/numba/numba/pull/7340>`_: Add size_t and ssize_t types (`Bruce Merry <https://github.com/bmerry>`_)
* PR `#7345 <https://github.com/numba/numba/pull/7345>`_: Add check for ipykernel file in IPython cache locator (`Sahil Gupta <https://github.com/sahil1105>`_)
* PR `#7347 <https://github.com/numba/numba/pull/7347>`_: fix:updated url for error report and feature rquest using issue template (`DEBARGHA SAHA <https://github.com/Stark-developer01>`_)
* PR `#7349 <https://github.com/numba/numba/pull/7349>`_: Allow arbitrary walk-back in reduction nodes to find inplace_binop. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7359 <https://github.com/numba/numba/pull/7359>`_: Extend support for nested arrays inside numpy records (`Graham Markall <https://github.com/gmarkall>`_ `luk-f-a <https://github.com/luk-f-a>`_)
* PR `#7375 <https://github.com/numba/numba/pull/7375>`_: CUDA: Run doctests as part of numba.cuda.tests and fix test_cg (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7395 <https://github.com/numba/numba/pull/7395>`_: Fix #7394 and #6550 & Added test & improved error message (`MegaIng <https://github.com/MegaIng>`_)
* PR `#7397 <https://github.com/numba/numba/pull/7397>`_: Add option to catch only Numba `numba.core.errors` derived exceptions. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7398 <https://github.com/numba/numba/pull/7398>`_: Add support for arrayanalysis of tuple args. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7403 <https://github.com/numba/numba/pull/7403>`_: Fix for issue 7402: implement missing numpy ufunc interface (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#7404 <https://github.com/numba/numba/pull/7404>`_: fix typo in literal_unroll docs (`esc <https://github.com/esc>`_)
* PR `#7419 <https://github.com/numba/numba/pull/7419>`_: insert missing backtick in comment (`esc <https://github.com/esc>`_)
* PR `#7422 <https://github.com/numba/numba/pull/7422>`_: Update Omitted Type to use Hashable Values as Keys for Caching (`Nick Riasanovsky <https://github.com/njriasan>`_)
* PR `#7429 <https://github.com/numba/numba/pull/7429>`_: Update CHANGE_LOG for 0.54.1 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7432 <https://github.com/numba/numba/pull/7432>`_: add github release task to checklist (`esc <https://github.com/esc>`_)
* PR `#7440 <https://github.com/numba/numba/pull/7440>`_: Refactor TargetConfig naming. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7441 <https://github.com/numba/numba/pull/7441>`_: Permit any string as a key in literalstrkeydict type. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7442 <https://github.com/numba/numba/pull/7442>`_: Add some diagnostics to SVML test failures. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7443 <https://github.com/numba/numba/pull/7443>`_: Refactor template selection logic for targets. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7444 <https://github.com/numba/numba/pull/7444>`_: use correct variable name in closure (`esc <https://github.com/esc>`_)
* PR `#7447 <https://github.com/numba/numba/pull/7447>`_: cleanup Numba metadata (`esc <https://github.com/esc>`_)
* PR `#7453 <https://github.com/numba/numba/pull/7453>`_: CUDA: Provide stream in async_done result (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7456 <https://github.com/numba/numba/pull/7456>`_: Fix invalid codegen for #7451. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7457 <https://github.com/numba/numba/pull/7457>`_: Factor out target registry selection logic (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7459 <https://github.com/numba/numba/pull/7459>`_: Include compiler flags in symbol mangling (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7460 <https://github.com/numba/numba/pull/7460>`_: Add FP16 support for CUDA (`Michael Collison <https://github.com/testhound>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7461 <https://github.com/numba/numba/pull/7461>`_: Support NVIDIA's CUDA Python bindings (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7465 <https://github.com/numba/numba/pull/7465>`_: Update changelog for 0.54.1 release (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7477 <https://github.com/numba/numba/pull/7477>`_: Fix unicode operator.eq handling of Optional types. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7479 <https://github.com/numba/numba/pull/7479>`_: CUDA: Print format string and warn for > 32 print() args (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7483 <https://github.com/numba/numba/pull/7483>`_: NumPy 1.21 support (`Sebastian Berg <https://github.com/seberg>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7484 <https://github.com/numba/numba/pull/7484>`_: Fixed outgoing link to nvidia documentation. (`Dhruv Patel <https://github.com/DhruvPatel01>`_)
* PR `#7493 <https://github.com/numba/numba/pull/7493>`_: Consolidate TLS stacks in target configuration (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7496 <https://github.com/numba/numba/pull/7496>`_: CUDA: Use a single dispatcher class for all kinds of functions (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7498 <https://github.com/numba/numba/pull/7498>`_: refactor  with-detection logic (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_)
* PR `#7499 <https://github.com/numba/numba/pull/7499>`_: Add build scripts for CUDA testing on gpuCI  (`Charles Blackmon-Luca <https://github.com/charlesbluca>`_ `Graham Markall <https://github.com/gmarkall>`_)
* PR `#7500 <https://github.com/numba/numba/pull/7500>`_: Update parallel.rst (`Julius Bier Kirkegaard <https://github.com/juliusbierk>`_)
* PR `#7506 <https://github.com/numba/numba/pull/7506>`_: Enhance Flags mangling/demangling (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7514 <https://github.com/numba/numba/pull/7514>`_: Fixup cuda debuginfo emission for 7177 (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7525 <https://github.com/numba/numba/pull/7525>`_: Make sure` demangle()` returns `str` type. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7538 <https://github.com/numba/numba/pull/7538>`_: Fix `@overload_glue` performance regression. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7539 <https://github.com/numba/numba/pull/7539>`_: Fix str decode issue from merge #7525/#7506 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7546 <https://github.com/numba/numba/pull/7546>`_: Fix handling of missing const key in LiteralStrKeyDict (`Siu Kwan Lam <https://github.com/sklam>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7547 <https://github.com/numba/numba/pull/7547>`_: Remove 32bit linux scipy installation. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7548 <https://github.com/numba/numba/pull/7548>`_: Correct evaluation order in assert statement (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7552 <https://github.com/numba/numba/pull/7552>`_: Prepend the inlined function name to inlined variables. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7557 <https://github.com/numba/numba/pull/7557>`_: Python3.10 v2 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_)
* PR `#7560 <https://github.com/numba/numba/pull/7560>`_: Refactor with detection py310 (`Siu Kwan Lam <https://github.com/sklam>`_ `esc <https://github.com/esc>`_)
* PR `#7561 <https://github.com/numba/numba/pull/7561>`_: fix a typo (`Kolen Cheung <https://github.com/ickc>`_)
* PR `#7567 <https://github.com/numba/numba/pull/7567>`_: Update docs to note meetings are public. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7570 <https://github.com/numba/numba/pull/7570>`_: Update the docs and error message for errors when importing Numba. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7580 <https://github.com/numba/numba/pull/7580>`_: Fix #7507. catch `NotImplementedError` in `.get_function()`  (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7581 <https://github.com/numba/numba/pull/7581>`_: Add support for casting from int enums (`Michael Collison <https://github.com/testhound>`_)
* PR `#7583 <https://github.com/numba/numba/pull/7583>`_: Make numba.types.Optional __str__ less verbose. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7588 <https://github.com/numba/numba/pull/7588>`_: Fix casting of start/stop in linspace (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7591 <https://github.com/numba/numba/pull/7591>`_: Remove deprecations (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7596 <https://github.com/numba/numba/pull/7596>`_: Fix max symbol match length for r2 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7597 <https://github.com/numba/numba/pull/7597>`_: Update gdb docs for new DWARF enhancements. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7603 <https://github.com/numba/numba/pull/7603>`_: Fix list.insert() for refcounted values (`Ehsan Totoni <https://github.com/ehsantn>`_)
* PR `#7605 <https://github.com/numba/numba/pull/7605>`_: Fix TBB 2021 DSO names on OSX/Win and make TBB reporting consistent (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7606 <https://github.com/numba/numba/pull/7606>`_: Ensure a prescribed threading layer can load in CI. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7610 <https://github.com/numba/numba/pull/7610>`_: Fix #7609. Type should not be mutated. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7618 <https://github.com/numba/numba/pull/7618>`_: Fix the doc build: docutils 0.18 not compatible with pinned sphinx (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7626 <https://github.com/numba/numba/pull/7626>`_: Fix issues with package dependencies. (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_)
* PR `#7627 <https://github.com/numba/numba/pull/7627>`_: PR 7321 continued (`stuartarchibald <https://github.com/stuartarchibald>`_ `Eric Wieser <https://github.com/eric-wieser>`_)
* PR `#7628 <https://github.com/numba/numba/pull/7628>`_: Move to using windows-2019 images in Azure (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7632 <https://github.com/numba/numba/pull/7632>`_: Capture output in CUDA matmul doctest (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7636 <https://github.com/numba/numba/pull/7636>`_: Copy prange loop header to after the parfor. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7637 <https://github.com/numba/numba/pull/7637>`_: Increase the timeout on the SVML tests for loaded machines. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7645 <https://github.com/numba/numba/pull/7645>`_: In debuginfo, do not add noinline to functions marked alwaysinline (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7650 <https://github.com/numba/numba/pull/7650>`_: Move Azure builds to OSX 10.15 (`stuartarchibald <https://github.com/stuartarchibald>`_ `esc <https://github.com/esc>`_ `Siu Kwan Lam <https://github.com/sklam>`_)

Authors:

* `Bruce Merry <https://github.com/bmerry>`_
* `Charles Blackmon-Luca <https://github.com/charlesbluca>`_
* `DeviousLab <https://github.com/DeviousLab>`_
* `Dhruv Patel <https://github.com/DhruvPatel01>`_
* `Todd A. Anderson <https://github.com/DrTodd13>`_
* `Ehsan Totoni <https://github.com/ehsantn>`_
* `Eric Wieser <https://github.com/eric-wieser>`_
* `esc <https://github.com/esc>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `Guilherme Leobas <https://github.com/guilhermeleobas>`_
* `Guoqiang QI <https://github.com/guoqiangqi>`_
* `Hadia Ahmed <https://github.com/hadia206>`_
* `Kolen Cheung <https://github.com/ickc>`_
* `Itamar Turner-Trauring <https://github.com/itamarst>`_
* `Julius Bier Kirkegaard <https://github.com/juliusbierk>`_
* `Kenichi Maehashi <https://github.com/kmaehashi>`_
* `Alexey Kozlov <https://github.com/kozlov-alexey>`_
* `luk-f-a <https://github.com/luk-f-a>`_
* `LunarLanding <https://github.com/LunarLanding>`_
* `MegaIng <https://github.com/MegaIng>`_
* `Nihal Shetty <https://github.com/nihalshetty-boop>`_
* `Nick Riasanovsky <https://github.com/njriasan>`_
* `Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_
* `Sahil Gupta <https://github.com/sahil1105>`_
* `Sebastian Berg <https://github.com/seberg>`_
* `Sterling Baird <https://github.com/sgbaird>`_
* `Srinath Kailasa <https://github.com/skailasa>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `slnguyen <https://github.com/slnguyen>`_
* `DEBARGHA SAHA <https://github.com/Stark-developer01>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
* `Michael Collison <https://github.com/testhound>`_
* `ysheffer <https://github.com/ysheffer>`_

Version 0.54.1 (7 October, 2021)
--------------------------------

This is a bugfix release for 0.54.0. It fixes a regression in structured array
type handling, a potential leak on initialization failure in the CUDA target, a
regression caused by Numba's vendored cloudpickle module resetting dynamic
classes and a few minor testing/infrastructure related problems.

* PR `#7348 <https://github.com/numba/numba/pull/7348>`_: test_inspect_cli: Decode exception with default (utf-8) codec (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7360 <https://github.com/numba/numba/pull/7360>`_: CUDA: Fix potential leaks when initialization fails (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7386 <https://github.com/numba/numba/pull/7386>`_: Ensure the NRT is initialized prior to use in external NRT tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7388 <https://github.com/numba/numba/pull/7388>`_: Patch cloudpickle to not reset dynamic class each time it is unpickled (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7393 <https://github.com/numba/numba/pull/7393>`_: skip azure pipeline test if file not present (`esc <https://github.com/esc>`_)
* PR `#7428 <https://github.com/numba/numba/pull/7428>`_: Fix regression #7355: cannot set items in structured array data types (`Siu Kwan Lam <https://github.com/sklam>`_)

Authors:

* `esc <https://github.com/esc>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_


Version 0.54.0 (19 August, 2021)
--------------------------------

This release includes a significant number of new features, important
refactoring, critical bug fixes and a number of dependency upgrades.

Python language support enhancements:

* Basic support for ``f-strings``.
* ``dict`` comprehensions are now supported.
* The ``sum`` built-in function is implemented.

NumPy features/enhancements:

The following functions are now supported:

  * ``np.clip``
  * ``np.iscomplex``
  * ``np.iscomplexobj``
  * ``np.isneginf``
  * ``np.isposinf``
  * ``np.isreal``
  * ``np.isrealobj``
  * ``np.isscalar``
  * ``np.random.dirichlet``
  * ``np.rot90``
  * ``np.swapaxes``

Also ``np.argmax`` has gained support for the ``axis`` keyword argument and it's
now possible to use ``0d`` NumPy arrays as scalars in ``__setitem__`` calls.

Internal changes:

* Debugging support through DWARF has been fixed and enhanced.
* Numba now optimises the way in which locals are emitted to help reduce time
  spent in LLVM's SROA passes.

CUDA target changes:

* Support for emitting ``lineinfo`` to be consumed by profiling tools such as
  Nsight Compute
* Improved fastmath code generation for various trig, division, and other
  functions
* Faster compilation using lazy addition of libdevice to compiled units
* Support for IPC on Windows
* Support for passing tuples to CUDA ufuncs
* Performance warnings:

  * When making implicit copies by calling a kernel on arrays in host memory
  * When occupancy is poor due to kernel or ufunc/gufunc configuration

* Support for implementing warp-aggregated intrinsics:

  * Using support for more CUDA functions: ``activemask()``, ``lanemask_lt()``
  * The ``ffs()`` function now works correctly!

* Support for ``@overload`` in the CUDA target

Intel kindly sponsored research and development that lead to a number of new
features and internal support changes:

* Dispatchers can now be retargetted to a new target via a user defined context
  manager.
* Support for custom NumPy array subclasses has been added (including an
  overloadable memory allocator).
* An inheritance based model for targets that permits targets to share
  ``@overload`` implementations.
* Per function compiler flags with inheritance behaviours.
* The extension API now has support for overloading class methods via the
  ``@overload_classmethod`` decorator.

Deprecations:

* The ``ROCm`` target (for AMD ROC GPUs) has been moved to an "unmaintained"
  status and a seperate repository stub has been created for it at:
  https://github.com/numba/numba-rocm

CUDA target deprecations and breaking changes:

* Relaxed strides checking is now the default when computing the contiguity of
  device arrays.
* The ``inspect_ptx()`` method is deprecated. For use cases that obtain PTX for
  further compilation outside of Numba, use ``compile_ptx()`` instead.
* Eager compilation of device functions (the case when ``device=True`` and a
  signature is provided) is deprecated.

Version support/dependency changes:

* LLVM 11 is now supported on all platforms via llvmlite.
* The minimum supported Python version is raised to 3.7.
* NumPy version 1.20 is supported.
* The minimum supported NumPy version is raised to 1.17 for runtime (compilation
  however remains compatible with NumPy 1.11).
* Vendor `cloudpickle <https://github.com/cloudpipe/cloudpickle>`_ `v1.6.0` --
  now used for all ``pickle`` operations.
* TBB >= 2021 is now supported and all prior versions are unsupported (not
  easily possible to maintain the ABI breaking changes).

Pull-Requests:

* PR `#4516 <https://github.com/numba/numba/pull/4516>`_: Make setitem accept 0d np-arrays (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#4610 <https://github.com/numba/numba/pull/4610>`_: Implement np.is* functions (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#5984 <https://github.com/numba/numba/pull/5984>`_: Handle idx and size unification in wrap_index manually. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#6468 <https://github.com/numba/numba/pull/6468>`_: Access ``replace_functions_map`` via PreParforPass instance (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `Reazul Hoque <https://github.com/reazulhoque>`_)
* PR `#6469 <https://github.com/numba/numba/pull/6469>`_: Add address space in pointer type (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `Reazul Hoque <https://github.com/reazulhoque>`_)
* PR `#6608 <https://github.com/numba/numba/pull/6608>`_: Support f-strings for common cases (`Ehsan Totoni <https://github.com/ehsantn>`_)
* PR `#6619 <https://github.com/numba/numba/pull/6619>`_: Improved fastmath code generation for trig, log, and exp/pow. (`Graham Markall <https://github.com/gmarkall>`_ `Michael Collison <https://github.com/testhound>`_)
* PR `#6681 <https://github.com/numba/numba/pull/6681>`_: Explicitly catch ``with..as`` and raise error. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6689 <https://github.com/numba/numba/pull/6689>`_: Fix setup.py build command detection (`Hannes Pahl <https://github.com/HPLegion>`_)
* PR `#6695 <https://github.com/numba/numba/pull/6695>`_: Enable negative indexing for cuda atomic operations (`Ashutosh Varma <https://github.com/ashutoshvarma>`_)
* PR `#6696 <https://github.com/numba/numba/pull/6696>`_: flake8: made more files flake8 compliant (`Ashutosh Varma <https://github.com/ashutoshvarma>`_)
* PR `#6698 <https://github.com/numba/numba/pull/6698>`_: Fix #6697: Wrong dtype when using np.asarray on DeviceNDArray (`Ashutosh Varma <https://github.com/ashutoshvarma>`_)
* PR `#6700 <https://github.com/numba/numba/pull/6700>`_: Add UUID to CUDA devices (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6709 <https://github.com/numba/numba/pull/6709>`_: Block matplotlib in test examples (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6718 <https://github.com/numba/numba/pull/6718>`_: doc: fix typo in rewrites.rst (extra iterates) (`Alexander-Makaryev <https://github.com/Alexander-Makaryev>`_)
* PR `#6720 <https://github.com/numba/numba/pull/6720>`_: Faster compile (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6730 <https://github.com/numba/numba/pull/6730>`_: Fix Typeguard error (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6731 <https://github.com/numba/numba/pull/6731>`_: Add CUDA-specific pipeline (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6735 <https://github.com/numba/numba/pull/6735>`_: CUDA: Don't parse IR for modules with llvmlite (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6736 <https://github.com/numba/numba/pull/6736>`_: Support for dict comprehension (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6742 <https://github.com/numba/numba/pull/6742>`_: Do not add overload function definitions to index. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6750 <https://github.com/numba/numba/pull/6750>`_: Bump to llvmlite 0.37 series (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6751 <https://github.com/numba/numba/pull/6751>`_: Suppress typeguard warnings that affect testing. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6753 <https://github.com/numba/numba/pull/6753>`_: The check for internal types in RewriteArrayExprs (`Alexander-Makaryev <https://github.com/Alexander-Makaryev>`_)
* PR `#6755 <https://github.com/numba/numba/pull/6755>`_: install llvmlite from numba/label/dev (`esc <https://github.com/esc>`_)
* PR `#6758 <https://github.com/numba/numba/pull/6758>`_: patch to compile _devicearray.cpp with c++11 (`esc <https://github.com/esc>`_)
* PR `#6760 <https://github.com/numba/numba/pull/6760>`_: Fix scheduler bug where it rounds to 0 divisions for a chunk. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#6762 <https://github.com/numba/numba/pull/6762>`_: Glue wrappers to create @overload from split typing and lowering. (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6766 <https://github.com/numba/numba/pull/6766>`_: Fix DeviceNDArray null shape issue (`Michael Collison <https://github.com/testhound>`_)
* PR `#6769 <https://github.com/numba/numba/pull/6769>`_: CUDA: Replace ``CachedPTX`` and ``CachedCUFunction`` with ``CUDACodeLibrary`` functionality (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6776 <https://github.com/numba/numba/pull/6776>`_: Fix issue with TBB interface causing warnings and parfors counting them (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6779 <https://github.com/numba/numba/pull/6779>`_: Fix wrap_index type unification. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#6786 <https://github.com/numba/numba/pull/6786>`_: Fix gufunc kwargs support (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6788 <https://github.com/numba/numba/pull/6788>`_: Add support for fastmath 32-bit floating point divide (`Michael Collison <https://github.com/testhound>`_)
* PR `#6789 <https://github.com/numba/numba/pull/6789>`_: Fix warnings struct ref typeguard (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_ `esc <https://github.com/esc>`_)
* PR `#6794 <https://github.com/numba/numba/pull/6794>`_: refactor and move create_temp_module into numba.tests.support (`Alexander-Makaryev <https://github.com/Alexander-Makaryev>`_)
* PR `#6795 <https://github.com/numba/numba/pull/6795>`_: CUDA: Lazily add libdevice to compilation units  (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6798 <https://github.com/numba/numba/pull/6798>`_: CUDA: Add optional Driver API argument logging (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6799 <https://github.com/numba/numba/pull/6799>`_: Print Numba and llvmlite versions in sysinfo (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6800 <https://github.com/numba/numba/pull/6800>`_: Make a common standard API for querying ufunc impl (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6801 <https://github.com/numba/numba/pull/6801>`_: ParallelAccelerator no long will convert StaticSetItem to SetItem because record arrays require StaticSetItems. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#6802 <https://github.com/numba/numba/pull/6802>`_: Add lineinfo flag to PTX and SASS compilation (`Graham Markall <https://github.com/gmarkall>`_ `Max Katz <https://github.com/maxpkatz>`_)
* PR `#6804 <https://github.com/numba/numba/pull/6804>`_: added runtime version to ``numba -s`` (`Kalyan <https://github.com/rawwar>`_)
* PR `#6808 <https://github.com/numba/numba/pull/6808>`_: #3468 continued: Add support for ``np.clip`` (`Graham Markall <https://github.com/gmarkall>`_ `Aaron Russell Voelker <https://github.com/arvoelke>`_)
* PR `#6809 <https://github.com/numba/numba/pull/6809>`_: #3203 additional info in cuda detect (`Kalyan <https://github.com/rawwar>`_)
* PR `#6810 <https://github.com/numba/numba/pull/6810>`_: Fix tiny formatting error in ROC kernel docs (`Felix Divo <https://github.com/felixdivo>`_)
* PR `#6811 <https://github.com/numba/numba/pull/6811>`_: CUDA: Remove test of runtime being a supported version (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6813 <https://github.com/numba/numba/pull/6813>`_: Mostly CUDA: Replace llvmpy API usage with llvmlite APIs (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6814 <https://github.com/numba/numba/pull/6814>`_: Improving context stack (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6818 <https://github.com/numba/numba/pull/6818>`_: CUDA: Support IPC on Windows (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6822 <https://github.com/numba/numba/pull/6822>`_: Add support for np.rot90 (`stuartarchibald <https://github.com/stuartarchibald>`_ `Daniel Nagel <https://github.com/braniii>`_)
* PR `#6829 <https://github.com/numba/numba/pull/6829>`_: Fix accuracy of np.arange and np.linspace (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6830 <https://github.com/numba/numba/pull/6830>`_: CUDA: Use relaxed strides checking to compute contiguity (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6833 <https://github.com/numba/numba/pull/6833>`_: Raise TypeError exception if numpy array is cast to scalar (`Michael Collison <https://github.com/testhound>`_)
* PR `#6834 <https://github.com/numba/numba/pull/6834>`_: Remove illegal "debug" kw argument (`Shaun Cutts <https://github.com/shaunc>`_)
* PR `#6836 <https://github.com/numba/numba/pull/6836>`_: CUDA: Documentation updates (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6840 <https://github.com/numba/numba/pull/6840>`_: CUDA: Remove items deprecated in 0.53 + simulator test fixes (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6841 <https://github.com/numba/numba/pull/6841>`_: CUDA: Fix source location on kernel entry and enable breakpoints to be set on kernels by mangled name (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6843 <https://github.com/numba/numba/pull/6843>`_: cross-referenced Array type in docs (`Kalyan <https://github.com/rawwar>`_)
* PR `#6844 <https://github.com/numba/numba/pull/6844>`_: CUDA: Remove NUMBAPRO env var warnings, envvars.py + other small tidy-ups (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6848 <https://github.com/numba/numba/pull/6848>`_: Ignore .ycm_extra_conf.py (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6849 <https://github.com/numba/numba/pull/6849>`_: Add __hash__ for IntEnum (`Hannes Pahl <https://github.com/HPLegion>`_)
* PR `#6850 <https://github.com/numba/numba/pull/6850>`_: Fix up more internal warnings (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6854 <https://github.com/numba/numba/pull/6854>`_: PR 6096 continued (`stuartarchibald <https://github.com/stuartarchibald>`_ `Ivan Butygin <https://github.com/Hardcode84>`_)
* PR `#6861 <https://github.com/numba/numba/pull/6861>`_: updated reference to hsa with roc (`Kalyan <https://github.com/rawwar>`_)
* PR `#6867 <https://github.com/numba/numba/pull/6867>`_: Update changelog for 0.53.1 (`esc <https://github.com/esc>`_)
* PR `#6869 <https://github.com/numba/numba/pull/6869>`_: Implement builtin sum() (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6870 <https://github.com/numba/numba/pull/6870>`_: Add support for dispatcher retargeting using with-context (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6871 <https://github.com/numba/numba/pull/6871>`_: Force text-align:left when using Annotate (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#6873 <https://github.com/numba/numba/pull/6873>`_: docs: Update reference to @jitclass location (`David Nadlinger <https://github.com/dnadlinger>`_)
* PR `#6876 <https://github.com/numba/numba/pull/6876>`_: Add trailing slashes to dir paths in CODEOWNERS (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6877 <https://github.com/numba/numba/pull/6877>`_: Add doc for recent target extension features (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6878 <https://github.com/numba/numba/pull/6878>`_: CUDA: Support passing tuples to ufuncs (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6879 <https://github.com/numba/numba/pull/6879>`_: CUDA: NumPy and string dtypes for local and shared arrays (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6880 <https://github.com/numba/numba/pull/6880>`_: Add attribute lower_extension to CPUContext (`Reazul Hoque <https://github.com/reazulhoque>`_)
* PR `#6883 <https://github.com/numba/numba/pull/6883>`_: Add support of np.swapaxes #4074 (`Daniel Nagel <https://github.com/braniii>`_)
* PR `#6885 <https://github.com/numba/numba/pull/6885>`_: CUDA: Explicitly specify objmode + looplifting for jit functions in cuda.random (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6886 <https://github.com/numba/numba/pull/6886>`_: CUDA: Fix parallel testing for all testsuite submodules (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6888 <https://github.com/numba/numba/pull/6888>`_: Get overload to consider compiler flags in cache lookup (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6889 <https://github.com/numba/numba/pull/6889>`_: Address guvectorize too slow for cuda target (`Michael Collison <https://github.com/testhound>`_)
* PR `#6890 <https://github.com/numba/numba/pull/6890>`_: fixes #6884  (`Kalyan <https://github.com/rawwar>`_)
* PR `#6898 <https://github.com/numba/numba/pull/6898>`_: Work on overloading by hardware target. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6911 <https://github.com/numba/numba/pull/6911>`_: CUDA: Add support for activemask(), lanemask_lt(), and nanosleep() (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6912 <https://github.com/numba/numba/pull/6912>`_: Prevent use of varargs in closure calls. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6913 <https://github.com/numba/numba/pull/6913>`_: Add runtests option to gitdiff on the common ancestor (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6915 <https://github.com/numba/numba/pull/6915>`_: Update _Intrinsic for sphinx to capture the inner docstring (`Guilherme Leobas <https://github.com/guilhermeleobas>`_)
* PR `#6917 <https://github.com/numba/numba/pull/6917>`_: Add type conversion for StringLiteral to unicode_type and test. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6918 <https://github.com/numba/numba/pull/6918>`_: Start section on commonly encounted unsupported parfors code. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6924 <https://github.com/numba/numba/pull/6924>`_: CUDA: Fix ``ffs`` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6928 <https://github.com/numba/numba/pull/6928>`_: Add support for axis keyword arg to numpy.argmax() (`stuartarchibald <https://github.com/stuartarchibald>`_ `Itamar Turner-Trauring <https://github.com/itamarst>`_)
* PR `#6929 <https://github.com/numba/numba/pull/6929>`_: Fix CI failure when gitpython is missing. (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6935 <https://github.com/numba/numba/pull/6935>`_: fixes broken link in numba-runtime.rst (`Kalyan <https://github.com/rawwar>`_)
* PR `#6936 <https://github.com/numba/numba/pull/6936>`_: CUDA: Implement support for PTDS globally (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6937 <https://github.com/numba/numba/pull/6937>`_: Fix memory leak in bytes boxing (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6940 <https://github.com/numba/numba/pull/6940>`_: Fix function resolution for intrinsics across hardware. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6941 <https://github.com/numba/numba/pull/6941>`_: ABC the target descriptor and make consistent throughout. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6944 <https://github.com/numba/numba/pull/6944>`_: CUDA: Support for ``@overload`` (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6945 <https://github.com/numba/numba/pull/6945>`_: Fix issue with array analysis tests needing scipy. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6948 <https://github.com/numba/numba/pull/6948>`_: Refactor registry init. (`stuartarchibald <https://github.com/stuartarchibald>`_ `Graham Markall <https://github.com/gmarkall>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6953 <https://github.com/numba/numba/pull/6953>`_: CUDA: Fix and deprecate ``inspect_ptx()``, fix NVVM option setup for device functions (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6958 <https://github.com/numba/numba/pull/6958>`_: Inconsistent behavior of reshape between numpy and numba/cuda device array (`Lauren Arnett <https://github.com/laurenarnett>`_)
* PR `#6961 <https://github.com/numba/numba/pull/6961>`_: Update overload glue to deal with typing_key (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6964 <https://github.com/numba/numba/pull/6964>`_: Move minimum supported Python version to 3.7 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6966 <https://github.com/numba/numba/pull/6966>`_: Fix issue with TBB test detecting forks from incorrect state. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6971 <https://github.com/numba/numba/pull/6971>`_: Fix CUDA ``@intrinsic`` use (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6977 <https://github.com/numba/numba/pull/6977>`_: Vendor cloudpickle (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#6978 <https://github.com/numba/numba/pull/6978>`_: Implement operator.contains for empty Tuples (`Brandon T. Willard <https://github.com/brandonwillard>`_)
* PR `#6981 <https://github.com/numba/numba/pull/6981>`_: Fix LLVM IR parsing error on use of ``np.bool_`` in globals (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6983 <https://github.com/numba/numba/pull/6983>`_: Support Optional types in ufuncs. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6985 <https://github.com/numba/numba/pull/6985>`_: Implement static set/get items on records with integer index (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6986 <https://github.com/numba/numba/pull/6986>`_: document release checklist (`esc <https://github.com/esc>`_)
* PR `#6989 <https://github.com/numba/numba/pull/6989>`_: update threading docs for function loading (`esc <https://github.com/esc>`_)
* PR `#6990 <https://github.com/numba/numba/pull/6990>`_: Refactor hardware extension API to refer to "target" instead. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6991 <https://github.com/numba/numba/pull/6991>`_: Move ROCm target status to "unmaintained". (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#6995 <https://github.com/numba/numba/pull/6995>`_: Resolve issue where nan was being assigned to int type numpy array (`Michael Collison <https://github.com/testhound>`_)
* PR `#6996 <https://github.com/numba/numba/pull/6996>`_: Add constant lowering support for `SliceType`s (`Brandon T. Willard <https://github.com/brandonwillard>`_)
* PR `#6997 <https://github.com/numba/numba/pull/6997>`_: CUDA: Remove catch of NotImplementedError in target.py (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#6999 <https://github.com/numba/numba/pull/6999>`_: Fix errors introduced by the cloudpickle patch (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7003 <https://github.com/numba/numba/pull/7003>`_: More mainline fixes (`stuartarchibald <https://github.com/stuartarchibald>`_ `Graham Markall <https://github.com/gmarkall>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7004 <https://github.com/numba/numba/pull/7004>`_: Test extending the CUDA target (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7007 <https://github.com/numba/numba/pull/7007>`_: Made stencil compilation not fail for arrays of conflicting types. (`MegaIng <https://github.com/MegaIng>`_)
* PR `#7008 <https://github.com/numba/numba/pull/7008>`_: Added support for np.random.dirichlet with all size arguments (`Rishi Kulkarni <https://github.com/rishi-kulkarni>`_)
* PR `#7016 <https://github.com/numba/numba/pull/7016>`_: Docs: Add DALI to list of CAI-supporting libraries (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7018 <https://github.com/numba/numba/pull/7018>`_: Remove cu{blas,sparse,rand,fft} from library checks (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7019 <https://github.com/numba/numba/pull/7019>`_: Support NumPy 1.20 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7020 <https://github.com/numba/numba/pull/7020>`_: Fix #7017. Adds util class PickleCallableByPath  (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7024 <https://github.com/numba/numba/pull/7024>`_: fixed llvmir usage in create_module method (`stuartarchibald <https://github.com/stuartarchibald>`_ `Kalyan <https://github.com/rawwar>`_)
* PR `#7027 <https://github.com/numba/numba/pull/7027>`_: Fix nrt debug print (`MegaIng <https://github.com/MegaIng>`_)
* PR `#7031 <https://github.com/numba/numba/pull/7031>`_: Fix inliner to use a single scope for all blocks (`Alexey Kozlov <https://github.com/kozlov-alexey>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7040 <https://github.com/numba/numba/pull/7040>`_: Add Github action to mark issues as stale (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7044 <https://github.com/numba/numba/pull/7044>`_: Fixes for LLVM 11 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7049 <https://github.com/numba/numba/pull/7049>`_: Make NumPy random module use @overload_glue (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7050 <https://github.com/numba/numba/pull/7050>`_: Add overload_classmethod (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7052 <https://github.com/numba/numba/pull/7052>`_: Fix string support in CUDA target (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7056 <https://github.com/numba/numba/pull/7056>`_: Change prange conversion approach to reuse header block. (`Todd A. Anderson <https://github.com/DrTodd13>`_)
* PR `#7061 <https://github.com/numba/numba/pull/7061>`_: Add ndarray allocator classmethod (`stuartarchibald <https://github.com/stuartarchibald>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7064 <https://github.com/numba/numba/pull/7064>`_: Testhound/host array performance warning (`Michael Collison <https://github.com/testhound>`_)
* PR `#7066 <https://github.com/numba/numba/pull/7066>`_: Fix #7065: Add expected exception messages for NumPy 1.20 to tests (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7068 <https://github.com/numba/numba/pull/7068>`_: Enhancing docs about PRNG seeding (`Jérome Eertmans <https://github.com/jeertmans>`_)
* PR `#7070 <https://github.com/numba/numba/pull/7070>`_: Improve the issue templates and pull request template. (`Guoqiang QI <https://github.com/guoqiangqi>`_)
* PR `#7080 <https://github.com/numba/numba/pull/7080>`_: Fix ``__eq__`` for Flags and cpu_options classes (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7087 <https://github.com/numba/numba/pull/7087>`_: Add note to docs about zero-initialization of variables. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7088 <https://github.com/numba/numba/pull/7088>`_: Initialize NUMBA_DEFAULT_NUM_THREADS with a batch scheduler aware value (`Thomas VINCENT <https://github.com/t20100>`_)
* PR `#7100 <https://github.com/numba/numba/pull/7100>`_: Replace deprecated call to cuDeviceComputeCapability (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7113 <https://github.com/numba/numba/pull/7113>`_: Temporarily disable debug env export. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7114 <https://github.com/numba/numba/pull/7114>`_: CUDA: Deprecate eager compilation of device functions (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7116 <https://github.com/numba/numba/pull/7116>`_: Fix various issues with dwarf emission: (`stuartarchibald <https://github.com/stuartarchibald>`_ `vlad-perevezentsev <https://github.com/vlad-perevezentsev>`_)
* PR `#7118 <https://github.com/numba/numba/pull/7118>`_: Remove print to stdout (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7121 <https://github.com/numba/numba/pull/7121>`_: Continue work on numpy subclasses (`Todd A. Anderson <https://github.com/DrTodd13>`_ `Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7122 <https://github.com/numba/numba/pull/7122>`_: Rtd/sphinx compat (`esc <https://github.com/esc>`_)
* PR `#7134 <https://github.com/numba/numba/pull/7134>`_: Move minimum LLVM version to 11. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7137 <https://github.com/numba/numba/pull/7137>`_: skip pycc test on Python 3.7 + macOS because of distutils issue (`esc <https://github.com/esc>`_)
* PR `#7138 <https://github.com/numba/numba/pull/7138>`_: Update the Azure default linux image to Ubuntu 18.04 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7141 <https://github.com/numba/numba/pull/7141>`_: Require llvmlite 0.37 as minimum supported. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7143 <https://github.com/numba/numba/pull/7143>`_: Update version checks in __init__ for np 1.17 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7145 <https://github.com/numba/numba/pull/7145>`_: Fix mainline (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7146 <https://github.com/numba/numba/pull/7146>`_: Fix ``inline_closurecall`` may not be imported (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7147 <https://github.com/numba/numba/pull/7147>`_: Revert "Workaround gitpython 3.1.18 dependency issue" (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7149 <https://github.com/numba/numba/pull/7149>`_: Fix issue in bytecode analysis where target and next are same. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7152 <https://github.com/numba/numba/pull/7152>`_: Fix iterators in CUDA (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7156 <https://github.com/numba/numba/pull/7156>`_: Fix ``ir_utils._max_label`` being updated incorrectly (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7160 <https://github.com/numba/numba/pull/7160>`_: Split parfors tests (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7161 <https://github.com/numba/numba/pull/7161>`_: Update README for 0.54 (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7162 <https://github.com/numba/numba/pull/7162>`_: CUDA: Fix linkage of device functions when compiling for debug (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7163 <https://github.com/numba/numba/pull/7163>`_: Split legalization pass to consider IR and features separately. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7165 <https://github.com/numba/numba/pull/7165>`_: Fix use of np.clip where out is not provided. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7189 <https://github.com/numba/numba/pull/7189>`_: CUDA: Skip IPC tests on ARM (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7190 <https://github.com/numba/numba/pull/7190>`_: CUDA: Fix test_pinned on Jetson (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7192 <https://github.com/numba/numba/pull/7192>`_: Fix missing import in array.argsort impl and add more tests. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7196 <https://github.com/numba/numba/pull/7196>`_: Fixes for lineinfo emission. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7203 <https://github.com/numba/numba/pull/7203>`_: remove duplicate changelog entries (`esc <https://github.com/esc>`_)
* PR `#7209 <https://github.com/numba/numba/pull/7209>`_: Clamp numpy (`esc <https://github.com/esc>`_)
* PR `#7216 <https://github.com/numba/numba/pull/7216>`_: Update CHANGE_LOG for 0.54.0rc2. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7223 <https://github.com/numba/numba/pull/7223>`_: Replace assertion errors on IR assumption violation (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7230 <https://github.com/numba/numba/pull/7230>`_: PR #7171 bugfix only (`Todd A. Anderson <https://github.com/DrTodd13>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7236 <https://github.com/numba/numba/pull/7236>`_: CUDA: Skip managed alloc tests on ARM (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7267 <https://github.com/numba/numba/pull/7267>`_: Fix #7258. Bug in SROA optimization (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7271 <https://github.com/numba/numba/pull/7271>`_: Update 3rd party license text. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7272 <https://github.com/numba/numba/pull/7272>`_: Allow annotations in njit-ed functions (`LunarLanding <https://github.com/LunarLanding>`_)
* PR `#7273 <https://github.com/numba/numba/pull/7273>`_: Update CHANGE_LOG for 0.54.0rc3. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7285 <https://github.com/numba/numba/pull/7285>`_: CUDA: Fix OOB in test_kernel_arg (`Graham Markall <https://github.com/gmarkall>`_)
* PR `#7294 <https://github.com/numba/numba/pull/7294>`_: Continuation of PR #7280, fixing lifetime of TBB task_scheduler_handle (`Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_ `stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7298 <https://github.com/numba/numba/pull/7298>`_: Use CBC to pin GCC to 7 on most linux and 9 on aarch64. (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7312 <https://github.com/numba/numba/pull/7312>`_: Fix #7302. Workaround missing pthread problem on ppc64le (`Siu Kwan Lam <https://github.com/sklam>`_)
* PR `#7317 <https://github.com/numba/numba/pull/7317>`_: In TBB tsh test switch os.fork for mp fork ctx (`stuartarchibald <https://github.com/stuartarchibald>`_)
* PR `#7319 <https://github.com/numba/numba/pull/7319>`_: Update CHANGE_LOG for 0.54.0 final. (`stuartarchibald <https://github.com/stuartarchibald>`_)

Authors:

* `Alexander-Makaryev <https://github.com/Alexander-Makaryev>`_
* `Todd A. Anderson <https://github.com/DrTodd13>`_
* `Hannes Pahl <https://github.com/HPLegion>`_
* `Ivan Butygin <https://github.com/Hardcode84>`_
* `MegaIng <https://github.com/MegaIng>`_
* `Sergey Pokhodenko <https://github.com/PokhodenkoSA>`_
* `Aaron Russell Voelker <https://github.com/arvoelke>`_
* `Ashutosh Varma <https://github.com/ashutoshvarma>`_
* `Ben Greiner <https://github.com/bnavigator>`_
* `Brandon T. Willard <https://github.com/brandonwillard>`_
* `Daniel Nagel <https://github.com/braniii>`_
* `David Nadlinger <https://github.com/dnadlinger>`_
* `Ehsan Totoni <https://github.com/ehsantn>`_
* `esc <https://github.com/esc>`_
* `Felix Divo <https://github.com/felixdivo>`_
* `Graham Markall <https://github.com/gmarkall>`_
* `Guilherme Leobas <https://github.com/guilhermeleobas>`_
* `Guoqiang QI <https://github.com/guoqiangqi>`_
* `Itamar Turner-Trauring <https://github.com/itamarst>`_
* `Jérome Eertmans <https://github.com/jeertmans>`_
* `Alexey Kozlov <https://github.com/kozlov-alexey>`_
* `Lauren Arnett <https://github.com/laurenarnett>`_
* `LunarLanding <https://github.com/LunarLanding>`_
* `Max Katz <https://github.com/maxpkatz>`_
* `Kalyan <https://github.com/rawwar>`_
* `Reazul Hoque <https://github.com/reazulhoque>`_
* `Rishi Kulkarni <https://github.com/rishi-kulkarni>`_
* `Shaun Cutts <https://github.com/shaunc>`_
* `Siu Kwan Lam <https://github.com/sklam>`_
* `stuartarchibald <https://github.com/stuartarchibald>`_
* `Thomas VINCENT <https://github.com/t20100>`_
* `Michael Collison <https://github.com/testhound>`_
* `vlad-perevezentsev <https://github.com/vlad-perevezentsev>`_


Version 0.53.1 (25 March, 2021)
-------------------------------

This is a bugfix release for 0.53.0. It contains the following four
pull-requests which fix two critical regressions and two build failures
reported by the openSuSe team:

* PR #6826 Fix regression on gufunc serialization
* PR #6828 Fix regression in CUDA: Set stream in mapped and managed array
  device_setup
* PR #6837 Ignore warnings from packaging module when testing import behaviour.
* PR #6851 set non-reported llvm timing values to 0.0

Authors:

* Ben Greiner
* Graham Markall
* Siu Kwan Lam
* Stuart Archibald

Version 0.53.0 (11 March, 2021)
-------------------------------

This release continues to add new features, bug fixes and stability improvements
to Numba.

Highlights of core changes:

* Support for Python 3.9 (Stuart Archibald).
* Function sub-typing (Lucio Fernandez-Arjona).
* Initial support for dynamic ``gufuncs`` (i.e. from ``@guvectorize``)
  (Guilherme Leobas).
* Parallel Accelerator (``@njit(parallel=True)`` now supports Fortran ordered
  arrays (Todd A. Anderson and Siu Kwan Lam).

Intel also kindly sponsored research and development that lead to two new
features:

  * Exposing LLVM compilation pass timings for diagnostic purposes (Siu Kwan
    Lam).
  * An event system for broadcasting compiler events (Siu Kwan Lam).

Highlights of changes for the CUDA target:

* CUDA 11.2 onwards (versions of the toolkit using NVVM IR 1.6 / LLVM IR 7.0.1)
  are now supported (Graham Markall).
* A fast cube root function is added (Michael Collison).
* Support for atomic ``xor``, increment, decrement, exchange, are added, and
  compare-and-swap is extended to support 64-bit integers (Michael Collison).
* Addition of ``cuda.is_supported_version()`` to check if the CUDA runtime
  version is supported (Graham Markall).
* The CUDA dispatcher now shares infrastructure with the CPU dispatcher,
  improving launch times for lazily-compiled kernels (Graham Markall).
* The CUDA Array Interface is updated to version 3, with support for streams
  added (Graham Markall).
* Tuples and ``namedtuples`` can now be passed to kernels (Graham Markall).
* Initial support for Cooperative Groups is added, with support for Grid Groups
  and Grid Sync (Graham Markall and Nick White).
* Support for ``math.log2`` and ``math.remainder`` is added (Guilherme Leobas).

General deprecation notices:

* There are no new general deprecations.

CUDA target deprecation notices:

* CUDA support on macOS is deprecated with this release (it still works, it is
  just unsupported).
* The ``argtypes``, ``restypes``, and ``bind`` keyword arguments to the
  ``cuda.jit`` decorator, deprecated since 0.51.0, are removed
* The ``Device.COMPUTE_CAPABILITY`` property, deprecated since 2014, has been
  removed (use ``compute_capability`` instead).
* The ``to_host`` method of device arrays is removed (use ``copy_to_host``
  instead).

General Enhancements:

* PR #4769: objmode complex type spelling (Siu Kwan Lam)
* PR #5579: Function subtyping (Lucio Fernandez-Arjona)
* PR #5659: Add support for parfors creating 'F'ortran layout Numpy arrays.
  (Todd A. Anderson)
* PR #5936: Improve array analysis for user-defined data types. (Todd A.
  Anderson)
* PR #5938: Initial support for dynamic gufuncs (Guilherme Leobas)
* PR #5958: Making typed.List a typing Generic (Lucio Fernandez-Arjona)
* PR #6334: Support attribute access from other modules (Farah Hariri)
* PR #6373: Allow Dispatchers to be cached (Eric Wieser)
* PR #6519: Avoid unnecessary ir.Del generation and removal (Ehsan Totoni)
* PR #6545: Refactoring ParforDiagnostics (Elena Totmenina)
* PR #6560: Add LLVM pass timer (Siu Kwan Lam)
* PR #6573: Improve ``__str__`` for typed.List when invoked from IPython shell
  (Amin Sadeghi)
* PR #6575: Avoid temp variable assignments (Ehsan Totoni)
* PR #6578: Add support for numpy ``intersect1d`` and basic test cases
  (``@caljrobe``)
* PR #6579: Python 3.9 support. (Stuart Archibald)
* PR #6580: Store partial typing errors in compiler state (Ehsan Totoni)
* PR #6626: A simple event system to broadcast compiler events (Siu Kwan Lam)
* PR #6635: Try to resolve dynamic getitems as static post unroll transform.
  (Stuart Archibald)
* PR #6636: Adds llvm_lock event (Siu Kwan Lam)
* PR #6664: Adds tests for PR 5659 (Siu Kwan Lam)
* PR #6680: Allow getattr to work in objmode output type spec (Siu Kwan Lam)

Fixes:

* PR #6176: Remove references to deprecated numpy globals (Eric Wieser)
* PR #6374: Use Python 3 style OSError handling (Eric Wieser)
* PR #6402: Fix ``typed.Dict`` and ``typed.List`` crashing on parametrized types
  (Andreas Sodeur)
* PR #6403: Add ``types.ListType.key`` (Andreas Sodeur)
* PR #6410: Fixes issue #6386 (Danny Weitekamp)
* PR #6425: Fix unicode join for issue #6405 (Teugea Ioan-Teodor)
* PR #6437: Don't pass reduction variables known in an outer parfor to inner
  parfors when analyzing reductions. (Todd A. Anderson)
* PR #6453: Keep original variable names in metadata to improve diagnostics
  (Ehsan Totoni)
* PR #6454: FIX: Fixes for literals (Eric Larson)
* PR #6463: Bump llvmlite to 0.36 series (Stuart Archibald)
* PR #6466: Remove the misspelling of finalize_dynamic_globals (Sergey
  Pokhodenko)
* PR #6489: Improve the error message for unsupported Buffer in Buffer
  situation. (Stuart Archibald)
* PR #6503: Add test to ensure Numba imports without warnings. (Stuart
  Archibald)
* PR #6508: Defer requirements to setup.py (Siu Kwan Lam)
* PR #6521: Skip annotated jitclass test if typeguard is running. (Stuart
  Archibald)
* PR #6524: Fix typed.List return value (Lucio Fernandez-Arjona)
* PR #6562: Correcting typo in numba sysinfo output (Nick Sutcliffe)
* PR #6574: Run parfor fusion if 2 or more parfors (Ehsan Totoni)
* PR #6582: Fix typed dict error with uninitialized padding bytes  (Siu Kwan
  Lam)
* PR #6584: Remove jitclass from ``__init__`` ``__all__``. (Stuart Archibald)
* PR #6586: Run closure inlining ahead of branch pruning in case of nonlocal
  (Stuart Archibald)
* PR #6591: Fix inlineasm test failure. (Siu Kwan Lam)
* PR #6622: Fix 6534, handle unpack of assign-like tuples. (Stuart Archibald)
* PR #6652: Simplify PR-6334 (Siu Kwan Lam)
* PR #6653: Fix get_numba_envvar (Siu Kwan Lam)
* PR #6654: Fix #6632 support alternative dtype string spellings (Stuart
  Archibald)
* PR #6685: Add Python 3.9 to classifiers. (Stuart Archibald)
* PR #6693: patch to compile _devicearray.cpp with c++11 (Valentin Haenel)
* PR #6716: Consider assignment lhs live if used in rhs (Fixes #6715) (Ehsan
  Totoni)
* PR #6727: Avoid errors in array analysis for global tuples with non-int
  (Ehsan Totoni)
* PR #6733: Fix segfault and errors in #6668 (Siu Kwan Lam)
* PR #6741: Enable SSA in IR inliner (Ehsan Totoni)
* PR #6763: use an alternative constraint for the conda packages (Valentin
  Haenel)
* PR #6786: Fix gufunc kwargs support (Siu Kwan Lam)

CUDA Enhancements/Fixes:

* PR #5162: Specify synchronization semantics of CUDA Array Interface (Graham
  Markall)
* PR #6245: CUDA Cooperative grid groups (Graham Markall and Nick White)
* PR #6333: Remove dead ``_Kernel.__call__`` (Graham Markall)
* PR #6343: CUDA: Add support for passing tuples and namedtuples to kernels
  (Graham Markall)
* PR #6349: Refactor Dispatcher to remove unnecessary indirection (Graham
  Markall)
* PR #6358: Add log2 and remainder implementations for cuda (Guilherme Leobas)
* PR #6376: Added a fixed seed in test_atomics.py for issue #6370 (Teugea
  Ioan-Teodor)
* PR #6377: CUDA: Fix various issues in test suite (Graham Markall)
* PR #6409: Implement cuda atomic xor (Michael Collison)
* PR #6422: CUDA: Remove deprecated items, expect CUDA 11.1 (Graham Markall)
* PR #6427: Remove duplicate repeated definition of gufunc (Amit Kumar)
* PR #6432: CUDA: Use ``_dispatcher.Dispatcher`` as base Dispatcher class
  (Graham Markall)
* PR #6447: CUDA: Add get_regs_per_thread method to Dispatcher (Graham Markall)
* PR #6499: CUDA atomic increment, decrement, exchange and compare and swap
  (Michael Collison)
* PR #6510: CUDA: Make device array assignment synchronous where necessary
  (Graham Markall)
* PR #6517: CUDA: Add NVVM test of all 8-bit characters (Graham Markall)
* PR #6567: Refactor llvm replacement code into separate function (Michael
  Collison)
* PR #6642: Testhound/cuda cuberoot (Michael Collison)
* PR #6661: CUDA: Support NVVM70 / CUDA 11.2 (Graham Markall)
* PR #6663: Fix error caused by missing "-static" libraries defined for some
  platforms (Siu Kwan Lam)
* PR #6666: CUDA: Add a function to query whether the runtime version is
  supported. (Graham Markall)
* PR #6725: CUDA: Fix compile to PTX with debug for CUDA 11.2 (Graham Markall)

Documentation Updates:

* PR #5740: Add FAQ entry on how to create a MWR. (Stuart Archibald)
* PR #6346: DOC: add where to get dev builds from to FAQ  (Eyal Trabelsi)
* PR #6418: docs: use https for homepage (``@imba-tjd``)
* PR #6430: CUDA docs: Add RNG example with 3D grid and strided loops (Graham
  Markall)
* PR #6436: docs: remove typo in Deprecation Notices (Thibault Ballier)
* PR #6440: Add note about performance of typed containers from the interpreter.
  (Stuart Archibald)
* PR #6457: Link to read the docs instead of numba homepage (Hannes Pahl)
* PR #6470: Adding PyCon Sweden 2020 talk on numba (Ankit Mahato)
* PR #6472: Document ``numba.extending.is_jitted`` (Stuart Archibald)
* PR #6495: Fix typo in literal list docs. (Stuart Archibald)
* PR #6501: Add doc entry on Numba's limited resources and how to help. (Stuart
  Archibald)
* PR #6502: Add CODEOWNERS file. (Stuart Archibald)
* PR #6531: Update canonical URL. (Stuart Archibald)
* PR #6544: Minor typo / grammar fixes to 5 minute guide (Ollin Boer Bohan)
* PR #6599: docs: fix simple typo, consevatively -> conservatively (Tim Gates)
* PR #6609: Recommend miniforge instead of c4aarch64 (Isuru Fernando)
* PR #6671: Update environment creation example to python 3.8 (Lucio
  Fernandez-Arjona)
* PR #6676: Update hardware and software versions in various docs. (Stuart
  Archibald)
* PR #6682: Update deprecation notices for 0.53 (Stuart Archibald)

CI/Infrastructure Updates:

* PR #6458: Enable typeguard in CI (Siu Kwan Lam)
* PR #6500: Update bug and feature request templates. (Stuart Archibald)
* PR #6516: Fix RTD build by using conda. (Stuart Archibald)
* PR #6587: Add zenodo badge (Siu Kwan Lam)

Authors:

* Amin Sadeghi
* Amit Kumar
* Andreas Sodeur
* Ankit Mahato
* Chris Barnes
* Danny Weitekamp
* Ehsan Totoni (core dev)
* Eric Larson
* Eric Wieser
* Eyal Trabelsi
* Farah Hariri
* Graham Markall
* Guilherme Leobas
* Hannes Pahl
* Isuru Fernando
* Lucio Fernandez-Arjona
* Michael Collison
* Nick Sutcliffe
* Nick White
* Ollin Boer Bohan
* Sergey Pokhodenko
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
* Teugea Ioan-Teodor
* Thibault Ballier
* Tim Gates
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
* ``@caljrobe``
* ``@imba-tjd``


Version 0.52.0 (30 November, 2020)
----------------------------------

This release focuses on performance improvements, but also adds some new
features and contains numerous bug fixes and stability improvements.

Highlights of core performance improvements include:

* Intel kindly sponsored research and development into producing a new reference
  count pruning pass. This pass operates at the LLVM level and can prune a
  number of common reference counting patterns. This will improve performance
  for two primary reasons:

  * There will be less pressure on the atomic locks used to do the reference
    counting.
  * Removal of reference counting operations permits more inlining and the
    optimisation passes can in general do more with what is present.

  (Siu Kwan Lam).
* Intel also sponsored work to improve the performance of the
  ``numba.typed.List`` container, particularly in the case of ``__getitem__``
  and iteration (Stuart Archibald).
* Superword-level parallelism vectorization is now switched on and the
  optimisation pipeline has been lightly analysed and tuned so as to be able to
  vectorize more and more often (Stuart Archibald).

Highlights of core feature changes include:

* The ``inspect_cfg`` method on the JIT dispatcher object has been
  significantly enhanced and now includes highlighted output and interleaved
  line markers and Python source (Stuart Archibald).
* The BSD operating system is now unofficially supported (Stuart Archibald).
* Numerous features/functionality improvements to NumPy support, including
  support for:

  * ``np.asfarray`` (Guilherme Leobas)
  * "subtyping" in record arrays (Lucio Fernandez-Arjona)
  * ``np.split`` and ``np.array_split`` (Isaac Virshup)
  * ``operator.contains`` with ``ndarray`` (``@mugoh``).
  * ``np.asarray_chkfinite`` (Rishabh Varshney).
  * NumPy 1.19 (Stuart Archibald).
  * the ``ndarray`` allocators, ``empty``, ``ones`` and ``zeros``, accepting a
    ``dtype`` specified as a string literal (Stuart Archibald).

* Booleans are now supported as literal types (Alexey Kozlov).
* On the CUDA target:

  * CUDA 9.0 is now the minimum supported version (Graham Markall).
  * Support for Unified Memory has been added (Max Katz).
  * Kernel launch overhead is reduced (Graham Markall).
  * Cudasim support for mapped array, memcopies and memset has been added (Mike
    Williams).
  * Access has been wired in to all libdevice functions (Graham Markall).
  * Additional CUDA atomic operations have been added (Michael Collison).
  * Additional math library functions (``frexp``, ``ldexp``, ``isfinite``)
    (Zhihao Yuan).
  * Support for ``power`` on complex numbers (Graham Markall).

Deprecations to note:

There are no new deprecations. However, note that "compatibility" mode, which
was added some 40 releases ago to help transition from 0.11 to 0.12+, has been
removed! Also, the shim to permit the import of ``jitclass`` from Numba's top
level namespace has now been removed as per the deprecation schedule.

General Enhancements:

* PR #5418: Add np.asfarray impl (Guilherme Leobas)
* PR #5560: Record subtyping (Lucio Fernandez-Arjona)
* PR #5609: Jitclass Infer Spec from Type Annotations (Ethan Pronovost)
* PR #5699: Implement np.split and np.array_split (Isaac Virshup)
* PR #6015: Adding BooleanLiteral type (Alexey Kozlov)
* PR #6027: Support operators inlining in InlineOverloads (Alexey Kozlov)
* PR #6038: Closes #6037, fixing FreeBSD compilation (László Károlyi)
* PR #6086: Add more accessible version information (Stuart Archibald)
* PR #6157: Add pipeline_class argument to @cfunc as supported by @jit. (Arthur
  Peters)
* PR #6262: Support dtype from str literal. (Stuart Archibald)
* PR #6271: Support ``ndarray`` contains (``@mugoh``)
* PR #6295: Enhance inspect_cfg (Stuart Archibald)
* PR #6304: Support NumPy 1.19 (Stuart Archibald)
* PR #6309: Add suitable file search path for BSDs. (Stuart Archibald)
* PR #6341: Re roll 6279 (Rishabh Varshney and Valentin Haenel)

Performance Enhancements:

* PR #6145: Patch to fingerprint namedtuples. (Stuart Archibald)
* PR #6202: Speed up str(int) (Stuart Archibald)
* PR #6261: Add np.ndarray.ptp() support. (Stuart Archibald)
* PR #6266: Use custom LLVM refcount pruning pass (Siu Kwan Lam)
* PR #6275: Switch on SLP vectorize. (Stuart Archibald)
* PR #6278: Improve typed list performance. (Stuart Archibald)
* PR #6335: Split optimisation passes. (Stuart Archibald)
* PR #6455: Fix refprune on obfuscated refs and stabilize optimisation WRT
  wrappers. (Stuart Archibald)

Fixes:

* PR #5639: Make UnicodeType inherit from Hashable (Stuart Archibald)
* PR #6006: Resolves incorrectly hoisted list in parfor. (Todd A. Anderson)
* PR #6126: fix version_info if version can not be determined (Valentin Haenel)
* PR #6137: Remove references to Python 2's long (Eric Wieser)
* PR #6139: Use direct syntax instead of the ``add_metaclass`` decorator (Eric
  Wieser)
* PR #6140: Replace calls to utils.iteritems(d) with d.items() (Eric Wieser)
* PR #6141: Fix #6130 objmode cache segfault (Siu Kwan Lam)
* PR #6156: Remove callers of ``reraise`` in favor of using ``with_traceback``
  directly (Eric Wieser)
* PR #6162: Move charseq support out of init (Stuart Archibald)
* PR #6165: #5425 continued (Amos Bird and Stuart Archibald)
* PR #6166: Remove Python 2 compatibility from numba.core.utils (Eric Wieser)
* PR #6185: Better error message on NotDefinedError (Luiz Almeida)
* PR #6194: Remove recursion from traverse_types (Radu Popovici)
* PR #6200: Workaround #5973 (Stuart Archibald)
* PR #6203: Make find_callname only lookup functions that are likely part of
  NumPy. (Stuart Archibald)
* PR #6204: Fix unicode kind selection for getitem. (Stuart Archibald)
* PR #6206: Build all extension modules with -g -Wall -Werror on Linux x86,
  provide -O0 flag option (Graham Markall)
* PR #6212: Fix for objmode recompilation issue (Alexey Kozlov)
* PR #6213: Fix #6177. Remove AOT dependency on the Numba package (Siu Kwan Lam)
* PR #6224: Add support for tuple concatenation to array analysis. (#5396
  continued) (Todd A. Anderson)
* PR #6231: Remove compatibility mode (Graham Markall)
* PR #6254: Fix win-32 hashing bug (from Stuart Archibald) (Ray Donnelly)
* PR #6265: Fix #6260 (Stuart Archibald)
* PR #6267: speed up a couple of really slow unittests (Stuart Archibald)
* PR #6281: Remove numba.jitclass shim as per deprecation schedule. (Stuart
  Archibald)
* PR #6294: Make return type propagate to all return variables (Andreas Sodeur)
* PR #6300: Un-skip tests that were skipped because of #4026. (Owen Anderson)
* PR #6307: Remove restrictions on SVML version due to bug in LLVM SVML CC
  (Stuart Archibald)
* PR #6316: Make IR inliner tests not self mutating. (Stuart Archibald)
* PR #6318: PR #5892 continued (Todd A. Anderson, via Stuart Archibald)
* PR #6319: Permit switching off boundschecking when debug is on. (Stuart
  Archibald)
* PR #6324: PR 6208 continued (Ivan Butygin and Stuart Archibald)
* PR #6337: Implements ``key`` on ``types.TypeRef`` (Andreas Sodeur)
* PR #6354: Bump llvmlite to 0.35. series. (Stuart Archibald)
* PR #6357: Fix enumerate invalid decref (Siu Kwan Lam)
* PR #6359: Fixes typed list indexing on 32bit (Stuart Archibald)
* PR #6378: Fix incorrect CPU override in vectorization test. (Stuart Archibald)
* PR #6379: Use O0 to enable inline and not affect loop-vectorization by later
  O3... (Siu Kwan Lam)
* PR #6384: Fix failing tests to match on platform invariant int spelling.
  (Stuart Archibald)
* PR #6390: Updates inspect_cfg (Stuart Archibald)
* PR #6396: Remove hard dependency on tbb package. (Stuart Archibald)
* PR #6408: Don't do array analysis for tuples that contain arrays. (Todd A.
  Anderson)
* PR #6441: Fix ASCII flag in Unicode slicing (0.52.0rc2 regression) (Ehsan
  Totoni)
* PR #6442: Fix array analysis regression in 0.52 RC2 for tuple of 1D arrays
  (Ehsan Totoni)
* PR #6446: Fix #6444: pruner issues with reference stealing functions (Siu
  Kwan Lam)
* PR #6450: Fix asfarray kwarg default handling. (Stuart Archibald)
* PR #6486: fix abstract base class import (Valentin Haenel)
* PR #6487: Restrict maximum version of python (Siu Kwan Lam)
* PR #6527: setup.py: fix py version guard (Chris Barnes)

CUDA Enhancements/Fixes:

* PR #5465: Remove macro expansion and replace uses with FE typing + BE lowering
  (Graham Markall)
* PR #5741: CUDA: Add two-argument implementation of round() (Graham Markall)
* PR #5900: Enable CUDA Unified Memory (Max Katz)
* PR #6042: CUDA: Lower launch overhead by launching kernel directly (Graham
  Markall)
* PR #6064: Lower math.frexp and math.ldexp in numba.cuda (Zhihao Yuan)
* PR #6066: Lower math.isfinite in numba.cuda (Zhihao Yuan)
* PR #6092: CUDA: Add mapped_array_like and pinned_array_like (Graham Markall)
* PR #6127: Fix race in reduction kernels on Volta, require CUDA 9, add syncwarp
  with default mask (Graham Markall)
* PR #6129: Extend Cudasim to support most of the memory functionality. (Mike
  Williams)
* PR #6150: CUDA: Turn on flake8 for cudadrv and fix errors (Graham Markall)
* PR #6152: CUDA: Provide wrappers for all libdevice functions, and fix typing
  of math function (#4618) (Graham Markall)
* PR #6227: Raise exception when no supported architectures are found (Jacob
  Tomlinson)
* PR #6244: CUDA Docs: Make workflow using simulator more explicit (Graham
  Markall)
* PR #6248: Add support for CUDA atomic subtract operations (Michael Collison)
* PR #6289: Refactor atomic test cases to reduce code duplication (Michael
  Collison)
* PR #6290: CUDA: Add support for complex power (Graham Markall)
* PR #6296: Fix flake8 violations in numba.cuda module (Graham Markall)
* PR #6297: Fix flake8 violations in numba.cuda.tests.cudapy module (Graham
  Markall)
* PR #6298: Fix flake8 violations in numba.cuda.tests.cudadrv (Graham Markall)
* PR #6299: Fix flake8 violations in numba.cuda.simulator (Graham Markall)
* PR #6306: Fix flake8 in cuda atomic test from merge. (Stuart Archibald)
* PR #6325: Refactor code for atomic operations (Michael Collison)
* PR #6329: Flake8 fix for a CUDA test (Stuart Archibald)
* PR #6331: Explicitly state that NUMBA_ENABLE_CUDASIM needs to be set before
  import (Graham Markall)
* PR #6340: CUDA: Fix #6339, performance regression launching specialized
  kernels (Graham Markall)
* PR #6380: Only test managed allocations on Linux (Graham Markall)

Documentation Updates:

* PR #6090: doc: Add doc on direct creation of Numba typed-list (``@rht``)
* PR #6110: Update CONTRIBUTING.md (Stuart Archibald)
* PR #6128: CUDA Docs: Restore Dispatcher.forall() docs (Graham Markall)
* PR #6277: fix: cross2d wrong doc. reference (issue #6276) (``@jeertmans``)
* PR #6282: Remove docs on Python 2(.7) EOL. (Stuart Archibald)
* PR #6283: Add note on how public CI is impl and what users can do to help.
  (Stuart Archibald)
* PR #6292: Document support for structured array attribute access
  (Graham Markall)
* PR #6310: Declare unofficial \*BSD support (Stuart Archibald)
* PR #6342: Fix docs on literally usage. (Stuart Archibald)
* PR #6348: doc: fix typo in jitclass.rst ("initilising" -> "initialising")
  (``@muxator``)
* PR #6362: Move llvmlite support in README to 0.35 (Stuart Archibald)
* PR #6363: Note that reference counted types are not permitted in set().
  (Stuart Archibald)
* PR #6364: Move deprecation schedules for 0.52 (Stuart Archibald)

CI/Infrastructure Updates:

* PR #6252: Show channel URLs (Siu Kwan Lam)
* PR #6338: Direct user questions to Discourse instead of the Google Group.
  (Stan Seibert)
* PR #6474: Add skip on PPC64LE for tests causing SIGABRT in LLVM. (Stuart
  Archibald)

Authors:

* Alexey Kozlov
* Amos Bird
* Andreas Sodeur
* Arthur Peters
* Chris Barnes
* Ehsan Totoni (core dev)
* Eric Wieser
* Ethan Pronovost
* Graham Markall
* Guilherme Leobas
* Isaac Virshup
* Ivan Butygin
* Jacob Tomlinson
* Luiz Almeida
* László Károlyi
* Lucio Fernandez-Arjona
* Max Katz
* Michael Collison
* Mike Williams
* Owen Anderson
* Radu Popovici
* Ray Donnelly
* Rishabh Varshney
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
* Zhihao Yuan
* ``@jeertmans``
* ``@mugoh``
* ``@muxator``
* ``@rht``



Version 0.51.2 (September 2, 2020)
----------------------------------

This is a bugfix release for 0.51.1. It fixes a critical performance bug in the
CFG back edge computation algorithm that leads to exponential time complexity
arising in compilation for use cases with certain pathological properties.

* PR #6195: PR 6187 Continue. Don't visit already checked successors

Authors:

* Graham Markall
* Siu Kwan Lam (core dev)


Version 0.51.1 (August 26, 2020)
--------------------------------

This is a bugfix release for 0.51.0, it fixes a critical bug in caching, another
critical bug in the CUDA target initialisation sequence and also fixes some
compile time performance regressions:

* PR #6141: Fix #6130 objmode cache segfault
* PR #6146: Fix compilation slowdown due to controlflow analysis
* PR #6147: CUDA: Don't make a runtime call on import
* PR #6153: Fix for #6151. Make UnicodeCharSeq into str for comparison.
* PR #6168: Fix Issue #6167: Failure in test_cuda_submodules

Authors:

* Graham Markall
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)


Version 0.51.0 (August 12, 2020)
--------------------------------

This release continues to add new features to Numba and also contains a
significant number of bug fixes and stability improvements.

Highlights of core feature changes include:

* The compilation chain is now based on LLVM 10 (Valentin Haenel).
* Numba has internally switched to prefer non-literal types over literal ones so
  as to reduce function over-specialisation, this with view of speeding up
  compile times (Siu Kwan Lam).
* On the CUDA target: Support for CUDA Toolkit 11, Ampere, and Compute
  Capability 8.0; Printing of ``SASS`` code for kernels; Callbacks to Python
  functions can be inserted into CUDA streams, and streams are async awaitable;
  Atomic ``nanmin`` and ``nanmax`` functions are added; Fixes for various
  miscompilations and segfaults. (mostly Graham Markall; call backs on
  streams by Peter Würtz).

Intel also kindly sponsored research and development that lead to some exciting
new features:

* Support for heterogeneous immutable lists and heterogeneous immutable string
  key dictionaries. Also optional initial/construction value capturing for all
  lists and dictionaries containing literal values (Stuart Archibald).
* A new pass-by-reference mutable structure extension type ``StructRef`` (Siu
  Kwan Lam).
* Object mode blocks are now cacheable, with the side effect of numerous bug
  fixes and performance improvements in caching. This also permits caching of
  functions defined in closures (Siu Kwan Lam).

Deprecations to note:

To align with other targets, the ``argtypes`` and ``restypes`` kwargs to
``@cuda.jit`` are now deprecated, the ``bind`` kwarg is also deprecated.
Further the ``target`` kwarg to the ``numba.jit`` decorator family is
deprecated.

General Enhancements:

* PR #5463: Add str(int) impl
* PR #5526: Impl. np.asarray(literal)
* PR #5619: Add support for multi-output ufuncs
* PR #5711: Division with timedelta input
* PR #5763: Support minlength argument to np.bincount
* PR #5779: Return zero array from np.dot when the arguments are empty.
* PR #5796: Add implementation for np.positive
* PR #5849: Setitem for records when index is StringLiteral, including literal
  unroll
* PR #5856: Add support for conversion of inplace_binop to parfor.
* PR #5893: Allocate 1D iteration space one at a time for more even
  distribution.
* PR #5922: Reduce objmode and unpickling overhead
* PR #5944: re-enable OpenMP in wheels
* PR #5946: Implement literal dictionaries and lists.
* PR #5956: Update numba_sysinfo.py
* PR #5978: Add structref as a mutable struct that is pass-by-ref
* PR #5980: Deprecate target kwarg for numba.jit.
* PR #6058: Add prefer_literal option to overload API

Fixes:

* PR #5674: Fix #3955. Allow `with objmode` to be cached
* PR #5724: Initialize process lock lazily to prevent multiprocessing issue
* PR #5783: Make np.divide and np.remainder code more similar
* PR #5808: Fix 5665 Block jit(nopython=True, forceobj=True) and suppress
  njit(forceobj=True)
* PR #5834: Fix the is operator on Ellipsis
* PR #5838: Ensure ``Dispatcher.__eq__`` always returns a bool
* PR #5841: cleanup: Use PythonAPI.bool_from_bool in more places
* PR #5862: Do not leak loop iteration variables into the numba.np.npyimpl
  namespace
* PR #5869: Update repomap
* PR #5879: Fix erroneous input mutation in linalg routines
* PR #5882: Type check function in jit decorator
* PR #5925: Use np.inf and -np.inf for max and min float values respectively.
* PR #5935: Fix default arguments with multiprocessing
* PR #5952: Fix "Internal error ... local variable 'errstr' referenced before
  assignment during BoundFunction(...)"
* PR #5962: Fix SVML tests with LLVM 10 and AVX512
* PR #5972: fix flake8 for numba/runtests.py
* PR #5995: Update setup.py with new llvmlite versions
* PR #5996: Set lower bound for llvmlite to 0.33
* PR #6004: Fix problem in branch pruning with LiteralStrKeyDict
* PR #6017: Fixing up numba_do_raise
* PR #6028: Fix #6023
* PR #6031: Continue 5821
* PR #6035: Fix overspecialize of literal
* PR #6046: Fixes statement reordering bug in maximize fusion step.
* PR #6056: Fix issue on invalid inlining of non-empty build_list by
  inline_arraycall
* PR #6057: fix aarch64/python_3.8 failure on master
* PR #6070: Fix overspecialized containers
* PR #6071: Remove f-strings in setup.py
* PR #6072: Fix for #6005
* PR #6073: Fixes invalid C prototype in helper function.
* PR #6078: Duplicate NumPy's PyArray_DescrCheck macro
* PR #6081: Fix issue with cross drive use and relpath.
* PR #6083: Fix bug in initial value unify.
* PR #6087: remove invalid sanity check from randrange tests
* PR #6089: Fix invalid reference to TypingError
* PR #6097: Add function code and closure bytes into cache key
* PR #6099: Restrict upper limit of TBB version due to ABI changes.
* PR #6101: Restrict lower limit of icc_rt version due to assumed SVML bug.
* PR #6107: Fix and test #6095
* PR #6109: Fixes an issue reported in #6094
* PR #6111: Decouple LiteralList and LiteralStrKeyDict from tuple
* PR #6116: Fix #6102. Problem with non-unique label.

CUDA Enhancements/Fixes:

* PR #5359: Remove special-casing of 0d arrays
* PR #5709: CUDA: Refactoring of cuda.jit and kernel / dispatcher abstractions
* PR #5732: CUDA Docs: document ``forall`` method of kernels
* PR #5745: CUDA stream callbacks and async awaitable streams
* PR #5761: Add implmentation for int types for isnan and isinf for CUDA
* PR #5819: Add support for CUDA 11 and Ampere / CC 8.0
* PR #5826: CUDA: Add function to get SASS for kernels
* PR #5846: CUDA: Allow disabling NVVM optimizations, and fix debug issues
* PR #5851: CUDA EMM enhancements - add default get_ipc_handle implementation,
  skip a test conditionally
* PR #5852: CUDA: Fix ``cuda.test()``
* PR #5857: CUDA docs: Add notes on resetting the EMM plugin
* PR #5859: CUDA: Fix reduce docs and style improvements
* PR #6016: Fixes change of list spelling in a cuda test.
* PR #6020: CUDA: Fix #5820, adding atomic nanmin / nanmax
* PR #6030: CUDA: Don't optimize IR before sending it to NVVM
* PR #6052: Fix dtype for atomic_add_double testsuite
* PR #6080: CUDA: Prevent auto-upgrade of atomic intrinsics
* PR #6123: Fix #6121

Documentation Updates:

* PR #5782: Host docs on Read the Docs
* PR #5830: doc: Mention that caching uses pickle
* PR #5963: Fix broken link to numpy ufunc signature docs
* PR #5975: restructure communication section
* PR #5981: Document bounds-checking behavior in python deviations page
* PR #5993: Docs for structref
* PR #6008: Small fix so bullet points are rendered by sphinx
* PR #6013: emphasize cuda kernel functions are asynchronous
* PR #6036: Update deprecation doc from numba.errors to numba.core.errors
* PR #6062: Change references to numba.pydata.org to https

CI updates:

* PR #5850: Updates the "New Issue" behaviour to better redirect users.
* PR #5940: Add discourse badge
* PR #5960: Setting mypy on CI

Enhancements from user contributed PRs (with thanks!):

* Aisha Tammy added the ability to switch off TBB support at compile time in
  #5821 (continued in #6031 by Stuart Archibald).
* Alexander Stiebing fixed a reference before assignment bug in #5952.
* Alexey Kozlov fixed a bug in tuple getitem for literals in #6028.
* Andrew Eckart updated the repomap in #5869, added support for Read the Docs
  in #5782, fixed a bug in the ``np.dot`` implementation to correctly handle
  empty arrays in #5779 and added support for ``minlength`` to ``np.bincount``
  in #5763.
* ``@bitsisbits`` updated ``numba_sysinfo.py`` to handle HSA agents correctly in
  #5956.
* Daichi Suzuo Fixed a bug in the threading backend initialisation sequence such
  that it is now correctly a lazy lock in #5724.
* Eric Wieser contributed a number of patches, particularly in enhancing and
  improving the ``ufunc`` capabilities:

  * #5359: Remove special-casing of 0d arrays
  * #5834: Fix the is operator on Ellipsis
  * #5619: Add support for multi-output ufuncs
  * #5841: cleanup: Use PythonAPI.bool_from_bool in more places
  * #5862: Do not leak loop iteration variables into the numba.np.npyimpl
    namespace
  * #5838: Ensure ``Dispatcher.__eq__`` always returns a bool
  * #5830: doc: Mention that caching uses pickle
  * #5783: Make np.divide and np.remainder code more similar

* Ethan Pronovost added a guard to prevent the common mistake of applying a jit
  decorator to the same function twice in #5881.
* Graham Markall contributed many patches to the CUDA target, as follows:

  * #6052: Fix dtype for atomic_add_double tests
  * #6030: CUDA: Don't optimize IR before sending it to NVVM
  * #5846: CUDA: Allow disabling NVVM optimizations, and fix debug issues
  * #5826: CUDA: Add function to get SASS for kernels
  * #5851: CUDA EMM enhancements - add default get_ipc_handle implementation,
    skip a test conditionally
  * #5709: CUDA: Refactoring of cuda.jit and kernel / dispatcher abstractions
  * #5819: Add support for CUDA 11 and Ampere / CC 8.0
  * #6020: CUDA: Fix #5820, adding atomic nanmin / nanmax
  * #5857: CUDA docs: Add notes on resetting the EMM plugin
  * #5859: CUDA: Fix reduce docs and style improvements
  * #5852: CUDA: Fix ``cuda.test()``
  * #5732: CUDA Docs: document ``forall`` method of kernels

* Guilherme Leobas added support for ``str(int)`` in #5463 and
  ``np.asarray(literal value)``` in #5526.
* Hameer Abbasi deprecated the ``target`` kwarg for ``numba.jit`` in #5980.
* Hannes Pahl added a badge to the Numba github page linking to the new
  discourse forum in #5940 and also fixed a bug that permitted illegal
  combinations of flags to be passed into ``@jit`` in #5808.
* Kayran Schmidt emphasized that CUDA kernel functions are asynchronous in the
  documentation in #6013.
* Leonardo Uieda fixed a broken link to the NumPy ufunc signature docs in #5963.
* Lucio Fernandez-Arjona added mypy to CI and started adding type annotations to
  the code base in #5960, also fixed a (de)serialization problem on the
  dispatcher in #5935, improved the undefined variable error message in #5876,
  added support for division with timedelta input in #5711 and implemented
  ``setitem`` for records when the index is a ``StringLiteral`` in #5849.
* Ludovic Tiako documented Numba's bounds-checking behavior in the python
  deviations page in #5981.
* Matt Roeschke changed all ``http`` references ``https`` in #6062.
* ``@niteya-shah`` implemented ``isnan`` and ``isinf`` for integer types on the
  CUDA target in #5761 and implemented ``np.positive`` in #5796.
* Peter Würtz added CUDA stream callbacks and async awaitable streams in #5745.
* ``@rht`` fixed an invalid import referred to in the deprecation documentation
  in #6036.
* Sergey Pokhodenko updated the SVML tests for LLVM 10 in #5962.
* Shyam Saladi fixed a Sphinx rendering bug in #6008.

Authors:

* Aisha Tammy
* Alexander Stiebing
* Alexey Kozlov
* Andrew Eckart
* ``@bitsisbits``
* Daichi Suzuo
* Eric Wieser
* Ethan Pronovost
* Graham Markall
* Guilherme Leobas
* Hameer Abbasi
* Hannes Pahl
* Kayran Schmidt
* Kozlov, Alexey
* Leonardo Uieda
* Lucio Fernandez-Arjona
* Ludovic Tiako
* Matt Roeschke
* ``@niteya-shah``
* Peter Würtz
* Sergey Pokhodenko
* Shyam Saladi
* ``@rht``
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)


Version 0.50.1 (Jun 24, 2020)
-----------------------------

This is a bugfix release for 0.50.0, it fixes a critical bug in error reporting
and a number of other smaller issues:

* PR #5861: Added except for possible Windows get_terminal_size exception
* PR #5876: Improve undefined variable error message
* PR #5884: Update the deprecation notices for 0.50.1
* PR #5889: Fixes literally not forcing re-dispatch for inline='always'
* PR #5912: Fix bad attr access on certain typing templates breaking exceptions.
* PR #5918: Fix cuda test due to #5876

Authors:

* ``@pepping_dore``
* Lucio Fernandez-Arjona
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)


Version 0.50.0 (Jun 10, 2020)
-----------------------------

This is a more usual release in comparison to the others that have been made in
the last six months. It comprises the result of a number of maintenance tasks
along with some new features and a lot of bug fixes.

Highlights of core feature changes include:

* The compilation chain is now based on LLVM 9.
* The error handling and reporting system has been improved to reduce the size
  of error messages, and also improve quality and specificity.
* The CUDA target has more stream constructors available and a new function for
  compiling to PTX without linking and loading the code to a device. Further,
  the macro-based system for describing CUDA threads and blocks has been
  replaced with standard typing and lowering implementations, for improved
  debugging and extensibility.

IMPORTANT: The backwards compatibility shim, that was present in 0.49.x to
accommodate the refactoring of Numba's internals, has been removed. If a module
is imported from a moved location an ``ImportError`` will occur.

General Enhancements:

* PR #5060: Enables np.sum for timedelta64
* PR #5225: Adjust interpreter to make conditionals predicates via bool() call.
* PR #5506: Jitclass static methods
* PR #5580: Revert shim
* PR #5591: Fix #5525 Add figure for total memory to ``numba -s`` output.
* PR #5616: Simplify the ufunc kernel registration
* PR #5617: Remove /examples from the Numba repo.
* PR #5673: Fix inliners to run all passes on IR and clean up correctly.
* PR #5700: Make it easier to understand type inference: add SSA dump, use for
  ``DEBUG_TYPEINFER``
* PR #5702: Fixes for LLVM 9
* PR #5722: Improve error messages.
* PR #5758: Support NumPy 1.18

Fixes:

* PR #5390: add error handling for lookup_module
* PR #5464: Jitclass drops annotations to avoid error
* PR #5478: Fix #5471. Issue with omitted type not recognized as literal value.
* PR #5517: Fix numba.typed.List extend for singleton and empty iterable
* PR #5549: Check type getitem
* PR #5568: Add skip to entrypoint test on windows
* PR #5581: Revert #5568
* PR #5602: Fix segfault caused by pop from numba.typed.List
* PR #5645: Fix SSA redundant CFG computation
* PR #5686: Fix issue with SSA not minimal
* PR #5689: Fix bug in unified_function_type (issue 5685)
* PR #5694: Skip part of slice array analysis if any part is not analyzable.
* PR #5697: Fix usedef issue with parfor loopnest variables.
* PR #5705: A fix for cases where SSA looks like a reduction variable.
* PR #5714: Fix bug in test
* PR #5717: Initialise Numba extensions ahead of any compilation starting.
* PR #5721: Fix array iterator layout.
* PR #5738: Unbreak master on buildfarm
* PR #5757: Force LLVM to use ZMM registers for vectorization.
* PR #5764: fix flake8 errors
* PR #5768: Interval example: fix import
* PR #5781: Moving record array examples to a test module
* PR #5791: Fix up no cgroups problem
* PR #5795: Restore refct removal pass and make it strict
* PR #5807: Skip failing test on POWER8 due to PPC CTR Loop problem.
* PR #5812: Fix side issue from #5792, @overload inliner cached IR being
  mutated.
* PR #5815: Pin llvmlite to 0.33
* PR #5833: Fixes the source location appearing incorrectly in error messages.

CUDA Enhancements/Fixes:

* PR #5347: CUDA: Provide more stream constructors
* PR #5388: CUDA: Fix OOB write in test_round{f4,f8}
* PR #5437: Fix #5429: Exception using ``.get_ipc_handle(...)`` on array from
  ``as_cuda_array(...)``
* PR #5481: CUDA: Replace macros with typing and lowering implementations
* PR #5556: CUDA: Make atomic semantics match Python / NumPy, and fix #5458
* PR #5558: CUDA: Only release primary ctx if retained
* PR #5561: CUDA: Add function for compiling to PTX (+ other small fixes)
* PR #5573: CUDA: Skip tests under cuda-memcheck that hang it
* PR #5578: Implement math.modf for CUDA target
* PR #5704: CUDA Eager compilation: Fix max_registers kwarg
* PR #5718: CUDA lib path tests: unset CUDA_PATH when CUDA_HOME unset
* PR #5800: Fix LLVM 9 IR for NVVM
* PR #5803: CUDA Update expected error messages to fix #5797

Documentation Updates:

* PR #5546: DOC: Add documentation about cost model to inlining notes.
* PR #5653: Update doc with respect to try-finally case

Enhancements from user contributed PRs (with thanks!):

* Elias Kuthe fixed in issue with imports in the Interval example in #5768
* Eric Wieser Simplified the ufunc kernel registration mechanism in #5616
* Ethan Pronovost patched a problem with ``__annotations__`` in ``jitclass`` in
  #5464, fixed a bug that lead to infinite loops in Numba's ``Type.__getitem__``
  in #5549, fixed a bug in ``np.arange`` testing in #5714 and added support for
  ``@staticmethod`` to ``jitclass`` in #5506.
* Gabriele Gemmi implemented ``math.modf`` for the CUDA target in #5578
* Graham Markall contributed many patches, largely to the CUDA target, as
  follows:

  * #5347: CUDA: Provide more stream constructors
  * #5388: CUDA: Fix OOB write in test_round{f4,f8}
  * #5437: Fix #5429: Exception using ``.get_ipc_handle(...)`` on array from
    ``as_cuda_array(...)``
  * #5481: CUDA: Replace macros with typing and lowering implementations
  * #5556: CUDA: Make atomic semantics match Python / NumPy, and fix #5458
  * #5558: CUDA: Only release primary ctx if retained
  * #5561: CUDA: Add function for compiling to PTX (+ other small fixes)
  * #5573: CUDA: Skip tests under cuda-memcheck that hang it
  * #5648: Unset the memory manager after EMM Plugin tests
  * #5700: Make it easier to understand type inference: add SSA dump, use for
    ``DEBUG_TYPEINFER``
  * #5704: CUDA Eager compilation: Fix max_registers kwarg
  * #5718: CUDA lib path tests: unset CUDA_PATH when CUDA_HOME unset
  * #5800: Fix LLVM 9 IR for NVVM
  * #5803: CUDA Update expected error messages to fix #5797

* Guilherme Leobas updated the documentation surrounding try-finally in #5653
* Hameer Abbasi added documentation about the cost model to the notes on
  inlining in #5546
* Jacques Gaudin rewrote ``numba -s`` to produce and consume a dictionary of
  output about the current system in #5591
* James Bourbeau Updated min/argmin and max/argmax to handle non-leading nans
  (via #5758)
* Lucio Fernandez-Arjona moved the record array examples to a test module in
  #5781 and added ``np.timedelta64`` handling to ``np.sum`` in #5060
* Pearu Peterson Fixed a bug in unified_function_type in #5689
* Sergey Pokhodenko fixed an issue impacting LLVM 10 regarding vectorization
  widths on Intel SkyLake processors in #5757
* Shan Sikdar added error handling for ``lookup_module`` in #5390
* @toddrme2178 add CI testing for NumPy 1.18 (via #5758)

Authors:

* Elias Kuthe
* Eric Wieser
* Ethan Pronovost
* Gabriele Gemmi
* Graham Markall
* Guilherme Leobas
* Hameer Abbasi
* Jacques Gaudin
* James Bourbeau
* Lucio Fernandez-Arjona
* Pearu Peterson
* Sergey Pokhodenko
* Shan Sikdar
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* ``@toddrme2178``
* Valentin Haenel (core dev)


Version 0.49.1 (May 7, 2020)
----------------------------

This is a bugfix release for 0.49.0, it fixes some residual issues with SSA
form, a critical bug in the branch pruning logic and a number of other smaller
issues:

* PR #5587: Fixed #5586 Threading Implementation Typos
* PR #5592: Fixes #5583 Remove references to cffi_support from docs and examples
* PR #5614: Fix invalid type in resolve for comparison expr in parfors.
* PR #5624: Fix erroneous rewrite of predicate to bit const on prune.
* PR #5627: Fixes #5623, SSA local def scan based on invalid equality
  assumption.
* PR #5629: Fixes naming error in array_exprs
* PR #5630: Fix #5570. Incorrect race variable detection due to SSA naming.
* PR #5638: Make literal_unroll function work as a freevar.
* PR #5648: Unset the memory manager after EMM Plugin tests
* PR #5651: Fix some SSA issues
* PR #5652: Pin to sphinx=2.4.4 to avoid problem with C declaration
* PR #5658: Fix unifying undefined first class function types issue
* PR #5669: Update example in 5m guide WRT SSA type stability.
* PR #5676: Restore ``numba.types`` as public API

Authors:

* Graham Markall
* Juan Manuel Cruz Martinez
* Pearu Peterson
* Sean Law
* Stuart Archibald (core dev)
* Siu Kwan Lam (core dev)


Version 0.49.0 (Apr 16, 2020)
-----------------------------

This release is very large in terms of code changes. Large scale removal of
unsupported Python and NumPy versions has taken place along with a significant
amount of refactoring to simplify the Numba code base to make it easier for
contributors. Numba's intermediate representation has also undergone some
important changes to solve a number of long standing issues. In addition some
new features have been added and a large number of bugs have been fixed!

IMPORTANT: In this release Numba's internals have moved about a lot. A backwards
compatibility "shim" is provided for this release so as to not immediately break
projects using Numba's internals. If a module is imported from a moved location
the shim will issue a deprecation warning and suggest how to update the import
statement for the new location. The shim will be removed in 0.50.0!

Highlights of core feature changes include:

* Removal of all Python 2 related code and also updating the minimum supported
  Python version to 3.6, the minimum supported NumPy version to 1.15 and the
  minimum supported SciPy version to 1.0. (Stuart Archibald).
* Refactoring of the Numba code base. The code is now organised into submodules
  by functionality. This cleans up Numba's top level namespace.
  (Stuart Archibald).
* Introduction of an ``ir.Del`` free static single assignment form for Numba's
  intermediate representation (Siu Kwan Lam and Stuart Archibald).
* An OpenMP-like thread masking API has been added for use with code using the
  parallel CPU backends (Aaron Meurer and Stuart Archibald).
* For the CUDA target, all kernel launches now require a configuration, this
  preventing accidental launches of kernels with the old default of a single
  thread in a single block. The hard-coded autotuner is also now removed, such
  tuning is deferred to CUDA API calls that provide the same functionality
  (Graham Markall).
* The CUDA target also gained an External Memory Management plugin interface to
  allow Numba to use another CUDA-aware library for all memory allocations and
  deallocations (Graham Markall).
* The Numba Typed List container gained support for construction from iterables
  (Valentin Haenel).
* Experimental support was added for first-class function types
  (Pearu Peterson).

Enhancements from user contributed PRs (with thanks!):

* Aaron Meurer added support for thread masking at runtime in #4615.
* Andreas Sodeur fixed a long standing bug that was preventing ``cProfile`` from
  working with Numba JIT compiled functions in #4476.
* Arik Funke fixed error messages in ``test_array_reductions`` (#5278), fixed
  an issue with test discovery (#5239), made it so the documentation would build
  again on windows (#5453) and fixed a nested list problem in the docs in #5489.
* Antonio Russo fixed a SyntaxWarning in #5252.
* Eric Wieser added support for inferring the types of object arrays (#5348) and
  iterating over 2D arrays (#5115), also fixed some compiler warnings due to
  missing (void) in #5222. Also helped improved the "shim" and associated
  warnings in #5485, #5488, #5498 and partly #5532.
* Ethan Pronovost fixed a problem with the shim erroneously warning for jitclass
  use in #5454 and also prevented illegal return values in jitclass ``__init__``
  in #5505.
* Gabriel Majeri added SciPy 2019 talks to the docs in #5106.
* Graham Markall changed the Numba HTML documentation theme to resolve a number
  of long standing issues in #5346. Also contributed were a large number of CUDA
  enhancements and fixes, namely:

  * #5519: CUDA: Silence the test suite - Fix #4809, remove autojit, delete
    prints
  * #5443: Fix #5196: Docs: assert in CUDA only enabled for debug
  * #5436: Fix #5408: test_set_registers_57 fails on Maxwell
  * #5423: Fix #5421: Add notes on printing in CUDA kernels
  * #5400: Fix #4954, and some other small CUDA testsuite fixes
  * #5328: NBEP 7: External Memory Management Plugin Interface
  * #5144: Fix #4875: Make #2655 test with debug expect to pass
  * #5323: Document lifetime semantics of CUDA Array Interface
  * #5061: Prevent kernel launch with no configuration, remove autotuner
  * #5099: Fix #5073: Slices of dynamic shared memory all alias
  * #5136: CUDA: Enable asynchronous operations on the default stream
  * #5085: Support other itemsizes with view
  * #5059: Docs: Explain how to use Memcheck with Numba, fixups in CUDA
    documentation
  * #4957: Add notes on overwriting gufunc inputs to docs

* Greg Jennings fixed an issue with ``np.random.choice`` not acknowledging the
  RNG seed correctly in #3897/#5310.
* Guilherme Leobas added support for ``np.isnat`` in #5293.
* Henry Schreiner made the llvmlite requirements more explicit in
  requirements.txt in #5150.
* Ivan Butygin helped fix an issue with parfors sequential lowering in
  #5114/#5250.
* Jacques Gaudin fixed a bug for Python >= 3.8 in ``numba -s`` in #5548.
* Jim Pivarski added some hints for debugging entry points in #5280.
* John Kirkham added ``numpy.dtype`` coercion for the ``dtype`` argument to CUDA
  device arrays in #5252.
* Leo Fang added a list of libraries that support ``__cuda_array_interface__``
  in #5104.
* Lucio Fernandez-Arjona added ``getitem`` for the NumPy record type when the
  index is a ``StringLiteral`` type in #5182 and improved the documentation
  rendering via additions to the TOC and removal of numbering in #5450.
* Mads R. B. Kristensen fixed an issue with ``__cuda_array_interface__`` not
  requiring the context in #5189.
* Marcin Tolysz added support for nested modules in AOT compilation in #5174.
* Mike Williams fixed some issues with NumPy records and ``getitem`` in the CUDA
  simulator in #5343.
* Pearu Peterson added experimental support for first-class function types in
  #5287 (and fixes in #5459, #5473/#5429, and #5557).
* Ravi Teja Gutta added support for ``np.flip`` in #4376/#5313.
* Rohit Sanjay fixed an issue with type refinement for unicode input supplied to
  typed-list ``extend()`` (#5295) and fixed unicode ``.strip()`` to strip all
  whitespace characters in #5213.
* Vladimir Lukyanov fixed an awkward bug in ``typed.dict`` in #5361, added a fix
  to ensure the LLVM and assembly dumps are highlighted correctly in #5357 and
  implemented a Numba IR Lexer and added highlighting to Numba IR dumps in
  #5333.
* hdf fixed an issue with the ``boundscheck`` flag in the CUDA jit target in
  #5257.

General Enhancements:

* PR #4615: Allow masking threads out at runtime
* PR #4798: Add branch pruning based on raw predicates.
* PR #5115: Add support for iterating over 2D arrays
* PR #5117: Implement ord()/chr()
* PR #5122: Remove Python 2.
* PR #5127: Calling convention adaptor for boxer/unboxer to call jitcode
* PR #5151: implement None-typed typed-list
* PR #5174: Nested modules https://github.com/numba/numba/issues/4739
* PR #5182: Add getitem for Record type when index is StringLiteral
* PR #5185: extract code-gen utilities from closures
* PR #5197: Refactor Numba, part I
* PR #5210: Remove more unsupported Python versions from build tooling.
* PR #5212: Adds support for viewing the CFG of the ELF disassembly.
* PR #5227: Immutable typed-list
* PR #5231: Added support for ``np.asarray`` to be used with
  ``numba.typed.List``
* PR #5235: Added property ``dtype`` to ``numba.typed.List``
* PR #5272: Refactor parfor: split up ParforPass
* PR #5281: Make IR ir.Del free until legalized.
* PR #5287: First-class function type
* PR #5293: np.isnat
* PR #5294: Create typed-list from iterable
* PR #5295: refine typed-list on unicode input to extend
* PR #5296: Refactor parfor: better exception from passes
* PR #5308: Provide ``numba.extending.is_jitted``
* PR #5320: refactor array_analysis
* PR #5325: Let literal_unroll accept types.Named*Tuple
* PR #5330: refactor common operation in parfor lowering into a new util
* PR #5333: Add: highlight Numba IR dump
* PR #5342: Support for tuples passed to parfors.
* PR #5348: Add support for inferring the types of object arrays
* PR #5351: SSA again
* PR #5352: Add shim to accommodate refactoring.
* PR #5356: implement allocated parameter in njit
* PR #5369: Make test ordering more consistent across feature availability
* PR #5428: Wip/deprecate jitclass location
* PR #5441: Additional changes to first class function
* PR #5455: Move to llvmlite 0.32.*
* PR #5457: implement repr for untyped lists

Fixes:

* PR #4476: Another attempt at fixing frame injection in the dispatcher tracing
  path
* PR #4942: Prevent some parfor aliasing.  Rename copied function var to prevent
  recursive type locking.
* PR #5092: Fix 5087
* PR #5150: More explicit llvmlite requirement in requirements.txt
* PR #5172: fix version spec for llvmlite
* PR #5176: Normalize kws going into fold_arguments.
* PR #5183: pass 'inline' explicitly to overload
* PR #5193: Fix CI failure due to missing files when installed
* PR #5213: Fix ``.strip()`` to strip all whitespace characters
* PR #5216: Fix namedtuple mistreated by dispatcher as simple tuple
* PR #5222: Fix compiler warnings due to missing (void)
* PR #5232: Fixes a bad import that breaks master
* PR #5239: fix test discovery for unittest
* PR #5247: Continue PR #5126
* PR #5250: Part fix/5098
* PR #5252: Trivially fix SyntaxWarning
* PR #5276: Add prange variant to has_no_side_effect.
* PR #5278: fix error messages in test_array_reductions
* PR #5310: PR #3897 continued
* PR #5313: Continues PR #4376
* PR #5318: Remove AUTHORS file reference from MANIFEST.in
* PR #5327: Add warning if FNV hashing is found as the default for CPython.
* PR #5338: Remove refcount pruning pass
* PR #5345: Disable test failing due to removed pass.
* PR #5357: Small fix to have llvm and asm highlighted properly
* PR #5361: 5081 typed.dict
* PR #5431: Add tolerance to numba extension module entrypoints.
* PR #5432: Fix code causing compiler warnings.
* PR #5445: Remove undefined variable
* PR #5454: Don't warn for numba.experimental.jitclass
* PR #5459: Fixes issue 5448
* PR #5480: Fix for #5477, literal_unroll KeyError searching for getitems
* PR #5485: Show the offending module in "no direct replacement" error message
* PR #5488: Add missing ``numba.config`` shim
* PR #5495: Fix missing null initializer for variable after phi strip
* PR #5498: Make the shim deprecation warnings work on python 3.6 too
* PR #5505: Better error message if __init__ returns value
* PR #5527: Attempt to fix #5518
* PR #5529: PR #5473 continued
* PR #5532: Make ``numba.<mod>`` available without an import
* PR #5542: Fixes RC2 module shim bug
* PR #5548: Fix #5537 Removed reference to ``platform.linux_distribution``
* PR #5555: Fix #5515 by reverting changes to ArrayAnalysis
* PR #5557: First-class function call cannot use keyword arguments
* PR #5569: Fix RewriteConstGetitems not registering calltype for new expr
* PR #5571: Pin down llvmlite requirement

CUDA Enhancements/Fixes:

* PR #5061: Prevent kernel launch with no configuration, remove autotuner
* PR #5085: Support other itemsizes with view
* PR #5099: Fix #5073: Slices of dynamic shared memory all alias
* PR #5104: Add a list of libraries that support __cuda_array_interface__
* PR #5136: CUDA: Enable asynchronous operations on the default stream
* PR #5144: Fix #4875: Make #2655 test with debug expect to pass
* PR #5189: __cuda_array_interface__ not requiring context
* PR #5253: Coerce ``dtype`` to ``numpy.dtype``
* PR #5257: boundscheck fix
* PR #5319: Make user facing error string use abs path not rel.
* PR #5323: Document lifetime semantics of CUDA Array Interface
* PR #5328: NBEP 7: External Memory Management Plugin Interface
* PR #5343: Fix cuda spoof
* PR #5400: Fix #4954, and some other small CUDA testsuite fixes
* PR #5436: Fix #5408: test_set_registers_57 fails on Maxwell
* PR #5519: CUDA: Silence the test suite - Fix #4809, remove autojit, delete
  prints

Documentation Updates:

* PR #4957: Add notes on overwriting gufunc inputs to docs
* PR #5059: Docs: Explain how to use Memcheck with Numba, fixups in CUDA
  documentation
* PR #5106: Add SciPy 2019 talks to docs
* PR #5147: Update master for 0.48.0 updates
* PR #5155: Explain what inlining at Numba IR level will do
* PR #5161: Fix README.rst formatting
* PR #5207: Remove AUTHORS list
* PR #5249: fix target path for See also
* PR #5262: fix typo in inlining docs
* PR #5270: fix 'see also' in typeddict docs
* PR #5280: Added some hints for debugging entry points.
* PR #5297: Update docs with intro to {g,}ufuncs.
* PR #5326: Update installation docs with OpenMP requirements.
* PR #5346: Docs: use sphinx_rtd_theme
* PR #5366: Remove reference to Python 2.7 in install check output
* PR #5423: Fix #5421: Add notes on printing in CUDA kernels
* PR #5438: Update package deps for doc building.
* PR #5440: Bump deprecation notices.
* PR #5443: Fix #5196: Docs: assert in CUDA only enabled for debug
* PR #5450: Docs: remove numbers and add titles to TOC
* PR #5453: fix building docs on windows
* PR #5489: docs: fix rendering of nested bulleted list

CI updates:

* PR #5314: Update the image used in Azure CI for OSX.
* PR #5360: Remove Travis CI badge.

Authors:

* Aaron Meurer
* Andreas Sodeur
* Antonio Russo
* Arik Funke
* Eric Wieser
* Ethan Pronovost
* Gabriel Majeri
* Graham Markall
* Greg Jennings
* Guilherme Leobas
* hdf
* Henry Schreiner
* Ivan Butygin
* Jacques Gaudin
* Jim Pivarski
* John Kirkham
* Leo Fang
* Lucio Fernandez-Arjona
* Mads R. B. Kristensen
* Marcin Tolysz
* Mike Williams
* Pearu Peterson
* Ravi Teja Gutta
* Rohit Sanjay
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
* Vladimir Lukyanov


Version 0.48.0 (Jan 27, 2020)
-----------------------------

This release is particularly small as it was present to catch anything that
missed the 0.47.0 deadline (the deadline deliberately coincided with the end of
support for Python 2.7). The next release will be considerably larger.

The core changes in this release are dominated by the start of the clean up
needed for the end of Python 2.7 support, improvements to the CUDA target and
support for numerous additional unicode string methods.

Enhancements from user contributed PRs (with thanks!):

* Brian Wignall fixed more spelling typos in #4998.
* Denis Smirnov added support for string methods ``capitalize`` (#4823),
  ``casefold`` (#4824), ``swapcase`` (#4825), ``rsplit`` (#4834), ``partition``
  (#4845) and ``splitlines`` (#4849).
* Elena Totmenina extended support for string methods ``startswith`` (#4867) and
  added ``endswith`` (#4868).
* Eric Wieser made ``type_callable`` return the decorated function itself in
  #4760
* Ethan Pronovost added support for ``np.argwhere`` in #4617
* Graham Markall contributed a large number of CUDA enhancements and fixes,
  namely:

  * #5068: Remove Python 3.4 backports from utils
  * #4975: Make ``device_array_like`` create contiguous arrays (Fixes #4832)
  * #5023: Don't launch ForAll kernels with 0 elements (Fixes #5017)
  * #5016: Fix various issues in CUDA library search (Fixes #4979)
  * #5014: Enable use of records and bools for shared memory, remove ddt, add
    additional transpose tests
  * #4964: Fix #4628: Add more appropriate typing for CUDA device arrays
  * #5007: test_consuming_strides: Keep dev array alive
  * #4997: State that CUDA Toolkit 8.0 required in docs

* James Bourbeau added the Python 3.8 classifier to setup.py in #5027.
* John Kirkham added a clarification to the ``__cuda_array_interface__``
  documentation in #5049.
* Leo Fang Fixed an indexing problem in ``dummyarray`` in #5012.
* Marcel Bargull fixed a build and test issue for Python 3.8 in #5029.
* Maria Rubtsov added support for string methods ``isdecimal`` (#4842),
  ``isdigit`` (#4843), ``isnumeric`` (#4844) and ``replace`` (#4865).

General Enhancements:

* PR #4760: Make type_callable return the decorated function
* PR #5010: merge string prs

  This merge PR included the following:

  * PR #4823: Implement str.capitalize() based on CPython
  * PR #4824: Implement str.casefold() based on CPython
  * PR #4825: Implement str.swapcase() based on CPython
  * PR #4834: Implement str.rsplit() based on CPython
  * PR #4842: Implement str.isdecimal
  * PR #4843: Implement str.isdigit
  * PR #4844: Implement str.isnumeric
  * PR #4845: Implement str.partition() based on CPython
  * PR #4849: Implement str.splitlines() based on CPython
  * PR #4865: Implement str.replace
  * PR #4867: Functionality extension str.startswith() based on CPython
  * PR #4868: Add functionality for str.endswith()

* PR #5039: Disable help messages.
* PR #4617: Add coverage for ``np.argwhere``

Fixes:

* PR #4724: Only use lives (and not aliases) to create post parfor live set.
* PR #4998: Fix more spelling typos
* PR #5024: Propagate semantic constants ahead of static rewrites.
* PR #5027: Add Python 3.8 classifier to setup.py
* PR #5046: Update setup.py and buildscripts for dependency requirements
* PR #5053: Convert from arrays to names in define() and don't invalidate for
  multiple consistent defines.
* PR #5058: Permit mixed int types in wrap_index
* PR #5078: Catch the use of global typed-list in JITed functions
* PR #5092: Fix #5087, bug in bytecode analysis.

CUDA Enhancements/Fixes:

* PR #4964: Fix #4628: Add more appropriate typing for CUDA device arrays
* PR #4975: Make ``device_array_like`` create contiguous arrays (Fixes #4832)
* PR #4997: State that CUDA Toolkit 8.0 required in docs
* PR #5007: test_consuming_strides: Keep dev array alive
* PR #5012: Fix IndexError when accessing the "-1" element of dummyarray
* PR #5014: Enable use of records and bools for shared memory, remove ddt, add
  additional transpose tests
* PR #5016: Fix various issues in CUDA library search (Fixes #4979)
* PR #5023: Don't launch ForAll kernels with 0 elements (Fixes #5017)
* PR #5068: Remove Python 3.4 backports from utils

Documentation Updates:

* PR #5049: Clarify what dictionary means
* PR #5062: Update docs for updated version requirements
* PR #5090: Update deprecation notices for 0.48.0

CI updates:

* PR #5029: Install optional dependencies for Python 3.8 tests
* PR #5040: Drop Py2.7 and Py3.5 from public CI
* PR #5048: Fix CI py38

Authors:

* Brian Wignall
* Denis Smirnov
* Elena Totmenina
* Eric Wieser
* Ethan Pronovost
* Graham Markall
* James Bourbeau
* John Kirkham
* Leo Fang
* Marcel Bargull
* Maria Rubtsov
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)


Version 0.47.0  (Jan 2, 2020)
-----------------------------

This release expands the capability of Numba in a number of important areas and
is also significant as it is the last major point release with support for
Python 2 and Python 3.5 included. The next release (0.48.0) will be for Python
3.6+ only!  (This follows NumPy's deprecation schedule as specified in
`NEP 29 <https://numpy.org/neps/nep-0029-deprecation_policy.html>`_.)

Highlights of core feature changes include:

* Full support for Python 3.8 (Siu Kwan Lam)
* Opt-in bounds checking (Aaron Meurer)
* Support for ``map``, ``filter`` and ``reduce`` (Stuart Archibald)

Intel also kindly sponsored research and development that lead to some exciting
new features:

* Initial support for basic ``try``/``except`` use (Siu Kwan Lam)
* The ability to pass functions created from closures/lambdas as arguments
  (Stuart Archibald)
* ``sorted`` and ``list.sort()`` now accept the ``key`` argument (Stuart
  Archibald and Siu Kwan Lam)
* A new compiler pass triggered through the use of the function
  ``numba.literal_unroll`` which permits iteration over heterogeneous tuples
  and constant lists of constants. (Stuart Archibald)

Enhancements from user contributed PRs (with thanks!):

* Ankit Mahato added a reference to a new talk on Numba at PyCon India 2019 in
  #4862
* Brian Wignall kindly fixed some spelling mistakes and typos in #4909
* Denis Smirnov wrote numerous methods to considerable enhance string support
  including:

  * ``str.rindex()`` in #4861
  * ``str.isprintable()`` in #4836
  * ``str.index()`` in #4860
  * ``start/end`` parameters for ``str.find()`` in #4866
  * ``str.isspace()`` in #4835
  * ``str.isidentifier()`` #4837
  * ``str.rpartition()`` in #4841
  * ``str.lower()`` and ``str.islower()`` in #4651

* Elena Totmenina implemented both ``str.isalnum()``, ``str.isalpha()`` and
  ``str.isascii`` in #4839, #4840 and #4847 respectively.
* Eric Larson fixed a bug in literal comparison in #4710
* Ethan Pronovost updated the ``np.arange`` implementation in #4770 to allow
  the use of the ``dtype`` key word argument and also added ``bool``
  implementations for several types in #4715.
* Graham Markall fixed some issues with the CUDA target, namely:

  * #4931: Added physical limits for CC 7.0 / 7.5 to CUDA autotune
  * #4934: Fixed bugs in TestCudaWarpOperations
  * #4938: Improved errors / warnings for the CUDA vectorize decorator

* Guilherme Leobas fixed a typo in the ``urem`` implementation in #4667
* Isaac Virshup contributed a number of patches that fixed bugs, added support
  for more NumPy functions and enhanced Python feature support. These
  contributions included:

  * #4729: Allow array construction with mixed type shape tuples
  * #4904: Implementing ``np.lcm``
  * #4780: Implement np.gcd and math.gcd
  * #4779: Make slice constructor more similar to python.
  * #4707: Added support for slice.indices
  * #4578: Clarify numba ufunc supported features

* James Bourbeau fixed some issues with tooling, #4794 add ``setuptools`` as a
  dependency and #4501 add pre-commit hooks for ``flake8`` compliance.
* Leo Fang made ``numba.dummyarray.Array`` iterable in #4629
* Marc Garcia fixed the ``numba.jit`` parameter name signature_or_function in
  #4703
* Marcelo Duarte Trevisani patched the llvmlite requirement to ``>=0.30.0`` in
  #4725
* Matt Cooper fixed a long standing CI problem in #4737 by remove maxParallel
* Matti Picus fixed an issue with ``collections.abc`` in #4734
  from Azure Pipelines.
* Rob Ennis patched a bug in ``np.interp`` ``float32`` handling in #4911
* VDimir fixed a bug in array transposition layouts in #4777 and re-enabled and
  fixed some idle tests in #4776.
* Vyacheslav Smirnov Enable support for `str.istitle()`` in #4645

General Enhancements:

* PR #4432: Bounds checking
* PR #4501: Add pre-commit hooks
* PR #4536: Handle kw args in inliner when callee is a function
* PR #4599: Permits closures to become functions, enables map(), filter()
* PR #4611: Implement method title() for unicode based on Cpython
* PR #4645: Enable support for istitle() method for unicode string
* PR #4651: Implement str.lower() and str.islower()
* PR #4652: Implement str.rfind()
* PR #4695: Refactor `overload*` and support `jit_options` and `inline`
* PR #4707: Added support for slice.indices
* PR #4715: Add `bool` overload for several types
* PR #4729: Allow array construction with mixed type shape tuples
* PR #4755: Python3.8 support
* PR #4756: Add parfor support for ndarray.fill.
* PR #4768: Update typeconv error message to ask for sys.executable.
* PR #4770: Update `np.arange` implementation with `@overload`
* PR #4779: Make slice constructor more similar to python.
* PR #4780: Implement np.gcd and math.gcd
* PR #4794: Add setuptools as a dependency
* PR #4802: put git hash into build string
* PR #4803: Better compiler error messages for improperly used reduction
  variables.
* PR #4817: Typed list implement and expose allocation
* PR #4818: Typed list faster copy
* PR #4835: Implement str.isspace() based on CPython
* PR #4836: Implement str.isprintable() based on CPython
* PR #4837: Implement str.isidentifier() based on CPython
* PR #4839: Implement str.isalnum() based on CPython
* PR #4840: Implement str.isalpha() based on CPython
* PR #4841: Implement str.rpartition() based on CPython
* PR #4847: Implement str.isascii() based on CPython
* PR #4851: Add graphviz output for FunctionIR
* PR #4854: Python3.8 looplifting
* PR #4858: Implement str.expandtabs() based on CPython
* PR #4860: Implement str.index() based on CPython
* PR #4861: Implement str.rindex() based on CPython
* PR #4866: Support params start/end for str.find()
* PR #4874: Bump to llvmlite 0.31
* PR #4896: Specialise arange dtype on arch + python version.
* PR #4902: basic support for try except
* PR #4904: Implement np.lcm
* PR #4910: loop canonicalisation and type aware tuple unroller/loop body
  versioning passes
* PR #4961: Update hash(tuple) for Python 3.8.
* PR #4977: Implement sort/sorted with key.
* PR #4987: Add `is_internal` property to all Type classes.

Fixes:

* PR #4090: Update to LLVM8 memset/memcpy intrinsic
* PR #4582: Convert sub to add and div to mul when doing the reduction across
  the per-thread reduction array.
* PR #4648: Handle 0 correctly as slice parameter.
* PR #4660: Remove multiply defined variables from all blocks' equivalence sets.
* PR #4672: Fix pickling of dufunc
* PR #4710: BUG: Comparison for literal
* PR #4718: Change get_call_table to support intermediate Vars.
* PR #4725: Requires  llvmlite >=0.30.0
* PR #4734: prefer to import from collections.abc
* PR #4736: fix flake8 errors
* PR #4776: Fix and enable idle tests from test_array_manipulation
* PR #4777: Fix transpose output array layout
* PR #4782: Fix issue with SVML (and knock-on function resolution effects).
* PR #4785: Treat 0d arrays like scalars.
* PR #4787: fix missing incref on flags
* PR #4789: fix typos in numba/targets/base.py
* PR #4791: fix typos
* PR #4811: fix spelling in now-failing tests
* PR #4852: windowing test should check equality only up to double precision
  errors
* PR #4881: fix refining list by using extend on an iterator
* PR #4882: Fix return type in arange and zero step size handling.
* PR #4885: suppress spurious RuntimeWarning about ufunc sizes
* PR #4891: skip the xfail test for now.  Py3.8 CFG refactor seems to have
  changed the test case
* PR #4892: regex needs to accept singular form of "argument"
* PR #4901: fix typed list equals
* PR #4909: Fix some spelling typos
* PR #4911: np.interp bugfix for float32 handling
* PR #4920: fix creating list with JIT disabled
* PR #4921: fix creating dict with JIT disabled
* PR #4935: Better handling of prange with multiple reductions on the same
  variable.
* PR #4946: Improve the error message for `raise <string>`.
* PR #4955: Move overload of literal_unroll to avoid circular dependency that
  breaks Python 2.7
* PR #4962: Fix test error on windows
* PR #4973: Fixes a bug in the relabelling logic in literal_unroll.
* PR #4978: Fix overload_method problem with stararg
* PR #4981: Add ind_to_const to enable fewer equivalence classes.
* PR #4991: Continuation of #4588 (Let dead code removal handle removing more of
  the unneeded code after prange conversion to parfor)
* PR #4994: Remove xfail for test which has since had underlying issue fixed.
* PR #5018: Fix #5011.
* PR #5019: skip pycc test on Python 3.8 + macOS because of distutils issue

CUDA Enhancements/Fixes:

* PR #4629: Make numba.dummyarray.Array iterable
* PR #4675: Bump cuda array interface to version 2
* PR #4741: Update choosing the "CUDA_PATH" for windows
* PR #4838: Permit ravel('A') for contig device arrays in CUDA target
* PR #4931: Add physical limits for CC 7.0 / 7.5 to autotune
* PR #4934: Fix fails in TestCudaWarpOperations
* PR #4938: Improve errors / warnings for cuda vectorize decorator

Documentation Updates:

* PR #4418: Directed graph task roadmap
* PR #4578: Clarify numba ufunc supported features
* PR #4655: fix sphinx build warning
* PR #4667: Fix typo on urem implementation
* PR #4669: Add link to ParallelAccelerator paper.
* PR #4703: Fix numba.jit parameter name signature_or_function
* PR #4862: Addition of PyCon India 2019 talk on Numba
* PR #4947: Document jitclass with numba.typed use.
* PR #4958: Add docs for `try..except`
* PR #4993: Update deprecations for 0.47

CI Updates:

* PR #4737: remove maxParallel from Azure Pipelines
* PR #4767: pin to 2.7.16 for py27 on osx
* PR #4781: WIP/runtest cf pytest

Authors:

* Aaron Meurer
* Ankit Mahato
* Brian Wignall
* Denis Smirnov
* Ehsan Totoni (core dev)
* Elena Totmenina
* Eric Larson
* Ethan Pronovost
* Giovanni Cavallin
* Graham Markall
* Guilherme Leobas
* Isaac Virshup
* James Bourbeau
* Leo Fang
* Marc Garcia
* Marcelo Duarte Trevisani
* Matt Cooper
* Matti Picus
* Rob Ennis
* Rujal Desai
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* VDimir
* Valentin Haenel (core dev)
* Vyacheslav Smirnov


Version 0.46.0
--------------

This release significantly reworked one of the main parts of Numba, the compiler
pipeline, to make it more extensible and easier to use. The purpose of this was
to continue enhancing Numba's ability for use as a compiler toolkit. In a
similar vein, Numba now has an extension registration mechanism to allow other
Numba-using projects to automatically have their Numba JIT compilable functions
discovered. There were also a number of other related compiler toolkit
enhancement added along with some more NumPy features and a lot of bug fixes.

This release has updated the CUDA Array Interface specification to version 2,
which clarifies the `strides` attribute for C-contiguous arrays and specifies
the treatment for zero-size arrays. The implementation in Numba has been
changed and may affect downstream packages relying on the old behavior
(see issue #4661).

Enhancements from user contributed PRs (with thanks!):

* Aaron Meurer fixed some Python issues in the code base in #4345 and #4341.
* Ashwin Srinath fixed a CUDA performance bug via #4576.
* Ethan Pronovost added support for triangular indices functions in #4601 (the
  NumPy functions ``tril_indices``, ``tril_indices_from``, ``triu_indices``, and
  ``triu_indices_from``).
* Gerald Dalley fixed a tear down race occurring in Python 2.
* Gregory R. Lee fixed the use of deprecated ``inspect.getargspec``.
* Guilherme Leobas contributed five PRs, adding support for ``np.append`` and
  ``np.count_nonzero`` in #4518 and #4386. The typed List was fixed to accept
  unsigned integers in #4510. #4463 made a fix to NamedTuple internals and #4397
  updated the docs for ``np.sum``.
* James Bourbeau added a new feature to permit the automatic application of the
  `jit` decorator to a whole module in #4331. Also some small fixes to the docs
  and the code base were made in #4447 and #4433, and a fix to inplace array
  operation in #4228.
* Jim Crist fixed a bug in the rendering of patched errors in #4464.
* Leo Fang updated the CUDA Array Interface contract in #4609.
* Pearu Peterson added support for Unicode based NumPy arrays in #4425.
* Peter Andreas Entschev fixed a CUDA concurrency bug in #4581.
* Lucio Fernandez-Arjona extended Numba's ``np.sum`` support to now accept the
  ``dtype`` kwarg in #4472.
* Pedro A. Morales Maries added support for ``np.cross`` in #4128 and also added
  the necessary extension ``numba.numpy_extensions.cross2d`` in #4595.
* David Hoese, Eric Firing, Joshua Adelman, and Juan Nunez-Iglesias all made
  documentation fixes in #4565, #4482, #4455, #4375 respectively.
* Vyacheslav Smirnov and Rujal Desai enabled support for ``count()`` on unicode
  strings in #4606.

General Enhancements:

* PR #4113: Add rewrite for semantic constants.
* PR #4128: Add np.cross support
* PR #4162: Make IR comparable and legalize it.
* PR #4208: R&D inlining, jitted and overloaded.
* PR #4331: Automatic JIT of called functions
* PR #4353: Inspection tool to check what numba supports
* PR #4386: Implement np.count_nonzero
* PR #4425: Unicode array support
* PR #4427: Entrypoints for numba extensions
* PR #4467: Literal dispatch
* PR #4472: Allow dtype input argument in np.sum
* PR #4513: New compiler.
* PR #4518: add support for np.append
* PR #4554: Refactor NRT C-API
* PR #4556: 0.46 scheduled deprecations
* PR #4567: Add env var to disable performance warnings.
* PR #4568: add np.array_equal support
* PR #4595: Implement numba.cross2d
* PR #4601: Add triangular indices functions
* PR #4606: Enable support for count() method for unicode string

Fixes:

* PR #4228: Fix inplace operator error for arrays
* PR #4282: Detect and raise unsupported on generator expressions
* PR #4305: Don't allow the allocation of mutable objects written into a
  container to be hoisted.
* PR #4311: Avoid deprecated use of inspect.getargspec
* PR #4328:  Replace GC macro with function call
* PR #4330: Loosen up typed container casting checks
* PR #4341: Fix some coding lines at the top of some files (utf8 -> utf-8)
* PR #4345: Replace "import \*" with explicit imports in numba/types
* PR #4346: Fix incorrect alg in isupper for ascii strings.
* PR #4349: test using jitclass in typed-list
* PR #4361: Add allocation hoisting info to LICM section at diagnostic L4
* PR #4366: Offset search box to avoid wrapping on some pages with Safari.
  Fixes #4365.
* PR #4372: Replace all "except BaseException" with "except Exception".
* PR #4407: Restore the "free" conda channel for NumPy 1.10 support.
* PR #4408: Add lowering for constant bytes.
* PR #4409: Add exception chaining for better error context
* PR #4411: Name of type should not contain user facing description for debug.
* PR #4412: Fix #4387. Limit the number of return types for recursive functions
* PR #4426: Fixed two module teardown races in py2.
* PR #4431: Fix and test numpy.random.random_sample(n) for np117
* PR #4463: NamedTuple - Raises an error on non-iterable elements
* PR #4464: Add a newline in patched errors
* PR #4474: Fix liveness for remove dead of parfors (and other IR extensions)
* PR #4510: Make List.__getitem__ accept unsigned parameters
* PR #4512: Raise specific error at typing time for iteration on >1D array.
* PR #4532: Fix static_getitem with Literal type as index
* PR #4547: Update to inliner cost model information.
* PR #4557: Use specific random number seed when generating arbitrary test data
* PR #4559: Adjust test timeouts
* PR #4564: Skip unicode array tests on ppc64le that trigger an LLVM bug
* PR #4621: Fix packaging issue due to missing numba/cext
* PR #4623: Fix issue 4520 due to storage model mismatch
* PR #4644: Updates for llvmlite 0.30.0

CUDA Enhancements/Fixes:

* PR #4410: Fix #4111. cudasim mishandling recarray
* PR #4576: Replace use of `np.prod` with `functools.reduce` for computing size
  from shape
* PR #4581: Prevent taking the GIL in ForAll
* PR #4592: Fix #4589.  Just pass NULL for b2d_func for constant dynamic
  sharedmem
* PR #4609: Update CUDA Array Interface & Enforce Numba compliance
* PR #4619: Implement math.{degrees, radians} for the CUDA target.
* PR #4675: Bump cuda array interface to version 2

Documentation Updates:

* PR #4317: Add docs for ARMv8/AArch64
* PR #4318: Add supported platforms to the docs.  Closes #4316
* PR #4375: Add docstrings to inspect methods
* PR #4388: Update Python 2.7 EOL statement
* PR #4397: Add note about np.sum
* PR #4447: Minor parallel performance tips edits
* PR #4455: Clarify docs for typed dict with regard to arrays
* PR #4482: Fix example in guvectorize docstring.
* PR #4541: fix two typos in architecture.rst
* PR #4548: Document numba.extending.intrinsic and inlining.
* PR #4565: Fix typo in jit-compilation docs
* PR #4607: add dependency list to docs
* PR #4614: Add documentation for implementing new compiler passes.

CI Updates:

* PR #4415: Make 32bit incremental builds on linux not use free channel
* PR #4433: Removes stale azure comment
* PR #4493: Fix Overload Inliner wrt CUDA Intrinsics
* PR #4593: Enable Azure CI batching

Contributors:

* Aaron Meurer
* Ashwin Srinath
* David Hoese
* Ehsan Totoni (core dev)
* Eric Firing
* Ethan Pronovost
* Gerald Dalley
* Gregory R. Lee
* Guilherme Leobas
* James Bourbeau
* Jim Crist
* Joshua Adelman
* Juan Nunez-Iglesias
* Leo Fang
* Lucio Fernandez-Arjona
* Pearu Peterson
* Pedro A. Morales Marie
* Peter Andreas Entschev
* Rujal Desai
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)
* Vyacheslav Smirnov


Version 0.45.1
--------------

This patch release addresses some regressions reported in the 0.45.0 release and
adds support for NumPy 1.17:

* PR #4325: accept scalar/0d-arrays
* PR #4338: Fix #4299. Parfors reduction vars not deleted.
* PR #4350: Use process level locks for fork() only.
* PR #4354: Try to fix #4352.
* PR #4357: Fix np1.17 isnan, isinf, isfinite ufuncs
* PR #4363: Fix np.interp for np1.17 nan handling
* PR #4371: Fix nump1.17 random function non-aliasing

Contributors:

* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)
* Valentin Haenel (core dev)


Version 0.45.0
--------------

In this release, Numba gained an experimental :ref:`numba.typed.List
<feature-typed-list>` container as a future replacement of the :ref:`reflected
list <feature-reflected-list>`. In addition, functions decorated with
``parallel=True`` can now be cached to reduce compilation overhead associated
with the auto-parallelization.


Enhancements from user contributed PRs (with thanks!):

* James Bourbeau added the Numba version to reportable error messages in #4227,
  added the ``signature`` parameter to ``inspect_types`` in #4200, improved the
  docstring of ``normalize_signature`` in #4205, and fixed #3658 by adding
  reference counting to ``register_dispatcher`` in #4254

* Guilherme Leobas implemented the dominator tree and dominance frontier
  algorithms in #4216 and #4149, respectively.

* Nick White fixed the issue with ``round`` in the CUDA target in #4137.

* Joshua Adelman added support for determining if a value is in a `range`
  (i.e.  ``x in range(...)``) in #4129, and added windowing functions
  (``np.bartlett``, ``np.hamming``, ``np.blackman``, ``np.hanning``,
  ``np.kaiser``) from NumPy in #4076.

* Lucio Fernandez-Arjona added support for ``np.select`` in #4077

* Rob Ennis added support for ``np.flatnonzero`` in #4157

* Keith Kraus extended the ``__cuda_array_interface__`` with an optional mask
  attribute in #4199.

* Gregory R. Lee replaced deprecated use of ``inspect.getargspec`` in #4311.


General Enhancements:

* PR #4328: Replace GC macro with function call
* PR #4311: Avoid deprecated use of inspect.getargspec
* PR #4296: Slacken window function testing tol on ppc64le
* PR #4254: Add reference counting to register_dispatcher
* PR #4239: Support len() of multi-dim arrays in array analysis
* PR #4234: Raise informative error for np.kron array order
* PR #4232: Add unicodetype db, low level str functions and examples.
* PR #4229: Make hashing cacheable
* PR #4227: Include numba version in reportable error message
* PR #4216: Add dominator tree
* PR #4200: Add signature parameter to inspect_types
* PR #4196: Catch missing imports of internal functions.
* PR #4180: Update use of unlowerable global message.
* PR #4166: Add tests for PR #4149
* PR #4157: Support for np.flatnonzero
* PR #4149: Implement dominance frontier for SSA for the Numba IR
* PR #4148: Call branch pruning in inline_closure_call()
* PR #4132: Reduce usage of inttoptr
* PR #4129: Support contains for range
* PR #4112: better error messages for np.transpose and tuples
* PR #4110: Add range attrs, start, stop, step
* PR #4077: Add np select
* PR #4076: Add numpy windowing functions support (np.bartlett, np.hamming,
  np.blackman, np.hanning, np.kaiser)
* PR #4095: Support ir.Global/FreeVar in find_const()
* PR #3691: Make TypingError abort compiling earlier
* PR #3646: Log internal errors encountered in typeinfer

Fixes:

* PR #4303: Work around scipy bug 10206
* PR #4302: Fix flake8 issue on master
* PR #4301: Fix integer literal bug in np.select impl
* PR #4291: Fix pickling of jitclass type
* PR #4262: Resolves #4251 - Fix bug in reshape analysis.
* PR #4233: Fixes issue revealed by #4215
* PR #4224: Fix #4223. Looplifting error due to StaticSetItem in objectmode
* PR #4222: Fix bad python path.
* PR #4178: Fix unary operator overload, check with unicode impl
* PR #4173: Fix return type in np.bincount with weights
* PR #4153: Fix slice shape assignment in array analysis
* PR #4152: fix status check in dict lookup
* PR #4145: Use callable instead of checking __module__
* PR #4118: Fix inline assembly support on CPU.
* PR #4088: Resolves #4075 - parfors array_analysis bug.
* PR #4085: Resolves #3314 - parfors array_analysis bug with reshape.

CUDA Enhancements/Fixes:

* PR #4199: Extend `__cuda_array_interface__` with optional mask attribute,
  bump version to 1
* PR #4137: CUDA - Fix round Builtin
* PR #4114: Support 3rd party activated CUDA context

Documentation Updates:

* PR #4317: Add docs for ARMv8/AArch64
* PR #4318: Add supported platforms to the docs. Closes #4316
* PR #4295: Alter deprecation schedules
* PR #4253: fix typo in pysupported docs
* PR #4252: fix typo on repomap
* PR #4241: remove unused import
* PR #4240: fix typo in jitclass docs
* PR #4205: Update return value order in normalize_signature docstring
* PR #4237: Update doc links to point to latest not dev docs.
* PR #4197: hyperlink repomap
* PR #4170: Clarify docs on accumulating into arrays in prange
* PR #4147: fix docstring for DictType iterables
* PR #3951: A guide to overloading

CI Updates:

* PR #4300: AArch64 has no faulthandler package
* PR #4273: pin to MKL BLAS for testing to get consistent results
* PR #4209: Revert previous network tol patch and try with conda config
* PR #4138: Remove tbb before Azure test only on Python 3, since it was already
  removed for Python 2

Contributors:

* Ehsan Totoni (core dev)
* Gregory R. Lee
* Guilherme Leobas
* James Bourbeau
* Joshua L. Adelman
* Keith Kraus
* Lucio Fernandez-Arjona
* Nick White
* Rob Ennis
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)


Version 0.44.1
--------------

This patch release addresses some regressions reported in the 0.44.0 release:

- PR #4165: Fix #4164 issue with NUMBAPRO_NVVM.
- PR #4172: Abandon branch pruning if an arg name is redefined. (Fixes #4163)
- PR #4183: Fix #4156. Problem with defining in-loop variables.


Version 0.44.0
--------------

IMPORTANT: In this release a few significant deprecations (and some less
significant ones) are being made, users are encouraged to read the related
documentation.

General enhancements in this release include:

- Numba is backed by LLVM 8 on all platforms apart from ppc64le, which, due to
  bugs, remains on the LLVM 7.x series.
- Numba's dictionary support now includes type inference for keys and values.
- The .view() method now works for NumPy scalar types.
- Newly supported NumPy functions added: np.delete, np.nanquantile, np.quantile,
  np.repeat, np.shape.

In addition considerable effort has been made to fix some long standing bugs and
a large number of other bugs, the "Fixes" section is very large this time!

Enhancements from user contributed PRs (with thanks!):

- Max Bolingbroke added support for the selective use of ``fastmath`` flags in
  #3847.
- Rob Ennis made min() and max() work on iterables in #3820 and added
  np.quantile and np.nanquantile in #3899.
- Sergey Shalnov added numerous unicode string related features, zfill in #3978,
  ljust in #4001, rjust and center in #4044 and strip, lstrip and rstrip in
  #4048.
- Guilherme Leobas added support for np.delete in #3890
- Christoph Deil exposed the Numba CLI via ``python -m numba`` in #4066 and made
  numerous documentation fixes.
- Leo Schwarz wrote the bulk of the code for jitclass default constructor
  arguments in #3852.
- Nick White enhanced the CUDA backend to use min/max PTX instructions where
  possible in #4054.
- Lucio Fernandez-Arjona implemented the unicode string ``__mul__`` function in
  #3952.
- Dimitri Vorona wrote the bulk of the code to implement getitem and setitem for
  jitclass in #3861.

General Enhancements:

* PR #3820: Min max on iterables
* PR #3842: Unicode type iteration
* PR #3847: Allow fine-grained control of fastmath flags to partially address #2923
* PR #3852: Continuation of PR #2894
* PR #3861: Continuation of PR #3730
* PR #3890: Add support for np.delete
* PR #3899: Support for np.quantile and np.nanquantile
* PR #3900: Fix 3457 :: Implements np.repeat
* PR #3928: Add .view() method for NumPy scalars
* PR #3939: Update icc_rt clone recipe.
* PR #3952: __mul__ for strings, initial implementation and tests
* PR #3956: Type-inferred dictionary
* PR #3959: Create a view for string slicing to avoid extra allocations
* PR #3978: zfill operation implementation
* PR #4001: ljust operation implementation
* PR #4010: Support `dict()` and `{}`
* PR #4022: Support for llvm 8
* PR #4034: Make type.Optional str more representative
* PR #4041: Deprecation warnings
* PR #4044: rjust and center operations implementation
* PR #4048: strip, lstrip and rstrip operations implementation
* PR #4066: Expose numba CLI via python -m numba
* PR #4081: Impl `np.shape` and support function for `asarray`.
* PR #4091: Deprecate the use of iternext_impl without RefType

CUDA Enhancements/Fixes:

* PR #3933: Adds `.nbytes` property to CUDA device array objects.
* PR #4011: Add .inspect_ptx() to cuda device function
* PR #4054: CUDA: Use min/max PTX Instructions
* PR #4096: Update env-vars for CUDA libraries lookup

Documentation Updates:

* PR #3867: Code repository map
* PR #3918: adding Joris' Fosdem 2019 presentation
* PR #3926: order talks on applications of Numba by date
* PR #3943: fix two small typos in vectorize docs
* PR #3944: Fixup jitclass docs
* PR #3990: mention preprint repo in FAQ. Fixes #3981
* PR #4012: Correct runtests command in contributing.rst
* PR #4043: fix typo
* PR #4047: Ambiguous Documentation fix for guvectorize.
* PR #4060: Remove remaining mentions of autojit in docs
* PR #4063: Fix annotate example in docstring
* PR #4065: Add FAQ entry explaining Numba project name
* PR #4079: Add Documentation for atomicity of typed.Dict
* PR #4105: Remove info about CUDA ENVVAR potential replacement

Fixes:

* PR #3719: Resolves issue #3528.  Adds support for slices when not using parallel=True.
* PR #3727: Remove dels for known dead vars.
* PR #3845: Fix mutable flag transmission in .astype
* PR #3853: Fix some minor issues in the C source.
* PR #3862: Correct boolean reinterpretation of data
* PR #3863: Comments out the appveyor badge
* PR #3869: fixes flake8 after merge
* PR #3871: Add assert to ir.py to help enforce correct structuring
* PR #3881: fix preparfor dtype transform for datetime64
* PR #3884: Prevent mutation of objmode fallback IR.
* PR #3885: Updates for llvmlite 0.29
* PR #3886: Use `safe_load` from pyyaml.
* PR #3887: Add tolerance to network errors by permitting conda to retry
* PR #3893: Fix casting in namedtuple ctor.
* PR #3894: Fix array inliner for multiple array definition.
* PR #3905: Cherrypick #3903 to main
* PR #3920: Raise better error if unsupported jump opcode found.
* PR #3927: Apply flake8 to the numpy related files
* PR #3935: Silence DeprecationWarning
* PR #3938: Better error message for unknown opcode
* PR #3941: Fix typing of ufuncs in parfor conversion
* PR #3946: Return variable renaming dict from inline_closurecall
* PR #3962: Fix bug in alignment computation of `Record.make_c_struct`
* PR #3967: Fix error with pickling unicode
* PR #3964: Unicode split algo versioning
* PR #3975: Add handler for unknown locale to numba -s
* PR #3991: Permit Optionals in ufunc machinery
* PR #3995: Remove assert in type inference causing poor error message.
* PR #3996: add is_ascii flag to UnicodeType
* PR #4009: Prevent zero division error in np.linalg.cond
* PR #4014: Resolves #4007.
* PR #4021: Add a more specific error message for invalid write to a global.
* PR #4023: Fix handling of titles in record dtype
* PR #4024: Do a check if a call is const before saying that an object is multiply defined.
* PR #4027: Fix issue #4020.  Turn off no_cpython_wrapper flag when compiling for…
* PR #4033: [WIP] Fixing wrong dtype of array inside reflected list #4028
* PR #4061: Change IPython cache dir name to numba_cache
* PR #4067: Delete examples/notebooks/LinearRegr.py
* PR #4070: Catch writes to global typed.Dict and raise.
* PR #4078: Check tuple length
* PR #4084: Fix missing incref on optional return None
* PR #4089: Make the warnings fixer flush work for warning comparing on type.
* PR #4094: Fix function definition finding logic for commented def
* PR #4100: Fix alignment check on 32-bit.
* PR #4104: Use PEP 508 compliant env markers for install deps

Contributors:

* Benjamin Zaitlen
* Christoph Deil
* David Hirschfeld
* Dimitri Vorona
* Ehsan Totoni (core dev)
* Guilherme Leobas
* Leo Schwarz
* Lucio Fernandez-Arjona
* Max Bolingbroke
* NanduTej
* Nick White
* Ravi Teja Gutta
* Rob Ennis
* Sergey Shalnov
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)
* Valentin Haenel (core dev)


Version 0.43.1
--------------

This is a bugfix release that provides minor changes to fix: a bug in branch
pruning, bugs in `np.interp` functionality, and also fully accommodate the
NumPy 1.16 release series.

* PR #3826: NumPy 1.16 support
* PR #3850: Refactor np.interp
* PR #3883: Rewrite pruned conditionals as their evaluated constants.

Contributors:

* Rob Ennis
* Siu Kwan Lam (core dev)
* Stuart Archibald (core dev)


Version 0.43.0
--------------

In this release, the major new features are:

- Initial support for statically typed dictionaries
- Improvements to `hash()` to match Python 3 behavior
- Support for the heapq module
- Ability to pass C structs to Numba
- More NumPy functions: asarray, trapz, roll, ptp, extract


NOTE:

The vast majority of NumPy 1.16 behaviour is supported, however
``datetime`` and ``timedelta`` use involving ``NaT`` matches the behaviour
present in earlier release. The ufunc suite has not been extending to
accommodate the two new time computation related additions present in NumPy
1.16. In addition the functions ``ediff1d`` and ``interp`` have known minor
issues in replicating outputs exactly when ``NaN``'s occur in certain input
patterns.

General Enhancements:

* PR #3563: Support for np.roll
* PR #3572: Support for np.ptp
* PR #3592: Add dead branch prune before type inference.
* PR #3598: Implement np.asarray()
* PR #3604: Support for np.interp
* PR #3607: Some simplication to lowering
* PR #3612: Exact match flag in dispatcher
* PR #3627: Support for np.trapz
* PR #3630: np.where with broadcasting
* PR #3633: Support for np.extract
* PR #3657: np.max, np.min, np.nanmax, np.nanmin - support for complex dtypes
* PR #3661: Access C Struct as Numpy Structured Array
* PR #3678: Support for str.split and str.join
* PR #3684: Support C array in C struct
* PR #3696: Add intrinsic to help debug refcount
* PR #3703: Implementations of type hashing.
* PR #3715: Port CPython3.7 dictionary for numba internal use
* PR #3716: Support inplace concat of strings
* PR #3718: Add location to ConstantInferenceError exceptions.
* PR #3720: improve error msg about invalid signature
* PR #3731: Support for heapq
* PR #3754: Updates for llvmlite 0.28
* PR #3760: Overloadable operator.setitem
* PR #3775: Support overloading operator.delitem
* PR #3777: Implement compiler support for dictionary
* PR #3791: Implement interpreter-side interface for numba dict
* PR #3799: Support refcount'ed types in numba dict

CUDA Enhancements/Fixes:

* PR #3713: Fix the NvvmSupportError message when CC too low
* PR #3722: Fix #3705: slicing error with negative strides
* PR #3755: Make cuda.to_device accept readonly host array
* PR #3773: Adapt library search to accommodate multiple locations

Documentation Updates:

* PR #3651: fix link to berryconda in docs
* PR #3668: Add Azure Pipelines build badge
* PR #3749: DOC: Clarify when prange is different from range
* PR #3771: fix a few typos
* PR #3785: Clarify use of range as function only.
* PR #3829: Add docs for typed-dict

Fixes:

* PR #3614: Resolve #3586
* PR #3618: Skip gdb tests on ARM.
* PR #3643: Remove support_literals usage
* PR #3645: Enforce and fix that AbstractTemplate.generic must be returning a Signature
* PR #3648: Fail on @overload signature mismatch.
* PR #3660: Added Ignore message to test numba.tests.test_lists.TestLists.test_mul_error
* PR #3662: Replace six with numba.six
* PR #3663: Removes coverage computation from travisci builds
* PR #3672: Avoid leaking memory when iterating over uniform tuple
* PR #3676: Fixes constant string lowering inside tuples
* PR #3677: Ensure all referenced compiled functions are linked properly
* PR #3692: Fix test failure due to overly strict test on floating point values.
* PR #3693: Intercept failed import to help users.
* PR #3694: Fix memory leak in enumerate iterator
* PR #3695: Convert return of None from intrinsic implementation to dummy value
* PR #3697: Fix for issue #3687
* PR #3701: Fix array.T analysis (fixes #3700)
* PR #3704: Fixes for overload_method
* PR #3706: Don't push call vars recursively into nested parfors. Resolves #3686.
* PR #3710: Set as non-hoistable if a mutable variable is passed to a function in a loop. Resolves #3699.
* PR #3712: parallel=True to use better builtin mechanism to resolve call types. Resolves issue #3671
* PR #3725: Fix invalid removal of dead empty list
* PR #3740: add uintp as a valid type to the tuple operator.getitem
* PR #3758: Fix target definition update in inlining
* PR #3782: Raise typing error on yield optional.
* PR #3792: Fix non-module object used as the module of a function.
* PR #3800: Bugfix for np.interp
* PR #3808: Bump macro to include VS2014 to fix py3.5 build
* PR #3809: Add debug guard to debug only C function.
* PR #3816: Fix array.sum(axis) 1d input return type.
* PR #3821: Replace PySys_WriteStdout with PySys_FormatStdout to ensure no truncation.
* PR #3830: Getitem should not return optional type
* PR #3832: Handle single string as path in find_file()

Contributors:

* Ehsan Totoni
* Gryllos Prokopis
* Jonathan J. Helmus
* Kayla Ngan
* lalitparate
* luk-f-a
* Matyt
* Max Bolingbroke
* Michael Seifert
* Rob Ennis
* Siu Kwan Lam
* Stan Seibert
* Stuart Archibald
* Todd A. Anderson
* Tao He
* Valentin Haenel


Version 0.42.1
--------------

Bugfix release to fix the incorrect hash in OSX wheel packages.
No change in source code.


Version 0.42.0
--------------

In this release the major features are:

- The capability to launch and attach the GDB debugger from within a jitted
  function.
- The upgrading of LLVM to version 7.0.0.

We added a draft of the project roadmap to the developer manual. The roadmap is
for informational purposes only as priorities and resources may change.

Here are some enhancements from contributed PRs:

- #3532. Daniel Wennberg improved the ``cuda.{pinned, mapped}`` API so that
  the associated memory is released immediately at the exit of the context
  manager.
- #3531. Dimitri Vorona enabled the inlining of jitclass methods.
- #3516. Simon Perkins added the support for passing numpy dtypes (i.e.
  ``np.dtype("int32")``) and their type constructor (i.e. ``np.int32``) into
  a jitted function.
- #3509. Rob Ennis added support for ``np.corrcoef``.

A regression issue (#3554, #3461) relating to making an empty slice in parallel
mode is resolved by #3558.

General Enhancements:

* PR #3392: Launch and attach gdb directly from Numba.
* PR #3437: Changes to accommodate LLVM 7.0.x
* PR #3509: Support for np.corrcoef
* PR #3516: Typeof dtype values
* PR #3520: Fix @stencil ignoring cval if out kwarg supplied.
* PR #3531: Fix jitclass method inlining and avoid unnecessary increfs
* PR #3538: Avoid future C-level assertion error due to invalid visibility
* PR #3543: Avoid implementation error being hidden by the try-except
* PR #3544: Add `long_running` test flag and feature to exclude tests.
* PR #3549: ParallelAccelerator caching improvements
* PR #3558: Fixes array analysis for inplace binary operators.
* PR #3566: Skip alignment tests on armv7l.
* PR #3567: Fix unifying literal types in namedtuple
* PR #3576: Add special copy routine for NumPy out arrays
* PR #3577: Fix example and docs typos for `objmode` context manager.
  reorder statements.
* PR #3580: Use alias information when determining whether it is safe to
* PR #3583: Use `ir.unknown_loc` for unknown `Loc`, as #3390 with tests
* PR #3587: Fix llvm.memset usage changes in llvm7
* PR #3596: Fix Array Analysis for Global Namedtuples
* PR #3597: Warn users if threading backend init unsafe.
* PR #3605: Add guard for writing to read only arrays from ufunc calls
* PR #3606: Improve the accuracy of error message wording for undefined type.
* PR #3611: gdb test guard needs to ack ptrace permissions
* PR #3616: Skip gdb tests on ARM.

CUDA Enhancements:

* PR #3532: Unregister temporarily pinned host arrays at once
* PR #3552: Handle broadcast arrays correctly in host->device transfer.
* PR #3578: Align cuda and cuda simulator kwarg names.

Documentation Updates:

* PR #3545: Fix @njit description in 5 min guide
* PR #3570: Minor documentation fixes for numba.cuda
* PR #3581: Fixing minor typo in `reference/types.rst`
* PR #3594: Changing `@stencil` docs to correctly reflect `func_or_mode` param
* PR #3617: Draft roadmap as of Dec 2018

Contributors:

* Aaron Critchley
* Daniel Wennberg
* Dimitri Vorona
* Dominik Stańczak
* Ehsan Totoni (core dev)
* Iskander Sharipov
* Rob Ennis
* Simon Muller
* Simon Perkins
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)


Version 0.41.0
--------------

This release adds the following major features:

* Diagnostics showing the optimizations done by ParallelAccelerator
* Support for profiling Numba-compiled functions in Intel VTune
* Additional NumPy functions: partition, nancumsum, nancumprod, ediff1d, cov,
  conj, conjugate, tri, tril, triu
* Initial support for Python 3 Unicode strings

General Enhancements:

* PR #1968: armv7 support
* PR #2983: invert mapping b/w binop operators and the operator module #2297
* PR #3160: First attempt at parallel diagnostics
* PR #3307: Adding NUMBA_ENABLE_PROFILING envvar, enabling jit event
* PR #3320: Support for np.partition
* PR #3324: Support for np.nancumsum and np.nancumprod
* PR #3325: Add location information to exceptions.
* PR #3337: Support for np.ediff1d
* PR #3345: Support for np.cov
* PR #3348: Support user pipeline class in with lifting
* PR #3363: string support
* PR #3373: Improve error message for empty imprecise lists.
* PR #3375: Enable overload(operator.getitem)
* PR #3402: Support negative indexing in tuple.
* PR #3414: Refactor Const type
* PR #3416: Optimized usage of alloca out of the loop
* PR #3424: Updates for llvmlite 0.26
* PR #3462: Add support for `np.conj/np.conjugate`.
* PR #3480: np.tri, np.tril, np.triu - default optional args
* PR #3481: Permit dtype argument as sole kwarg in np.eye

CUDA Enhancements:

* PR #3399: Add max_registers Option to cuda.jit

Continuous Integration / Testing:

* PR #3303: CI with Azure Pipelines
* PR #3309: Workaround race condition with apt
* PR #3371: Fix issues with Azure Pipelines
* PR #3362: Fix #3360: `RuntimeWarning: 'numba.runtests' found in sys.modules`
* PR #3374: Disable openmp in wheel building
* PR #3404: Azure Pipelines templates
* PR #3419: Fix cuda tests and error reporting in test discovery
* PR #3491: Prevent faulthandler installation on armv7l
* PR #3493: Fix CUDA test that used negative indexing behaviour that's fixed.
* PR #3495: Start Flake8 checking of Numba source

Fixes:

* PR #2950: Fix dispatcher to only consider contiguous-ness.
* PR #3124: Fix 3119, raise for 0d arrays in reductions
* PR #3228: Reduce redundant module linking
* PR #3329: Fix AOT on windows.
* PR #3335: Fix memory management of __cuda_array_interface__ views.
* PR #3340: Fix typo in error name.
* PR #3365: Fix the default unboxing logic
* PR #3367: Allow non-global reference to objmode() context-manager
* PR #3381: Fix global reference in objmode for dynamically created function
* PR #3382: CUDA_ERROR_MISALIGNED_ADDRESS Using Multiple Const Arrays
* PR #3384: Correctly handle very old versions of colorama
* PR #3394: Add 32bit package guard for non-32bit installs
* PR #3397: Fix with-objmode warning
* PR #3403 Fix label offset in call inline after parfor pass
* PR #3429: Fixes raising of user defined exceptions for exec(<string>).
* PR #3432: Fix error due to function naming in CI in py2.7
* PR #3444: Fixed TBB's single thread execution and test added for #3440
* PR #3449: Allow matching non-array objects in find_callname()
* PR #3455: Change getiter and iternext to not be pure. Resolves #3425
* PR #3467: Make ir.UndefinedType singleton class.
* PR #3478: Fix np.random.shuffle sideeffect
* PR #3487: Raise unsupported for kwargs given to `print()`
* PR #3488: Remove dead script.
* PR #3498: Fix stencil support for boolean as return type
* PR #3511: Fix handling make_function literals (regression of #3414)
* PR #3514: Add missing unicode != unicode
* PR #3527: Fix complex math sqrt implementation for large -ve values
* PR #3530: This adds arg an check for the pattern supplied to Parfors.
* PR #3536: Sets list dtor linkage to `linkonce_odr` to fix visibility in AOT

Documentation Updates:

* PR #3316: Update 0.40 changelog with additional PRs
* PR #3318: Tweak spacing to avoid search box wrapping onto second line
* PR #3321: Add note about memory leaks with exceptions to docs. Fixes #3263
* PR #3322: Add FAQ on CUDA + fork issue. Fixes #3315.
* PR #3343: Update docs for argsort, kind kwarg partially supported.
* PR #3357: Added mention of njit in 5minguide.rst
* PR #3434: Fix parallel reduction example in docs.
* PR #3452: Fix broken link and mark up problem.
* PR #3484: Size Numba logo in docs in em units. Fixes #3313
* PR #3502: just two typos
* PR #3506: Document string support
* PR #3513: Documentation for parallel diagnostics.
* PR #3526: Fix 5 min guide with respect to @njit decl

Contributors:

* Alex Ford
* Andreas Sodeur
* Anton Malakhov
* Daniel Stender
* Ehsan Totoni (core dev)
* Henry Schreiner
* Marcel Bargull
* Matt Cooper
* Nick White
* Nicolas Hug
* rjenc29
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Todd A. Anderson (core dev)


Version 0.40.1
--------------

This is a PyPI-only patch release to ensure that PyPI wheels can enable the
TBB threading backend, and to disable the OpenMP backend in the wheels.
Limitations of manylinux1 and variation in user environments can cause
segfaults when OpenMP is enabled on wheel builds.  Note that this release has
no functional changes for users who obtained Numba 0.40.0 via conda.

Patches:

* PR #3338: Accidentally left Anton off contributor list for 0.40.0
* PR #3374: Disable OpenMP in wheel building
* PR #3376: Update 0.40.1 changelog and docs on OpenMP backend

Version 0.40.0
--------------

This release adds a number of major features:

* A new GPU backend: kernels for AMD GPUs can now be compiled using the ROCm
  driver on Linux.
* The thread pool implementation used by Numba for automatic multithreading
  is configurable to use TBB, OpenMP, or the old "workqueue" implementation.
  (TBB is likely to become the preferred default in a future release.)
* New documentation on thread and fork-safety with Numba, along with overall
  improvements in thread-safety.
* Experimental support for executing a block of code inside a nopython mode
  function in object mode.
* Parallel loops now allow arrays as reduction variables
* CUDA improvements: FMA, faster float64 atomics on supporting hardware,
  records in const memory, and improved datatime dtype support
* More NumPy functions: vander, tri, triu, tril, fill_diagonal


General Enhancements:

* PR #3017: Add facility to support with-contexts
* PR #3033: Add support for multidimensional CFFI arrays
* PR #3122: Add inliner to object mode pipeline
* PR #3127: Support for reductions on arrays.
* PR #3145: Support for np.fill_diagonal
* PR #3151: Keep a queue of references to last N deserialized functions.  Fixes #3026
* PR #3154: Support use of list() if typeable.
* PR #3166: Objmode with-block
* PR #3179: Updates for llvmlite 0.25
* PR #3181: Support function extension in alias analysis
* PR #3189: Support literal constants in typing of object methods
* PR #3190: Support passing closures as literal values in typing
* PR #3199: Support inferring stencil index as constant in simple unary expressions
* PR #3202: Threading layer backend refactor/rewrite/reinvention!
* PR #3209: Support for np.tri, np.tril and np.triu
* PR #3211: Handle unpacking in building tuple (BUILD_TUPLE_UNPACK opcode)
* PR #3212: Support for np.vander
* PR #3227: Add NumPy 1.15 support
* PR #3272: Add MemInfo_data to runtime._nrt_python.c_helpers
* PR #3273: Refactor. Removing thread-local-storage based context nesting.
* PR #3278: compiler threadsafety lockdown
* PR #3291: Add CPU count and CFS restrictions info to numba -s.

CUDA Enhancements:

* PR #3152: Use cuda driver api to get best blocksize for best occupancy
* PR #3165: Add FMA intrinsic support
* PR #3172: Use float64 add Atomics, Where Available
* PR #3186: Support Records in CUDA Const Memory
* PR #3191: CUDA: fix log size
* PR #3198: Fix GPU datetime timedelta types usage
* PR #3221: Support datetime/timedelta scalar argument to a CUDA kernel.
* PR #3259: Add DeviceNDArray.view method to reinterpret data as a different type.
* PR #3310: Fix IPC handling of sliced cuda array.

ROCm Enhancements:

* PR #3023: Support for AMDGCN/ROCm.
* PR #3108: Add ROC info to `numba -s` output.
* PR #3176: Move ROC vectorize init to npyufunc
* PR #3177: Add auto_synchronize support to ROC stream
* PR #3178: Update ROC target documentation.
* PR #3294: Add compiler lock to ROC compilation path.
* PR #3280: Add wavebits property to the HSA Agent.
* PR #3281: Fix ds_permute types and add tests

Continuous Integration / Testing:

* PR #3091: Remove old recipes, switch to test config based on env var.
* PR #3094: Add higher ULP tolerance for products in complex space.
* PR #3096: Set exit on error in incremental scripts
* PR #3109: Add skip to test needing jinja2 if no jinja2.
* PR #3125: Skip cudasim only tests
* PR #3126: add slack, drop flowdock
* PR #3147: Improve error message for arg type unsupported during typing.
* PR #3128: Fix recipe/build for jetson tx2/ARM
* PR #3167: In build script activate env before installing.
* PR #3180: Add skip to broken test.
* PR #3216: Fix libcuda.so loading in some container setup
* PR #3224: Switch to new Gitter notification webhook URL and encrypt it
* PR #3235: Add 32bit Travis CI jobs
* PR #3257: This adds scipy/ipython back into windows conda test phase.

Fixes:

* PR #3038: Fix random integer generation to match results from NumPy.
* PR #3045: Fix #3027 - Numba reassigns sys.stdout
* PR #3059: Handler for known LoweringErrors.
* PR #3060: Adjust attribute error for NumPy functions.
* PR #3067: Abort simulator threads on exception in thread block.
* PR #3079: Implement +/-(types.boolean) Fix #2624
* PR #3080: Compute np.var and np.std correctly for complex types.
* PR #3088: Fix #3066 (array.dtype.type in prange)
* PR #3089: Fix invalid ParallelAccelerator hoisting issue.
* PR #3136: Fix #3135 (lowering error)
* PR #3137: Fix for issue3103 (race condition detection)
* PR #3142: Fix Issue #3139 (parfors reuse of reduction variable across prange blocks)
* PR #3148: Remove dead array equal @infer code
* PR #3153: Fix canonicalize_array_math typing for calls with kw args
* PR #3156: Fixes issue with missing pygments in testing and adds guards.
* PR #3168: Py37 bytes output fix.
* PR #3171: Fix #3146.  Fix CFUNCTYPE void* return-type handling
* PR #3193: Fix setitem/getitem resolvers
* PR #3222: Fix #3214.  Mishandling of POP_BLOCK in while True loop.
* PR #3230: Fixes liveness analysis issue in looplifting
* PR #3233: Fix return type difference for 32bit ctypes.c_void_p
* PR #3234: Fix types and layout for `np.where`.
* PR #3237: Fix DeprecationWarning about imp module
* PR #3241: Fix #3225.  Normalize 0nd array to scalar in typing of indexing code.
* PR #3256: Fix #3251: Move imports of ABCs to collections.abc for Python >= 3.3
* PR #3292: Fix issue3279.
* PR #3302: Fix error due to mismatching dtype

Documentation Updates:

* PR #3104: Workaround for #3098 (test_optional_unpack Heisenbug)
* PR #3132: Adds an ~5 minute guide to Numba.
* PR #3194: Fix docs RE: np.random generator fork/thread safety
* PR #3242: Page with Numba talks and tutorial links
* PR #3258: Allow users to choose the type of issue they are reporting.
* PR #3260: Fixed broken link
* PR #3266: Fix cuda pointer ownership problem with user/externally allocated pointer
* PR #3269: Tweak typography with CSS
* PR #3270: Update FAQ for functions passed as arguments
* PR #3274: Update installation instructions
* PR #3275: Note pyobject and voidptr are types in docs
* PR #3288: Do not need to call parallel optimizations "experimental" anymore
* PR #3318: Tweak spacing to avoid search box wrapping onto second line

Contributors:

* Anton Malakhov
* Alex Ford
* Anthony Bisulco
* Ehsan Totoni (core dev)
* Leonard Lausen
* Matthew Petroff
* Nick White
* Ray Donnelly
* rjenc29
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Stuart Reynolds
* Todd A. Anderson (core dev)


Version 0.39.0
--------------

Here are the highlights for the Numba 0.39.0 release.

* This is the first version that supports Python 3.7.
* With help from Intel, we have fixed the issues with SVML support (related
  issues #2938, #2998, #3006).
* List has gained support for containing reference-counted types like NumPy
  arrays and `list`.  Note, list still cannot hold heterogeneous types.
* We have made a significant change to the internal calling-convention,
  which should be transparent to most users, to allow for a future feature that
  will permitting jumping back into python-mode from a nopython-mode function.
  This also fixes a limitation to `print` that disabled its use from nopython
  functions that were deep in the call-stack.
* For CUDA GPU support, we added a `__cuda_array_interface__` following the
  NumPy array interface specification to allow Numba to consume externally
  defined device arrays.  We have opened a corresponding pull request to CuPy to
  test out the concept and be able to use a CuPy GPU array.
* The Numba dispatcher `inspect_types()` method now supports the kwarg `pretty`
  which if set to `True` will produce ANSI/HTML output, showing the annotated
  types, when invoked from ipython/jupyter-notebook respectively.
* The NumPy functions `ndarray.dot`, `np.percentile` and `np.nanpercentile`, and
  `np.unique` are now supported.
* Numba now supports the use of a per-project configuration file to permanently
  set behaviours typically set via `NUMBA_*` family environment variables.
* Support for the `ppc64le` architecture has been added.

Enhancements:

* PR #2793: Simplify and remove javascript from html_annotate templates.
* PR #2840: Support list of refcounted types
* PR #2902: Support for np.unique
* PR #2926: Enable fence for all architecture and add developer notes
* PR #2928: Making error about untyped list more informative.
* PR #2930: Add configuration file and color schemes.
* PR #2932: Fix encoding to 'UTF-8' in `check_output` decode.
* PR #2938: Python 3.7 compat: _Py_Finalizing becomes _Py_IsFinalizing()
* PR #2939: Comprehensive SVML unit test
* PR #2946: Add support for `ndarray.dot` method and tests.
* PR #2953: percentile and nanpercentile
* PR #2957: Add new 3.7 opcode support.
* PR #2963: Improve alias analysis to be more comprehensive
* PR #2984: Support for namedtuples in array analysis
* PR #2986: Fix environment propagation
* PR #2990: Improve function call matching for intrinsics
* PR #3002: Second pass at error rewrites (interpreter errors).
* PR #3004: Add numpy.empty to the list of pure functions.
* PR #3008: Augment SVML detection with llvmlite SVML patch detection.
* PR #3012: Make use of the common spelling of heterogeneous/homogeneous.
* PR #3032: Fix pycc ctypes test due to mismatch in calling-convention
* PR #3039: Add SVML detection to Numba environment diagnostic tool.
* PR #3041: This adds @needs_blas to tests that use BLAS
* PR #3056: Require llvmlite>=0.24.0

CUDA Enhancements:

* PR #2860: __cuda_array_interface__
* PR #2910: More CUDA intrinsics
* PR #2929: Add Flag To Prevent Unneccessary D->H Copies
* PR #3037: Add CUDA IPC support on non-peer-accessible devices

CI Enhancements:

* PR #3021: Update appveyor config.
* PR #3040: Add fault handler to all builds
* PR #3042: Add catchsegv
* PR #3077: Adds optional number of processes for `-m` in testing

Fixes:

* PR #2897: Fix line position of delete statement in numba ir
* PR #2905: Fix for #2862
* PR #3009: Fix optional type returning in recursive call
* PR #3019: workaround and unittest for issue #3016
* PR #3035: [TESTING] Attempt delayed removal of Env
* PR #3048: [WIP] Fix cuda tests failure on buildfarm
* PR #3054: Make test work on 32-bit
* PR #3062: Fix cuda.In freeing devary before the kernel launch
* PR #3073: Workaround #3072
* PR #3076: Avoid ignored exception due to missing globals at interpreter teardown

Documentation Updates:

* PR #2966: Fix syntax in env var docs.
* PR #2967: Fix typo in CUDA kernel layout example.
* PR #2970: Fix docstring copy paste error.

Contributors:

The following people contributed to this release.

* Anton Malakhov
* Ehsan Totoni  (core dev)
* Julia Tatz
* Matthias Bussonnier
* Nick White
* Ray Donnelly
* Siu Kwan Lam  (core dev)
* Stan Seibert  (core dev)
* Stuart Archibald  (core dev)
* Todd A. Anderson  (core dev)
* Rik-de-Kort
* rjenc29


Version 0.38.1
--------------

This is a critical bug fix release addressing:
https://github.com/numba/numba/issues/3006

The bug does not impact users using conda packages from Anaconda or Intel Python
Distribution (but it does impact conda-forge). It does not impact users of pip
using wheels from PyPI.

This only impacts a small number of users where:

 * The ICC runtime (specifically libsvml) is present in the user's environment.
 * The user is using an llvmlite statically linked against a version of LLVM
   that has not been patched with SVML support.
 * The platform is 64-bit.

The release fixes a code generation path that could lead to the production of
incorrect results under the above situation.

Fixes:

* PR #3007: Augment SVML detection with llvmlite SVML patch detection.

Contributors:

The following people contributed to this release.

* Stuart Archibald (core dev)


Version 0.38.0
--------------

Following on from the bug fix focus of the last release, this release swings
back towards the addition of new features and usability improvements based on
community feedback. This release is comparatively large! Three key features/
changes to note are:

 * Numba (via llvmlite) is now backed by LLVM 6.0, general vectorization is
   improved as a result. A significant long standing LLVM bug that was causing
   corruption was also found and fixed.
 * Further considerable improvements in vectorization are made available as
   Numba now supports Intel's short vector math library (SVML).
   Try it out with `conda install -c numba icc_rt`.
 * CUDA 8.0 is now the minimum supported CUDA version.

Other highlights include:

 * Bug fixes to `parallel=True` have enabled more vectorization opportunities
   when using the ParallelAccelerator technology.
 * Much effort has gone into improving error reporting and the general usability
   of Numba. This includes highlighted error messages and performance tips
   documentation. Try it out with `conda install colorama`.
 * A number of new NumPy functions are supported, `np.convolve`, `np.correlate`
   `np.reshape`, `np.transpose`, `np.permutation`, `np.real`, `np.imag`, and
   `np.searchsorted` now supports the`side` kwarg. Further, `np.argsort` now
   supports the `kind` kwarg with `quicksort` and `mergesort` available.
 * The Numba extension API has gained the ability operate more easily with
   functions from Cython modules through the use of
   `numba.extending.get_cython_function_address` to obtain function addresses
   for direct use in `ctypes.CFUNCTYPE`.
 * Numba now allows the passing of jitted functions (and containers of jitted
   functions) as arguments to other jitted functions.
 * The CUDA functionality has gained support for a larger selection of bit
   manipulation intrinsics, also SELP, and has had a number of bugs fixed.
 * Initial work to support the PPC64LE platform has been added, full support is
   however waiting on the LLVM 6.0.1 release as it contains critical patches
   not present in 6.0.0.
   It is hoped that any remaining issues will be fixed in the next release.
 * The capacity for advanced users/compiler engineers to define their own
   compilation pipelines.

Enhancements:

* PR #2660: Support bools from cffi in nopython.
* PR #2741: Enhance error message for undefined variables.
* PR #2744: Add diagnostic error message to test suite discovery failure.
* PR #2748: Added Intel SVML optimizations as opt-out choice working by default
* PR #2762: Support transpose with axes arguments.
* PR #2777: Add support for np.correlate and np.convolve
* PR #2779: Implement np.random.permutation
* PR #2801: Passing jitted functions as args
* PR #2802: Support np.real() and np.imag()
* PR #2807: Expose `import_cython_function`
* PR #2821: Add kwarg 'side' to np.searchsorted
* PR #2822: Adds stable argsort
* PR #2832: Fixups for llvmlite 0.23/llvm 6
* PR #2836: Support `index` method on tuples
* PR #2839: Support for np.transpose and np.reshape.
* PR #2843: Custom pipeline
* PR #2847: Replace signed array access indices in unsiged prange loop body
* PR #2859: Add support for improved error reporting.
* PR #2880: This adds a github issue template.
* PR #2881: Build recipe to clone Intel ICC runtime.
* PR #2882: Update TravisCI to test SVML
* PR #2893: Add reference to the data buffer in array.ctypes object
* PR #2895: Move to CUDA 8.0

Fixes:

* PR #2737: Fix #2007 (part 1). Empty array handling in np.linalg.
* PR #2738: Fix install_requires to allow pip getting pre-release version
* PR #2740: Fix 2208. Generate better error message.
* PR #2765: Fix Bit-ness
* PR #2780: PowerPC reference counting memory fences
* PR #2805: Fix six imports.
* PR #2813: Fix #2812: gufunc scalar output bug.
* PR #2814: Fix the build post #2727
* PR #2831: Attempt to fix #2473
* PR #2842: Fix issue with test discovery and broken CUDA drivers.
* PR #2850: Add rtsys init guard and test.
* PR #2852: Skip vectorization test with targets that are not x86
* PR #2856: Prevent printing to stdout in `test_extending.py`
* PR #2864: Correct C code to prevent compiler warnings.
* PR #2889: Attempt to fix #2386.
* PR #2891: Removed test skipping for inspect_cfg
* PR #2898: Add guard to parallel test on unsupported platforms
* PR #2907: Update change log for PPC64LE LLVM dependency.
* PR #2911: Move build requirement to llvmlite>=0.23.0dev0
* PR #2912: Fix random permutation test.
* PR #2914: Fix MD list syntax in issue template.

Documentation Updates:

* PR #2739: Explicitly state default value of error_model in docstring
* PR #2803: DOC: parallel vectorize requires signatures
* PR #2829: Add Python 2.7 EOL plan to docs
* PR #2838: Use automatic numbering syntax in list.
* PR #2877: Add performance tips documentation.
* PR #2883: Fix #2872: update rng doc about thread/fork-safety
* PR #2908: Add missing link and ref to docs.
* PR #2909: Tiny typo correction

ParallelAccelerator enhancements/fixes:

* PR #2727: Changes to enable vectorization in ParallelAccelerator.
* PR #2816: Array analysis for transpose with arbitrary arguments
* PR #2874: Fix dead code eliminator not to remove a call with side-effect
* PR #2886: Fix ParallelAccelerator arrayexpr repr

CUDA enhancements:

* PR #2734: More Constants From cuda.h
* PR #2767: Add len(..) Support to DeviceNDArray
* PR #2778: Add More Device Array API Functions to CUDA Simulator
* PR #2824: Add CUDA Primitives for Population Count
* PR #2835: Emit selp Instructions to Avoid Branching
* PR #2867: Full support for CUDA device attributes

CUDA fixes:
* PR #2768: Don't Compile Code on Every Assignment
* PR #2878: Fixes a Win64 issue with the test in Pr/2865

Contributors:

The following people contributed to this release.

* Abutalib Aghayev
* Alex Olivas
* Anton Malakhov
* Dong-hee Na
* Ehsan Totoni (core dev)
* John Zwinck
* Josh Wilson
* Kelsey Jordahl
* Nick White
* Olexa Bilaniuk
* Rik-de-Kort
* Siu Kwan Lam (core dev)
* Stan Seibert (core dev)
* Stuart Archibald (core dev)
* Thomas Arildsen
* Todd A. Anderson (core dev)


Version 0.37.0
--------------

This release focuses on bug fixing and stability but also adds a few new
features including support for Numpy 1.14. The key change for Numba core was the
long awaited addition of the final tranche of thread safety improvements that
allow Numba to be run concurrently on multiple threads without hitting known
thread safety issues inside LLVM itself. Further, a number of fixes and
enhancements went into the CUDA implementation and ParallelAccelerator gained
some new features and underwent some internal refactoring.

Misc enhancements:

* PR #2627: Remove hacks to make llvmlite threadsafe
* PR #2672: Add ascontiguousarray
* PR #2678: Add Gitter badge
* PR #2691: Fix #2690: add intrinsic to convert array to tuple
* PR #2703: Test runner feature: failed-first and last-failed
* PR #2708: Patch for issue #1907
* PR #2732: Add support for array.fill

Misc Fixes:

* PR #2610: Fix #2606 lowering of optional.setattr
* PR #2650: Remove skip for win32 cosine test
* PR #2668: Fix empty_like from readonly arrays.
* PR #2682: Fixes 2210, remove _DisableJitWrapper
* PR #2684: Fix #2340, generator error yielding bool
* PR #2693: Add travis-ci testing of NumPy 1.14, and also check on Python 2.7
* PR #2694: Avoid type inference failure due to a typing template rejection
* PR #2695: Update llvmlite version dependency.
* PR #2696: Fix tuple indexing codegeneration for empty tuple
* PR #2698: Fix #2697 by deferring deletion in the simplify_CFG loop.
* PR #2701: Small fix to avoid tempfiles being created in the current directory
* PR #2725: Fix 2481, LLVM IR parsing error due to mutated IR
* PR #2726: Fix #2673: incorrect fork error msg.
* PR #2728: Alternative to #2620.  Remove dead code ByteCodeInst.get.
* PR #2730: Add guard for test needing SciPy/BLAS

Documentation updates:

* PR #2670: Update communication channels
* PR #2671: Add docs about diagnosing loop vectorizer
* PR #2683: Add docs on const arg requirements and on const mem alloc
* PR #2722: Add docs on numpy support in cuda
* PR #2724: Update doc: warning about unsupported arguments

ParallelAccelerator enhancements/fixes:

Parallel support for `np.arange` and `np.linspace`, also `np.mean`, `np.std`
and `np.var` are added. This was performed as part of a general refactor and
cleanup of the core ParallelAccelerator code.

* PR #2674: Core pa
* PR #2704: Generate Dels after parfor sequential lowering
* PR #2716: Handle matching directly supported functions

CUDA enhancements:

* PR #2665: CUDA DeviceNDArray: Support numpy tranpose API
* PR #2681: Allow Assigning to DeviceNDArrays
* PR #2702: Make DummyArray do High Dimensional Reshapes
* PR #2714: Use CFFI to Reuse Code

CUDA fixes:

* PR #2667: Fix CUDA DeviceNDArray slicing
* PR #2686: Fix #2663: incorrect offset when indexing cuda array.
* PR #2687: Ensure Constructed Stream Bound
* PR #2706: Workaround for unexpected warp divergence due to exception raising
  code
* PR #2707: Fix regression: cuda test submodules not loading properly in
  runtests
* PR #2731: Use more challenging values in slice tests.
* PR #2720: A quick testsuite fix to not run the new cuda testcase in the
  multiprocess pool

Contributors:

The following people contributed to this release.

* Coutinho Menezes Nilo
* Daniel
* Ehsan Totoni
* Nick White
* Paul H. Liu
* Siu Kwan Lam
* Stan Seibert
* Stuart Archibald
* Todd A. Anderson


Version 0.36.2
--------------

This is a bugfix release that provides minor changes to address:

* PR #2645: Avoid CPython bug with ``exec`` in older 2.7.x.
* PR #2652: Add support for CUDA 9.


Version 0.36.1
--------------

This release continues to add new features to the work undertaken in partnership
with Intel on ParallelAccelerator technology. Other changes of note include the
compilation chain being updated to use LLVM 5.0 and the production of conda
packages using conda-build 3 and the new compilers that ship with it.

NOTE: A version 0.36.0 was tagged for internal use but not released.

ParallelAccelerator:

NOTE: The ParallelAccelerator technology is under active development and should
be considered experimental.

New features relating to ParallelAccelerator, from work undertaken with Intel,
include the addition of the `@stencil` decorator for ease of implementation of
stencil-like computations, support for general reductions, and slice and
range fusion for parallel slice/bit-array assignments. Documentation on both the
use and implementation of the above has been added. Further, a new debug
environment variable `NUMBA_DEBUG_ARRAY_OPT_STATS` is made available to give
information about which operators/calls are converted to parallel for-loops.

ParallelAccelerator features:

* PR #2457: Stencil Computations in ParallelAccelerator
* PR #2548: Slice and range fusion, parallelizing bitarray and slice assignment
* PR #2516: Support general reductions in ParallelAccelerator

ParallelAccelerator fixes:

* PR #2540: Fix bug #2537
* PR #2566: Fix issue #2564.
* PR #2599: Fix nested multi-dimensional parfor type inference issue
* PR #2604: Fixes for stencil tests and cmath sin().
* PR #2605: Fixes issue #2603.

Additional features of note:

This release of Numba (and llvmlite) is updated to use LLVM version 5.0 as the
compiler back end, the main change to Numba to support this was the addition of
a custom symbol tracker to avoid the calls to LLVM's `ExecutionEngine` that was
crashing when asking for non-existent symbol addresses. Further, the conda
packages for this release of Numba are built using conda build version 3 and the
new compilers/recipe grammar that are present in that release.

* PR #2568: Update for LLVM 5
* PR #2607: Fixes abort when getting address to "nrt_unresolved_abort"
* PR #2615: Working towards conda build 3

Thanks to community feedback and bug reports, the following fixes were also
made.

Misc fixes/enhancements:

* PR #2534: Add tuple support to np.take.
* PR #2551: Rebranding fix
* PR #2552: relative doc links
* PR #2570: Fix issue #2561, handle missing successor on loop exit
* PR #2588: Fix #2555. Disable libpython.so linking on linux
* PR #2601: Update llvmlite version dependency.
* PR #2608: Fix potential cache file collision
* PR #2612: Fix NRT test failure due to increased overhead when running in coverage
* PR #2619: Fix dubious pthread_cond_signal not in lock
* PR #2622: Fix `np.nanmedian` for all NaN case.
* PR #2633: Fix markdown in CONTRIBUTING.md
* PR #2635: Make the dependency on compilers for AOT optional.

CUDA support fixes:

* PR #2523: Fix invalid cuda context in memory transfer calls in another thread
* PR #2575: Use CPU to initialize xoroshiro states for GPU RNG. Fixes #2573
* PR #2581: Fix cuda gufunc mishandling of scalar arg as array and out argument


Version 0.35.0
--------------

This release includes some exciting new features as part of the work
performed in partnership with Intel on ParallelAccelerator technology.
There are also some additions made to Numpy support and small but
significant fixes made as a result of considerable effort spent chasing bugs
and implementing stability improvements.


ParallelAccelerator:

NOTE: The ParallelAccelerator technology is under active development and should
be considered experimental.

New features relating to ParallelAccelerator, from work undertaken with Intel,
include support for a larger range of `np.random` functions in `parallel`
mode, printing Numpy arrays in no Python mode, the capacity to initialize Numpy
arrays directly from list comprehensions, and the axis argument to `.sum()`.
Documentation on the ParallelAccelerator technology implementation has also
been added. Further, a large amount of work on equivalence relations was
undertaken to enable runtime checks of broadcasting behaviours in parallel mode.

ParallelAccelerator features:

* PR #2400: Array comprehension
* PR #2405: Support printing Numpy arrays
* PR #2438: from Support more np.random functions in ParallelAccelerator
* PR #2482: Support for sum with axis in nopython mode.
* PR #2487: Adding developer documentation for ParallelAccelerator technology.
* PR #2492: Core PA refactor adds assertions for broadcast semantics

ParallelAccelerator fixes:

* PR #2478: Rename cfg before parfor translation (#2477)
* PR #2479: Fix broken array comprehension tests on unsupported platforms
* PR #2484: Fix array comprehension test on win64
* PR #2506: Fix for 32-bit machines.


Additional features of note:

Support for `np.take`, `np.finfo`, `np.iinfo` and `np.MachAr` in no Python
mode is added. Further, three new environment variables are added, two for
overriding CPU target/features and another to warn if `parallel=True` was set
no such transform was possible.

* PR #2490: Implement np.take and ndarray.take
* PR #2493: Display a warning if parallel=True is set but not possible.
* PR #2513: Add np.MachAr, np.finfo, np.iinfo
* PR #2515: Allow environ overriding of cpu target and cpu features.


Due to expansion of the test farm and a focus on fixing bugs, the following
fixes were also made.

Misc fixes/enhancements:

* PR #2455: add contextual information to runtime errors
* PR #2470: Fixes #2458, poor performance in np.median
* PR #2471: Ensure LLVM threadsafety in {g,}ufunc building.
* PR #2494: Update doc theme
* PR #2503: Remove hacky code added in 2482 and feature enhancement
* PR #2505: Serialise env mutation tests during multithreaded testing.
* PR #2520: Fix failing cpu-target override tests

CUDA support fixes:

* PR #2504: Enable CUDA toolkit version testing
* PR #2509: Disable tests generating code unavailable in lower CC versions.
* PR #2511: Fix Windows 64 bit CUDA tests.


Version 0.34.0
--------------

This release adds a significant set of new features arising from combined work
with Intel on ParallelAccelerator technology. It also adds list comprehension
and closure support, support for Numpy 1.13 and a new, faster, CUDA reduction
algorithm. For Linux users this release is the first to be built on Centos 6,
which will be the new base platform for future releases. Finally a number of
thread-safety, type inference and other smaller enhancements and bugs have been
fixed.


ParallelAccelerator features:

NOTE: The ParallelAccelerator technology is under active development and should
be considered experimental.

The ParallelAccelerator technology is accessed via a new "nopython" mode option
"parallel". The ParallelAccelerator technology attempts to identify operations
which have parallel semantics (for instance adding a scalar to a vector), fuse
together adjacent such operations, and then parallelize their execution across
a number of CPU cores. This is essentially auto-parallelization.

In addition to the auto-parallelization feature, explicit loop based
parallelism is made available through the use of `prange` in place of `range`
as a loop iterator.

More information and examples on both auto-parallelization and `prange` are
available in the documentation and examples directory respectively.

As part of the necessary work for ParallelAccelerator, support for closures
and list comprehensions is added:

* PR #2318: Transfer ParallelAccelerator technology to Numba
* PR #2379: ParallelAccelerator Core Improvements
* PR #2367: Add support for len(range(...))
* PR #2369: List comprehension
* PR #2391: Explicit Parallel Loop Support (prange)

The ParallelAccelerator features are available on all supported platforms and
Python versions with the exceptions of (with view of supporting in a future
release):

* The combination of Windows operating systems with Python 2.7.
* Systems running 32 bit Python.


CUDA support enhancements:

* PR #2377: New GPU reduction algorithm


CUDA support fixes:

* PR #2397: Fix #2393, always set alignment of cuda static memory regions


Misc Fixes:

* PR #2373, Issue #2372: 32-bit compatibility fix for parfor related code
* PR #2376: Fix #2375 missing stdint.h for py2.7 vc9
* PR #2378: Fix deadlock in parallel gufunc when kernel acquires the GIL.
* PR #2382: Forbid unsafe casting in bitwise operation
* PR #2385: docs: fix Sphinx errors
* PR #2396: Use 64-bit RHS operand for shift
* PR #2404: Fix threadsafety logic issue in ufunc compilation cache.
* PR #2424: Ensure consistent iteration order of blocks for type inference.
* PR #2425: Guard code to prevent the use of 'parallel' on win32 + py27
* PR #2426: Basic test for Enum member type recovery.
* PR #2433: Fix up the parfors tests with respect to windows py2.7
* PR #2442: Skip tests that need BLAS/LAPACK if scipy is not available.
* PR #2444: Add test for invalid array setitem
* PR #2449: Make the runtime initialiser threadsafe
* PR #2452: Skip CFG test on 64bit windows


Misc Enhancements:

* PR #2366: Improvements to IR utils
* PR #2388: Update README.rst to indicate the proper version of LLVM
* PR #2394: Upgrade to llvmlite 0.19.*
* PR #2395: Update llvmlite version to 0.19
* PR #2406: Expose environment object to ufuncs
* PR #2407: Expose environment object to target-context inside lowerer
* PR #2413: Add flags to pass through to conda build for buildbot
* PR #2414: Add cross compile flags to local recipe
* PR #2415: A few cleanups for rewrites
* PR #2418: Add getitem support for Enum classes
* PR #2419: Add support for returning enums in vectorize
* PR #2421: Add copyright notice for Intel contributed files.
* PR #2422: Patch code base to work with np 1.13 release
* PR #2448: Adds in warning message when using 'parallel' if cache=True
* PR #2450: Add test for keyword arg on .sum-like and .cumsum-like array
  methods


Version 0.33.0
--------------

This release resolved several performance issues caused by atomic
reference counting operations inside loop bodies.  New optimization
passes have been added to reduce the impact of these operations.  We
observe speed improvements between 2x-10x in affected programs due to
the removal of unnecessary reference counting operations.

There are also several enhancements to the CUDA GPU support:

* A GPU random number generator based on `xoroshiro128+ algorithm <http://xoroshiro.di.unimi.it/>`_ is added.
  See details and examples in :ref:`documentation <cuda-random>`.
* ``@cuda.jit`` CUDA kernels can now call ``@jit`` and ``@njit``
  CPU functions and they will automatically be compiled as CUDA device
  functions.
* CUDA IPC memory API is exposed for sharing memory between proceses.
  See usage details in :ref:`documentation <cuda-ipc-memory>`.

Reference counting enhancements:

* PR #2346, Issue #2345, #2248: Add extra refcount pruning after inlining
* PR #2349: Fix refct pruning not removing refct op with tail call.
* PR #2352, Issue #2350: Add refcount pruning pass for function that does not need refcount

CUDA support enhancements:

* PR #2023: Supports CUDA IPC for device array
* PR #2343, Issue #2335: Allow CPU jit decorated function to be used as cuda device function
* PR #2347: Add random number generator support for CUDA device code
* PR #2361: Update autotune table for CC: 5.3, 6.0, 6.1, 6.2

Misc fixes:

* PR #2362: Avoid test failure due to typing to int32 on 32-bit platforms
* PR #2359: Fixed nogil example that threw a TypeError when executed.
* PR #2357, Issue #2356: Fix fragile test that depends on how the script is executed.
* PR #2355: Fix cpu dispatcher referenced as attribute of another module
* PR #2354: Fixes an issue with caching when function needs NRT and refcount pruning
* PR #2342, Issue #2339: Add warnings to inspection when it is used on unserialized cached code
* PR #2329, Issue #2250: Better handling of missing op codes

Misc enhancements:

* PR #2360: Adds missing values in error mesasge interp.
* PR #2353: Handle when get_host_cpu_features() raises RuntimeError
* PR #2351: Enable SVML for erf/erfc/gamma/lgamma/log2
* PR #2344: Expose error_model setting in jit decorator
* PR #2337: Align blocking terminate support for fork() with new TBB version
* PR #2336: Bump llvmlite version to 0.18
* PR #2330: Core changes in PR #2318


Version 0.32.0
--------------

In this release, we are upgrading to LLVM 4.0.  A lot of work has been done
to fix many race-condition issues inside LLVM when the compiler is
used concurrently, which is likely when Numba is used with Dask.

Improvements:

* PR #2322: Suppress test error due to unknown but consistent error with tgamma
* PR #2320: Update llvmlite dependency to 0.17
* PR #2308: Add details to error message on why cuda support is disabled.
* PR #2302: Add os x to travis
* PR #2294: Disable remove_module on MCJIT due to memory leak inside LLVM
* PR #2291: Split parallel tests and recycle workers to tame memory usage
* PR #2253: Remove the pointer-stuffing hack for storing meminfos in lists

Fixes:

* PR #2331: Fix a bug in the GPU array indexing
* PR #2326: Fix #2321 docs referring to non-existing function.
* PR #2316: Fixing more race-condition problems
* PR #2315: Fix #2314.  Relax strict type check to allow optional type.
* PR #2310: Fix race condition due to concurrent compilation and cache loading
* PR #2304: Fix intrinsic 1st arg not a typing.Context as stated by the docs.
* PR #2287: Fix int64 atomic min-max
* PR #2286: Fix #2285 `@overload_method` not linking dependent libs
* PR #2303: Missing import statements to interval-example.rst


Version 0.31.0
--------------

In this release, we added preliminary support for debugging with GDB
version >= 7.0. The feature is enabled by setting the ``debug=True`` compiler
option, which causes GDB compatible debug info to be generated.
The CUDA backend also gained limited debugging support so that source locations
are showed in memory-checking and profiling tools.
For details, see :ref:`numba-troubleshooting`.

Also, we added the ``fastmath=True`` compiler option to enable unsafe
floating-point transformations, which allows LLVM to auto-vectorize more code.

Other important changes include upgrading to LLVM 3.9.1 and adding support for
Numpy 1.12.

Improvements:

* PR #2281: Update for numpy1.12
* PR #2278: Add CUDA atomic.{max, min, compare_and_swap}
* PR #2277: Add about section to conda recipies to identify license and other
  metadata in Anaconda Cloud
* PR #2271: Adopt itanium C++-style mangling for CPU and CUDA targets
* PR #2267: Add fastmath flags
* PR #2261: Support dtype.type
* PR #2249: Changes for llvm3.9
* PR #2234: Bump llvmlite requirement to 0.16 and add install_name_tool_fixer to
  mviewbuf for OS X
* PR #2230: Add python3.6 to TravisCi
* PR #2227: Enable caching for gufunc wrapper
* PR #2170: Add debugging support
* PR #2037: inspect_cfg() for easier visualization of the function operation

Fixes:

* PR #2274: Fix nvvm ir patch in mishandling "load"
* PR #2272: Fix breakage to cuda7.5
* PR #2269: Fix caching of copy_strides kernel in cuda.reduce
* PR #2265: Fix #2263: error when linking two modules with dynamic globals
* PR #2252: Fix path separator in test
* PR #2246: Fix overuse of memory in some system with fork
* PR #2241: Fix #2240: __module__ in dynamically created function not a str
* PR #2239: Fix fingerprint computation failure preventing fallback


Version 0.30.1
--------------

This is a bug-fix release to enable Python 3.6 support.  In addition,
there is now early Intel TBB support for parallel ufuncs when building from
source with TBBROOT defined.  The TBB feature is not enabled in our official
builds.

Fixes:

* PR #2232: Fix name clashes with _Py_hashtable_xxx in Python 3.6.

Improvements:

* PR #2217: Add Intel TBB threadpool implementation for parallel ufunc.


Version 0.30.0
--------------

This release adds preliminary support for Python 3.6, but no official build is
available yet.  A new system reporting tool (``numba --sysinfo``) is added to
provide system information to help core developers in replication and debugging.
See below for other improvements and bug fixes.

Improvements:

* PR #2209: Support Python 3.6.
* PR #2175: Support ``np.trace()``, ``np.outer()`` and ``np.kron()``.
* PR #2197: Support ``np.nanprod()``.
* PR #2190: Support caching for ufunc.
* PR #2186: Add system reporting tool.

Fixes:

* PR #2214, Issue #2212: Fix memory error with ndenumerate and flat iterators.
* PR #2206, Issue #2163: Fix ``zip()`` consuming extra elements in early
  exhaustion.
* PR #2185, Issue #2159, #2169: Fix rewrite pass affecting objmode fallback.
* PR #2204, Issue #2178: Fix annotation for liftedloop.
* PR #2203: Fix Appveyor segfault with Python 3.5.
* PR #2202, Issue #2198: Fix target context not initialized when loading from
  ufunc cache.
* PR #2172, Issue #2171: Fix optional type unpacking.
* PR #2189, Issue #2188: Disable freezing of big (>1MB) global arrays.
* PR #2180, Issue #2179: Fix invalid variable version in looplifting.
* PR #2156, Issue #2155: Fix divmod, floordiv segfault on CUDA.


Version 0.29.0
--------------

This release extends the support of recursive functions to include direct and
indirect recursion without explicit function type annotations.  See new example
in `examples/mergesort.py`.  Newly supported numpy features include array
stacking functions, np.linalg.eig* functions, np.linalg.matrix_power, np.roots
and array to array broadcasting in assignments.

This release depends on llvmlite 0.14.0 and supports CUDA 8 but it is not
required.

Improvements:

* PR #2130, #2137: Add type-inferred recursion with docs and examples.
* PR #2134: Add ``np.linalg.matrix_power``.
* PR #2125: Add ``np.roots``.
* PR #2129: Add ``np.linalg.{eigvals,eigh,eigvalsh}``.
* PR #2126: Add array-to-array broadcasting.
* PR #2069: Add hstack and related functions.
* PR #2128: Allow for vectorizing a jitted function. (thanks to @dhirschfeld)
* PR #2117: Update examples and make them test-able.
* PR #2127: Refactor interpreter class and its results.

Fixes:

* PR #2149: Workaround MSVC9.0 SP1 fmod bug kb982107.
* PR #2145, Issue #2009: Fixes kwargs for jitclass ``__init__`` method.
* PR #2150: Fix slowdown in objmode fallback.
* PR #2050, Issue #1259: Fix liveness problem with some generator loops.
* PR #2072, Issue #1995: Right shift of unsigned LHS should be logical.
* PR #2115, Issue #1466: Fix inspect_types() error due to mangled variable name.
* PR #2119, Issue #2118: Fix array type created from record-dtype.
* PR #2122, Issue #1808: Fix returning a generator due to datamodel error.


Version 0.28.1
--------------

This is a bug-fix release to resolve packaging issues with setuptools
dependency.


Version 0.28.0
--------------

Amongst other improvements, this version improves again the level of
support for linear algebra -- functions from the :mod:`numpy.linalg`
module.  Also, our random generator is now guaranteed to be thread-safe
and fork-safe.

Improvements:

* PR #2019: Add the ``@intrinsic`` decorator to define low-level
  subroutines callable from JIT functions (this is considered
  a private API for now).
* PR #2059: Implement ``np.concatenate`` and ``np.stack``.
* PR #2048: Make random generation fork-safe and thread-safe, producing
  independent streams of random numbers for each thread or process.
* PR #2031: Add documentation of floating-point pitfalls.
* Issue #2053: Avoid polling in parallel CPU target (fixes severe performance
  regression on Windows).
* Issue #2029: Make default arguments fast.
* PR #2052: Add logging to the CUDA driver.
* PR #2049: Implement the built-in ``divmod()`` function.
* PR #2036: Implement the ``argsort()`` method on arrays.
* PR #2046: Improving CUDA memory management by deferring deallocations
  until certain thresholds are reached, so as to avoid breaking asynchronous
  execution.
* PR #2040: Switch the CUDA driver implementation to use CUDA's
  "primary context" API.
* PR #2017: Allow ``min(tuple)`` and ``max(tuple)``.
* PR #2039: Reduce fork() detection overhead in CUDA.
* PR #2021: Handle structured dtypes with titles.
* PR #1996: Rewrite looplifting as a transformation on Numba IR.
* PR #2014: Implement ``np.linalg.matrix_rank``.
* PR #2012: Implement ``np.linalg.cond``.
* PR #1985: Rewrite even trivial array expressions, which opens the door
  for other optimizations (for example, ``array ** 2`` can be converted
  into ``array * array``).
* PR #1950: Have ``typeof()`` always raise ValueError on failure.
  Previously, it would either raise or return None, depending on the input.
* PR #1994: Implement ``np.linalg.norm``.
* PR #1987: Implement ``np.linalg.det`` and ``np.linalg.slogdet``.
* Issue #1979: Document integer width inference and how to workaround.
* PR #1938: Numba is now compatible with LLVM 3.8.
* PR #1967: Restrict ``np.linalg`` functions to homogeneous dtypes.  Users
  wanting to pass mixed-typed inputs have to convert explicitly, which
  makes the performance implications more obvious.

Fixes:

* PR #2006: ``array(float32) ** int`` should return ``array(float32)``.
* PR #2044: Allow reshaping empty arrays.
* Issue #2051: Fix refcounting issue when concatenating tuples.
* Issue #2000: Make Numpy optional for setup.py, to allow ``pip install``
  to work without Numpy pre-installed.
* PR #1989: Fix assertion in ``Dispatcher.disable_compile()``.
* Issue #2028: Ignore filesystem errors when caching from multiple processes.
* Issue #2003: Allow unicode variable and function names (on Python 3).
* Issue #1998: Fix deadlock in parallel ufuncs that reacquire the GIL.
* PR #1997: Fix random crashes when AOT compiling on certain Windows platforms.
* Issue #1988: Propagate jitclass docstring.
* Issue #1933: Ensure array constants are emitted with the right alignment.


Version 0.27.0
--------------

Improvements:

* Issue #1976: improve error message when non-integral dimensions are given
  to a CUDA kernel.
* PR #1970: Optimize the power operator with a static exponent.
* PR #1710: Improve contextual information for compiler errors.
* PR #1961: Support printing constant strings.
* PR #1959: Support more types in the print() function.
* PR #1823: Support ``compute_50`` in CUDA backend.
* PR #1955: Support ``np.linalg.pinv``.
* PR #1896: Improve the ``SmartArray`` API.
* PR #1947: Support ``np.linalg.solve``.
* Issue #1943: Improve error message when an argument fails typing.4
* PR #1927: Support ``np.linalg.lstsq``.
* PR #1934: Use system functions for hypot() where possible, instead of our
  own implementation.
* PR #1929: Add cffi support to ``@cfunc`` objects.
* PR #1932: Add user-controllable thread pool limits for parallel CPU target.
* PR #1928: Support self-recursion when the signature is explicit.
* PR #1890: List all lowering implementations in the developer docs.
* Issue #1884: Support ``np.lib.stride_tricks.as_strided()``.

Fixes:

* Issue #1960: Fix sliced assignment when source and destination areas are
  overlapping.
* PR #1963: Make CUDA print() atomic.
* PR #1956: Allow 0d array constants.
* Issue #1945: Allow using Numpy ufuncs in AOT compiled code.
* Issue #1916: Fix documentation example for ``@generated_jit``.
* Issue #1926: Fix regression when caching functions in an IPython session.
* Issue #1923: Allow non-intp integer arguments to carray() and farray().
* Issue #1908: Accept non-ASCII unicode docstrings on Python 2.
* Issue #1874: Allow ``del container[key]`` in object mode.
* Issue #1913: Fix set insertion bug when the lookup chain contains deleted
  entries.
* Issue #1911: Allow function annotations on jitclass methods.


Version 0.26.0
--------------

This release adds support for ``cfunc`` decorator for exporting numba jitted
functions to 3rd party API that takes C callbacks.  Most of the overhead of
using jitclasses inside the interpreter are eliminated.  Support for
decompositions in ``numpy.linalg`` are added.  Finally, Numpy 1.11 is
supported.

Improvements:

* PR #1889: Export BLAS and LAPACK wrappers for pycc.
* PR #1888: Faster array power.
* Issue #1867: Allow "out" keyword arg for dufuncs.
* PR #1871: ``carray()`` and ``farray()`` for creating arrays from pointers.
* PR #1855: ``@cfunc`` decorator for exporting as ctypes function.
* PR #1862: Add support for ``numpy.linalg.qr``.
* PR #1851: jitclass support for '_' and '__' prefixed attributes.
* PR #1842: Optimize jitclass in Python interpreter.
* Issue #1837: Fix CUDA simulator issues with device function.
* PR #1839: Add support for decompositions from ``numpy.linalg``.
* PR #1829: Support Python enums.
* PR #1828: Add support for ``numpy.random.rand()``` and
  ``numpy.random.randn()``
* Issue #1825: Use of 0-darray in place of scalar index.
* Issue #1824: Scalar arguments to object mode gufuncs.
* Issue #1813: Let bitwise bool operators return booleans, not integers.
* Issue #1760: Optional arguments in generators.
* PR #1780: Numpy 1.11 support.


Version 0.25.0
--------------

This release adds support for ``set`` objects in nopython mode.  It also
adds support for many missing Numpy features and functions.  It improves
Numba's compatibility and performance when using a distributed execution
framework such as dask, distributed or Spark.  Finally, it removes
compatibility with Python 2.6, Python 3.3 and Numpy 1.6.

Improvements:

* Issue #1800: Add erf(), erfc(), gamma() and lgamma() to CUDA targets.
* PR #1793: Implement more Numpy functions: np.bincount(), np.diff(),
  np.digitize(), np.histogram(), np.searchsorted() as well as NaN-aware
  reduction functions (np.nansum(), np.nanmedian(), etc.)
* PR #1789: Optimize some reduction functions such as np.sum(), np.prod(),
  np.median(), etc.
* PR #1752: Make CUDA features work in dask, distributed and Spark.
* PR #1787: Support np.nditer() for fast multi-array indexing with
  broadcasting.
* PR #1799: Report JIT-compiled functions as regular Python functions
  when profiling (allowing to see the filename and line number where a
  function is defined).
* PR #1782: Support np.any() and np.all().
* Issue #1788: Support the iter() and next() built-in functions.
* PR #1778: Support array.astype().
* Issue #1775: Allow the user to set the target CPU model for AOT compilation.
* PR #1758: Support creating random arrays using the ``size`` parameter
  to the np.random APIs.
* PR #1757: Support len() on array.flat objects.
* PR #1749: Remove Numpy 1.6 compatibility.
* PR #1748: Remove Python 2.6 and 3.3 compatibility.
* PR #1735: Support the ``not in`` operator as well as operator.contains().
* PR #1724: Support homogeneous sets in nopython mode.
* Issue #875: make compilation of array constants faster.

Fixes:

* PR #1795: Fix a massive performance issue when calling Numba functions
  with distributed, Spark or a similar mechanism using serialization.
* Issue #1784: Make jitclasses usable with NUMBA_DISABLE_JIT=1.
* Issue #1786: Allow using linear algebra functions when profiling.
* Issue #1796: Fix np.dot() memory leak on non-contiguous inputs.
* PR #1792: Fix static negative indexing of tuples.
* Issue #1771: Use fallback cache directory when __pycache__ isn't writable,
  such as when user code is installed in a system location.
* Issue #1223: Use Numpy error model in array expressions (e.g. division
  by zero returns ``inf`` or ``nan`` instead of raising an error).
* Issue #1640: Fix np.random.binomial() for large n values.
* Issue #1643: Improve error reporting when passing an invalid spec to
  ``@jitclass``.
* PR #1756: Fix slicing with a negative step and an omitted start.


Version 0.24.0
--------------

This release introduces several major changes, including the ``@generated_jit``
decorator for flexible specializations as with Julia's "``@generated``" macro,
or the SmartArray array wrapper type that allows seamless transfer of array
data between the CPU and the GPU.

This will be the last version to support Python 2.6, Python 3.3 and Numpy 1.6.

Improvements:

* PR #1723: Improve compatibility of JIT functions with the Python profiler.
* PR #1509: Support array.ravel() and array.flatten().
* PR #1676: Add SmartArray type to support transparent data management in
  multiple address spaces (host & GPU).
* PR #1689: Reduce startup overhead of importing Numba.
* PR #1705: Support registration of CFFI types as corresponding to known
  Numba types.
* PR #1686: Document the extension API.
* PR #1698: Improve warnings raised during type inference.
* PR #1697: Support np.dot() and friends on non-contiguous arrays.
* PR #1692: cffi.from_buffer() improvements (allow more pointer types,
  allow non-Numpy buffer objects).
* PR #1648: Add the ``@generated_jit`` decorator.
* PR #1651: Implementation of np.linalg.inv using LAPACK.  Thanks to
  Matthieu Dartiailh.
* PR #1674: Support np.diag().
* PR #1673: Improve error message when looking up an attribute on an
  unknown global.
* Issue #1569: Implement runtime check for the LLVM locale bug.
* PR #1612: Switch to LLVM 3.7 in sync with llvmlite.
* PR #1624: Allow slice assignment of sequence to array.
* PR #1622: Support slicing tuples with a constant slice.

Fixes:

* Issue #1722: Fix returning an optional boolean (bool or None).
* Issue #1734: NRT decref bug when variable is del'ed before being defined,
  leading to a possible memory leak.
* PR #1732: Fix tuple getitem regression for CUDA target.
* PR #1718: Mishandling of optional to optional casting.
* PR #1714: Fix .compile() on a JIT function not respecting ._can_compile.
* Issue #1667: Fix np.angle() on arrays.
* Issue #1690: Fix slicing with an omitted stop and a negative step value.
* PR #1693: Fix gufunc bug in handling scalar formal arg with non-scalar
  input value.
* PR #1683: Fix parallel testing under Windows.
* Issue #1616: Use system-provided versions of C99 math where possible.
* Issue #1652: Reductions of bool arrays (e.g. sum() or mean()) should
  return integers or floats, not bools.
* Issue #1664: Fix regression when indexing a record array with a constant
  index.
* PR #1661: Disable AVX on old Linux kernels.
* Issue #1636: Allow raising an exception looked up on a module.


Version 0.23.1
--------------

This is a bug-fix release to address several regressions introduced
in the 0.23.0 release, and a couple other issues.

Fixes:

* Issue #1645: CUDA ufuncs were broken in 0.23.0.
* Issue #1638: Check tuple sizes when passing a list of tuples.
* Issue #1630: Parallel ufunc would keep eating CPU even after finishing
  under Windows.
* Issue #1628: Fix ctypes and cffi tests under Windows with Python 3.5.
* Issue #1627: Fix xrange() support.
* PR #1611: Rewrite variable liveness analysis.
* Issue #1610: Allow nested calls between explicitly-typed ufuncs.
* Issue #1593: Fix `*args` in object mode.


Version 0.23.0
--------------

This release introduces JIT classes using the new ``@jitclass`` decorator,
allowing user-defined structures for nopython mode.  Other improvements
and bug fixes are listed below.

Improvements:

* PR #1609: Speed up some simple math functions by inlining them
  in their caller
* PR #1571: Implement JIT classes
* PR #1584: Improve typing of array indexing
* PR #1583: Allow printing booleans
* PR #1542: Allow negative values in np.reshape()
* PR #1560: Support vector and matrix dot product, including ``np.dot()``
  and the ``@`` operator in Python 3.5
* PR #1546: Support field lookup on record arrays and scalars (i.e.
  ``array['field']`` in addition to ``array.field``)
* PR #1440: Support the HSA wavebarrier() and activelanepermute_wavewidth()
  intrinsics
* PR #1540: Support np.angle()
* PR #1543: Implement CPU multithreaded gufuncs (target="parallel")
* PR #1551: Allow scalar arguments in np.where(), np.empty_like().
* PR #1516: Add some more examples from NumbaPro
* PR #1517: Support np.sinc()

Fixes:

* Issue #1603: Fix calling a non-cached function from a cached function
* Issue #1594: Ensure a list is homogeneous when unboxing
* Issue #1595: Replace deprecated use of get_pointer_to_function()
* Issue #1586: Allow tests to be run by different users on the same machine
* Issue #1587: Make CudaAPIError picklable
* Issue #1568: Fix using Numba from inside Visual Studio 2015
* Issue #1559: Fix serializing a jit function referring a renamed module
* PR #1508: Let reshape() accept integer argument(s), not just a tuple
* Issue #1545: Improve error checking when unboxing list objects
* Issue #1538: Fix array broadcasting in CUDA gufuncs
* Issue #1526: Fix a reference count handling bug


Version 0.22.1
--------------

This is a bug-fix release to resolve some packaging issues and other
problems found in the 0.22.0 release.

Fixes:

* PR #1515: Include MANIFEST.in in MANIFEST.in so that sdist still works from
  source tar files.
* PR #1518: Fix reference counting bug caused by hidden alias
* PR #1519: Fix erroneous assert when passing nopython=True to guvectorize.
* PR #1521: Fix cuda.test()

Version 0.22.0
--------------

This release features several highlights: Python 3.5 support, Numpy 1.10
support, Ahead-of-Time compilation of extension modules, additional
vectorization features that were previously only available with the
proprietary extension NumbaPro, improvements in array indexing.

Improvements:

* PR #1497: Allow scalar input type instead of size-1 array to @guvectorize
* PR #1480: Add distutils support for AOT compilation
* PR #1460: Create a new API for Ahead-of-Time (AOT) compilation
* PR #1451: Allow passing Python lists to JIT-compiled functions, and
  reflect mutations on function return
* PR #1387: Numpy 1.10 support
* PR #1464: Support cffi.FFI.from_buffer()
* PR #1437: Propagate errors raised from Numba-compiled ufuncs; also,
  let "division by zero" and other math errors produce a warning instead
  of exiting the function early
* PR #1445: Support a subset of fancy indexing
* PR #1454: Support "out-of-line" CFFI modules
* PR #1442: Improve array indexing to support more kinds of basic slicing
* PR #1409: Support explicit CUDA memory fences
* PR #1435: Add support for vectorize() and guvectorize() with HSA
* PR #1432: Implement numpy.nonzero() and numpy.where()
* PR #1416: Add support for vectorize() and guvectorize() with CUDA,
  as originally provided in NumbaPro
* PR #1424: Support in-place array operators
* PR #1414: Python 3.5 support
* PR #1404: Add the parallel ufunc functionality originally provided in
  NumbaPro
* PR #1393: Implement sorting on arrays and lists
* PR #1415: Add functions to estimate the occupancy of a CUDA kernel
* PR #1360: The JIT cache now stores the compiled object code, yielding
  even larger speedups.
* PR #1402: Fixes for the ARMv7 (armv7l) architecture under Linux
* PR #1400: Add the cuda.reduce() decorator originally provided in NumbaPro

Fixes:

* PR #1483: Allow np.empty_like() and friends on non-contiguous arrays
* Issue #1471: Allow caching JIT functions defined in IPython
* PR #1457: Fix flat indexing of boolean arrays
* PR #1421: Allow calling Numpy ufuncs, without an explicit output, on
  non-contiguous arrays
* Issue #1411: Fix crash when unpacking a tuple containing a Numba-allocated array
* Issue #1394: Allow unifying range_state32 and range_state64
* Issue #1373: Fix code generation error on lists of bools


Version 0.21.0
--------------

This release introduces support for AMD's Heterogeneous System Architecture,
which allows memory to be shared directly between the CPU and the GPU.
Other major enhancements are support for lists and the introduction of
an opt-in compilation cache.

Improvements:

* PR #1391: Implement print() for CUDA code
* PR #1366: Implement integer typing enhancement proposal (NBEP 1)
* PR #1380: Support the one-argument type() builtin
* PR #1375: Allow boolean evaluation of lists and tuples
* PR #1371: Support array.view() in CUDA mode
* PR #1369: Support named tuples in nopython mode
* PR #1250: Implement numpy.median().
* PR #1289: Make dispatching faster when calling a JIT-compiled function
  from regular Python
* Issue #1226: Improve performance of integer power
* PR #1321: Document features supported with CUDA
* PR #1345: HSA support
* PR #1343: Support lists in nopython mode
* PR #1356: Make Numba-allocated memory visible to tracemalloc
* PR #1363: Add an environment variable NUMBA_DEBUG_TYPEINFER
* PR #1051: Add an opt-in, per-function compilation cache

Fixes:

* Issue #1372: Some array expressions would fail rewriting when involved
  the same variable more than once, or a unary operator
* Issue #1385: Allow CUDA local arrays to be declared anywhere in a function
* Issue #1285: Support datetime64 and timedelta64 in Numpy reduction functions
* Issue #1332: Handle the EXTENDED_ARG opcode.
* PR #1329: Handle the ``in`` operator in object mode
* Issue #1322: Fix augmented slice assignment on Python 2
* PR #1357: Fix slicing with some negative bounds or step values.


Version 0.20.0
--------------

This release updates Numba to use LLVM 3.6 and CUDA 7 for CUDA support.
Following the platform deprecation in CUDA 7, Numba's CUDA feature is no
longer supported on 32-bit platforms.  The oldest supported version of
Windows is Windows 7.

Improvements:

* Issue #1203: Support indexing ndarray.flat
* PR #1200: Migrate cgutils to llvmlite
* PR #1190: Support more array methods: .transpose(), .T, .copy(), .reshape(), .view()
* PR #1214: Simplify setup.py and avoid manual maintenance
* PR #1217: Support datetime64 and timedelta64 constants
* PR #1236: Reload environment variables when compiling
* PR #1225: Various speed improvements in generated code
* PR #1252: Support cmath module in CUDA
* PR #1238: Use 32-byte aligned allocator to optimize for AVX
* PR #1258: Support numpy.frombuffer()
* PR #1274: Use TravisCI container infrastructure for lower wait time
* PR #1279: Micro-optimize overload resolution in call dispatch
* Issue #1248: Improve error message when return type unification fails

Fixes:

* Issue #1131: Handling of negative zeros in np.conjugate() and np.arccos()
* Issue #1188: Fix slow array return
* Issue #1164: Avoid warnings from CUDA context at shutdown
* Issue #1229: Respect the writeable flag in arrays
* Issue #1244: Fix bug in refcount pruning pass
* Issue #1251: Fix partial left-indexing of Fortran contiguous array
* Issue #1264: Fix compilation error in array expression
* Issue #1254: Fix error when yielding array objects
* Issue #1276: Fix nested generator use


Version 0.19.2
--------------

This release fixes the source distribution on pypi.  The only change is in the
setup.py file.  We do not plan to provide a conda package as this release is
essentially the same as 0.19.1 for conda users.


Version 0.19.1
--------------

* Issue #1196:

  * fix double-free segfault due to redundant variable deletion in the
    Numba IR (#1195)
  * fix use-after-delete in array expression rewrite pass


Version 0.19.0
--------------

This version introduces memory management in the Numba runtime, allowing to
allocate new arrays inside Numba-compiled functions.  There is also a rework
of the ufunc infrastructure, and an optimization pass to collapse cascading
array operations into a single efficient loop.

.. warning::
   Support for Windows XP and Vista with all compiler targets and support
   for 32-bit platforms (Win/Mac/Linux) with the CUDA compiler target are
   deprecated.  In the next release of Numba, the oldest version of Windows
   supported will be Windows 7.  CPU compilation will remain supported
   on 32-bit Linux and Windows platforms.

Known issues:

* There are some performance regressions in very short running ``nopython``
  functions due to the additional overhead incurred by memory management.
  We will work to reduce this overhead in future releases.

Features:

* Issue #1181: Add a Frequently Asked Questions section to the documentation.
* Issue #1162: Support the ``cumsum()`` and ``cumprod()`` methods on Numpy
  arrays.
* Issue #1152: Support the ``*args`` argument-passing style.
* Issue #1147: Allow passing character sequences as arguments to
  JIT-compiled functions.
* Issue #1110: Shortcut deforestation and loop fusion for array expressions.
* Issue #1136: Support various Numpy array constructors, for example
  numpy.zeros() and numpy.zeros_like().
* Issue #1127: Add a CUDA simulator running on the CPU, enabled with the
  NUMBA_ENABLE_CUDASIM environment variable.
* Issue #1086: Allow calling standard Numpy ufuncs without an explicit
  output array from ``nopython`` functions.
* Issue #1113: Support keyword arguments when calling numpy.empty()
  and related functions.
* Issue #1108: Support the ``ctypes.data`` attribute of Numpy arrays.
* Issue #1077: Memory management for array allocations in ``nopython`` mode.
* Issue #1105: Support calling a ctypes function that takes ctypes.py_object
  parameters.
* Issue #1084: Environment variable NUMBA_DISABLE_JIT disables compilation
  of ``@jit`` functions, instead calling into the Python interpreter
  when called.  This allows easier debugging of multiple jitted functions.
* Issue #927: Allow gufuncs with no output array.
* Issue #1097: Support comparisons between tuples.
* Issue #1075: Numba-generated ufuncs can now be called from ``nopython``
  functions.
* Issue #1062: ``@vectorize`` now allows omitting the signatures, and will
  compile the required specializations on the fly (like ``@jit`` does).
* Issue #1027: Support numpy.round().
* Issue #1085: Allow returning a character sequence (as fetched from a
  structured array) from a JIT-compiled function.

Fixes:

* Issue #1170: Ensure ``ndindex()``, ``ndenumerate()`` and ``ndarray.flat``
  work properly inside generators.
* Issue #1151: Disallow unpacking of tuples with the wrong size.
* Issue #1141: Specify install dependencies in setup.py.
* Issue #1106: Loop-lifting would fail when the lifted loop does not
  produce any output values for the function tail.
* Issue #1103: Fix mishandling of some inputs when a JIT-compiled function
  is called with multiple array layouts.
* Issue #1089: Fix range() with large unsigned integers.
* Issue #1088: Install entry-point scripts (numba, pycc) from the conda
  build recipe.
* Issue #1081: Constant structured scalars now work properly.
* Issue #1080: Fix automatic promotion of booleans to integers.


Version 0.18.2
--------------

Bug fixes:

* Issue #1073: Fixes missing template file for HTML annotation
* Issue #1074: Fixes CUDA support on Windows machine due to NVVM API mismatch


Version 0.18.1
--------------

Version 0.18.0 is not officially released.

This version removes the old deprecated and undocumented ``argtypes`` and
``restype`` arguments to the ``@jit`` decorator.  Function signatures
should always be passed as the first argument to ``@jit``.

Features:

* Issue #960: Add inspect_llvm() and inspect_asm() methods to JIT-compiled
  functions: they output the LLVM IR and the native assembler source of the
  compiled function, respectively.
* Issue #990: Allow passing tuples as arguments to JIT-compiled functions
  in ``nopython`` mode.
* Issue #774: Support two-argument round() in ``nopython`` mode.
* Issue #987: Support missing functions from the math module in nopython
  mode: frexp(), ldexp(), gamma(), lgamma(), erf(), erfc().
* Issue #995: Improve code generation for round() on Python 3.
* Issue #981: Support functions from the random and numpy.random modules
  in ``nopython`` mode.
* Issue #979: Add cuda.atomic.max().
* Issue #1006: Improve exception raising and reporting.  It is now allowed
  to raise an exception with an error message in ``nopython`` mode.
* Issue #821: Allow ctypes- and cffi-defined functions as arguments to
  ``nopython`` functions.
* Issue #901: Allow multiple explicit signatures with ``@jit``.  The
  signatures must be passed in a list, as with ``@vectorize``.
* Issue #884: Better error message when a JIT-compiled function is called
  with the wrong types.
* Issue #1010: Simpler and faster CUDA argument marshalling thanks to a
  refactoring of the data model.
* Issue #1018: Support arrays of scalars inside Numpy structured types.
* Issue #808: Reduce Numba import time by half.
* Issue #1021: Support the buffer protocol in ``nopython`` mode.
  Buffer-providing objects, such as ``bytearray``, ``array.array`` or
  ``memoryview`` support array-like operations such as indexing and iterating.
  Furthermore, some standard attributes on the ``memoryview`` object are
  supported.
* Issue #1030: Support nested arrays in Numpy structured arrays.
* Issue #1033: Implement the inspect_types(), inspect_llvm() and inspect_asm()
  methods for CUDA kernels.
* Issue #1029: Support Numpy structured arrays with CUDA as well.
* Issue #1034: Support for generators in nopython and object mode.
* Issue #1044: Support default argument values when calling Numba-compiled
  functions.
* Issue #1048: Allow calling Numpy scalar constructors from CUDA functions.
* Issue #1047: Allow indexing a multi-dimensional array with a single integer,
  to take a view.
* Issue #1050: Support len() on tuples.
* Issue #1011: Revive HTML annotation.

Fixes:

* Issue #977: Assignment optimization was too aggressive.
* Issue #561: One-argument round() now returns an int on Python 3.
* Issue #1001: Fix an unlikely bug where two closures with the same name
  and id() would compile to the same LLVM function name, despite different
  closure values.
* Issue #1006: Fix reference leak when a JIT-compiled function is disposed of.
* Issue #1017: Update instructions for CUDA in the README.
* Issue #1008: Generate shorter LLVM type names to avoid segfaults with CUDA.
* Issue #1005: Properly clean up references when raising an exception from
  object mode.
* Issue #1041: Fix incompatibility between Numba and the third-party
  library "future".
* Issue #1053: Fix the size attribute of CUDA shared arrays.


Version 0.17.0
--------------

The major focus in this release has been a rewrite of the documentation.
The new documentation is better structured and has more detailed coverage
of Numba features and APIs.  It can be found online at
https://numba.pydata.org/numba-doc/dev/index.html

Features:

* Issue #895: LLVM can now inline nested function calls in ``nopython`` mode.
* Issue #863: CUDA kernels can now infer the types of their arguments
  ("autojit"-like).
* Issue #833: Support numpy.{min,max,argmin,argmax,sum,mean,var,std}
  in ``nopython`` mode.
* Issue #905: Add a ``nogil`` argument to the ``@jit`` decorator, to
  release the GIL in ``nopython`` mode.
* Issue #829: Add a ``identity`` argument to ``@vectorize`` and
  ``@guvectorize``, to set the identity value of the ufunc.
* Issue #843: Allow indexing 0-d arrays with the empty tuple.
* Issue #933: Allow named arguments, not only positional arguments, when
  calling a Numba-compiled function.
* Issue #902: Support numpy.ndenumerate() in ``nopython`` mode.
* Issue #950: AVX is now enabled by default except on Sandy Bridge and
  Ivy Bridge CPUs, where it can produce slower code than SSE.
* Issue #956: Support constant arrays of structured type.
* Issue #959: Indexing arrays with floating-point numbers isn't allowed
  anymore.
* Issue #955: Add support for 3D CUDA grids and thread blocks.
* Issue #902: Support numpy.ndindex() in ``nopython`` mode.
* Issue #951: Numpy number types (``numpy.int8``, etc.) can be used as
  constructors for type conversion in ``nopython`` mode.

Fixes:

* Issue #889: Fix ``NUMBA_DUMP_ASSEMBLY`` for the CUDA backend.
* Issue #903: Fix calling of stdcall functions with ctypes under Windows.
* Issue #908: Allow lazy-compiling from several threads at once.
* Issue #868: Wrong error message when multiplying a scalar by a non-scalar.
* Issue #917: Allow vectorizing with datetime64 and timedelta64 in the
  signature (only with unit-less values, though, because of a Numpy limitation).
* Issue #431: Allow overloading of cuda device function.
* Issue #917: Print out errors occurred in object mode ufuncs.
* Issue #923: Numba-compiled ufuncs now inherit the name and doc of the
  original Python function.
* Issue #928: Fix boolean return value in nested calls.
* Issue #915: ``@jit`` called with an explicit signature with a mismatching
  type of arguments now raises an error.
* Issue #784: Fix the truth value of NaNs.
* Issue #953: Fix using shared memory in more than one function (kernel or
  device).
* Issue #970: Fix an uncommon double to uint64 conversion bug on CentOS5
  32-bit (C compiler issue).


Version 0.16.0
--------------

This release contains a major refactor to switch from llvmpy to `llvmlite <https://github.com/numba/llvmlite>`_
as our code generation backend.  The switch is necessary to reconcile
different compiler requirements for LLVM 3.5 (needs C++11) and Python
extensions (need specific compiler versions on Windows). As a bonus, we have
found the use of llvmlite speeds up compilation by a factor of 2!

Other Major Changes:

* Faster dispatch for numpy structured arrays
* Optimized array.flat()
* Improved CPU feature selection
* Fix constant tuple regression in macro expansion code

Known Issues:

* AVX code generation is still disabled by default due to performance
  regressions when operating on misaligned NumPy arrays.  We hope to have a
  workaround in the future.
* In *extremely* rare circumstances, a `known issue with LLVM 3.5 <http://llvm.org/bugs/show_bug.cgi?id=21423>`_
  code generation can cause an ELF relocation error on 64-bit Linux systems.


Version 0.15.1
--------------

(This was a bug-fix release that superceded version 0.15 before it was
announced.)

Fixes:

* Workaround for missing __ftol2 on Windows XP.
* Do not lift loops for compilation that contain break statements.
* Fix a bug in loop-lifting when multiple values need to be returned to
  the enclosing scope.
* Handle the loop-lifting case where an accumulator needs to be updated when
  the loop count is zero.

Version 0.15
------------

Features:

* Support for the Python ``cmath`` module.  (NumPy complex functions were
  already supported.)
* Support for ``.real``, ``.imag``, and `.conjugate()`` on non-complex
  numbers.
* Add support for ``math.isfinite()`` and ``math.copysign()``.
* Compatibility mode: If enabled (off by default), a failure to compile in
  object mode will fall back to using the pure Python implementation of the
  function.
* *Experimental* support for serializing JIT functions with cloudpickle.
* Loop-jitting in object mode now works with loops that modify scalars that
  are accessed after the loop, such as accumulators.
* ``@vectorize`` functions can be compiled in object mode.
* Numba can now be built using the `Visual C++ Compiler for Python 2.7 <http://aka.ms/vcpython27>`_
  on Windows platforms.
* CUDA JIT functions can be returned by factory functions with variables in
  the closure frozen as constants.
* Support for "optional" types in nopython mode, which allow ``None`` to be a
  valid value.

Fixes:

* If nopython mode compilation fails for any reason, automatically fall back
  to object mode (unless nopython=True is passed to @jit) rather than raise
  an exeception.
* Allow function objects to be returned from a function compiled in object
  mode.
* Fix a linking problem that caused slower platform math functions (such as
  ``exp()``) to be used on Windows, leading to performance regressions against
  NumPy.
* ``min()`` and ``max()`` no longer accept scalars arguments in nopython mode.
* Fix handling of ambigous type promotion among several compiled versions of a
  JIT function.  The dispatcher will now compile a new version to resolve the
  problem.  (issue #776)
* Fix float32 to uint64 casting bug on 32-bit Linux.
* Fix type inference to allow forced casting of return types.
* Allow the shape of a 1D ``cuda.shared.array`` and ``cuda.local.array`` to be
  a one-element tuple.
* More correct handling of signed zeros.
* Add custom implementation of ``atan2()`` on Windows to handle special cases
  properly.
* Eliminated race condition in the handling of the pagelocked staging area
  used when transferring CUDA arrays.
* Fix non-deterministic type unification leading to varying performance.
  (issue #797)


Version 0.14
------------

Features:

* Support for nearly all the Numpy math functions (including comparison,
  logical, bitwise and some previously missing float functions) in nopython mode.
* The Numpy datetime64 and timedelta64 dtypes are supported in nopython mode
  with Numpy 1.7 and later.
* Support for Numpy math functions on complex numbers in nopython mode.
* ndarray.sum() is supported in nopython mode.
* Better error messages when unsupported types are used in Numpy math functions.
* Set NUMBA_WARNINGS=1 in the environment to see which functions are compiled
  in object mode vs. nopython mode.
* Add support for the two-argument pow() builtin function in nopython mode.
* New developer documentation describing how Numba works, and how to
  add new types.
* Support for Numpy record arrays on the GPU. (Note: Improper alignment of dtype
  fields will cause an exception to be raised.)
* Slices on GPU device arrays.
* GPU objects can be used as Python context managers to select the active
  device in a block.
* GPU device arrays can be bound to a CUDA stream.  All subsequent operations
  (such as memory copies) will be queued on that stream instead of the default.
  This can prevent unnecessary synchronization with other streams.

Fixes:

* Generation of AVX instructions has been disabled to avoid performance bugs
  when calling external math functions that may use SSE instructions,
  especially on OS X.
* JIT functions can be removed by the garbage collector when they are no
  longer accessible.
* Various other reference counting fixes to prevent memory leaks.
* Fixed handling of exception when input argument is out of range.
* Prevent autojit functions from making unsafe numeric conversions when
  called with different numeric types.
* Fix a compilation error when an unhashable global value is accessed.
* Gracefully handle failure to enable faulthandler in the IPython Notebook.
* Fix a bug that caused loop lifting to fail if the loop was inside an
  ``else`` block.
* Fixed a problem with selecting CUDA devices in multithreaded programs on
  Linux.
* The ``pow()`` function (and ``**`` operation) applied to two integers now
  returns an integer rather than a float.
* Numpy arrays using the object dtype no longer cause an exception in the
  autojit.
* Attempts to write to a global array will cause compilation to fall back
  to object mode, rather than attempt and fail at nopython mode.
* ``range()`` works with all negative arguments (ex: ``range(-10, -12, -1)``)

Version 0.13.4
--------------

Features:

* Setting and deleting attributes in object mode
* Added documentation of supported and currently unsupported numpy ufuncs
* Assignment to 1-D numpy array slices
* Closure variables and functions can be used in object mode
* All numeric global values in modules can be used as constants in JIT
  compiled code
* Support for the start argument in enumerate()
* Inplace arithmetic operations (+=, -=, etc.)
* Direct iteration over a 1D numpy array (e.g. "for x in array: ...")
  in nopython mode

Fixes:

* Support for NVIDIA compute capability 5.0 devices (such as the GTX 750)
* Vectorize no longer crashes/gives an error when bool\_ is used as return type
* Return the correct dictionary when globals() is used in JIT functions
* Fix crash bug when creating dictionary literals in object
* Report more informative error message on import if llvmpy is too old
* Temporarily disable pycc --header, which generates incorrect function
  signatures.

Version 0.13.3
--------------

Features:

* Support for enumerate() and zip() in nopython mode
* Increased LLVM optimization of JIT functions to -O1, enabling automatic
  vectorization of compiled code in some cases
* Iteration over tuples and unpacking of tuples in nopython mode
* Support for dict and set (Python >= 2.7) literals in object mode

Fixes:

* JIT functions have the same __name__ and __doc__ as the original function.
* Numerous improvements to better match the data types and behavior of Python
  math functions in JIT compiled code on different platforms.
* Importing Numba will no longer throw an exception if the CUDA driver is
  present, but cannot be initialized.
* guvectorize now properly supports functions with scalar arguments.
* CUDA driver is lazily initialized

Version 0.13.2
--------------

Features:

* @vectorize ufunc now can generate SIMD fast path for unit strided array
* Added cuda.gridsize
* Added preliminary exception handling (raise exception class)

Fixes:

* UNARY_POSITIVE
* Handling of closures and dynamically generated functions
* Global None value

Version 0.13.1
--------------

Features:

* Initial support for CUDA array slicing

Fixes:

* Indirectly fixes numbapro when the system has a incompatible CUDA driver
* Fix numba.cuda.detect
* Export numba.intp and numba.intc

Version 0.13
------------

Features:

* Opensourcing NumbaPro CUDA python support in `numba.cuda`
* Add support for ufunc array broadcasting
* Add support for mixed input types for ufuncs
* Add support for returning tuple from jitted function

Fixes:

* Fix store slice bytecode handling for Python2
* Fix inplace subtract
* Fix pycc so that correct header is emitted
* Allow vectorize to work on functions with jit decorator


Version 0.12.2
--------------

Fixes:

* Improved NumPy ufunc support in nopython mode
* Misc bug fixes


Version 0.12.1
--------------

This version fixed many regressions reported by user for the 0.12 release.
This release contains a new loop-lifting mechanism that specializes certains
loop patterns for nopython mode compilation.  This avoid direct support
for heap-allocating and other very dynamic operations.

Improvements:

* Add loop-lifting--jit-ing loops in nopython for object mode code. This allows
  functions to allocate NumPy arrays and use Python objects, while the tight
  loops in the function can still be compiled in nopython mode. Any arrays that
  the tight loop uses should be created before the loop is entered.

Fixes:

* Add support for majority of "math" module functions
* Fix for...else handling
* Add support for builtin round()
* Fix tenary if...else support
* Revive "numba" script
* Fix problems with some boolean expressions
* Add support for more NumPy ufuncs


Version 0.12
------------

Version 0.12 contains a big refactor of the compiler. The main objective for
this refactor was to simplify the code base to create a better foundation for
further work. A secondary objective was to improve the worst case performance
to ensure that compiled functions in object mode never run slower than pure
Python code (this was a problem in several cases with the old code base). This
refactor is still a work in progress and further testing is needed.

Main improvements:

* Major refactor of compiler for performance and maintenance reasons
* Better fallback to object mode when native mode fails
* Improved worst case performance in object mode

The public interface of numba has been slightly changed. The idea is to
make it cleaner and more rational:

* jit decorator has been modified, so that it can be called without a signature.
  When called without a signature, it behaves as the old autojit. Autojit
  has been deprecated in favour of this approach.
* Jitted functions can now be overloaded.
* Added a "njit" decorator that behaves like "jit" decorator with nopython=True.
* The numba.vectorize namespace is gone. The vectorize decorator will
  be in the main numba namespace.
* Added a guvectorize decorator in the main numba namespace. It is
  similar to numba.vectorize, but takes a dimension signature. It
  generates gufuncs. This is a replacement for the GUVectorize gufunc
  factory which has been deprecated.

Main regressions (will be fixed in a future release):

* Creating new NumPy arrays is not supported in nopython mode
* Returning NumPy arrays is not supported in nopython mode
* NumPy array slicing is not supported in nopython mode
* lists and tuples are not supported in nopython mode
* string, datetime, cdecimal, and struct types are not implemented yet
* Extension types (classes) are not supported in nopython mode
* Closures are not supported
* Raise keyword is not supported
* Recursion is not support in nopython mode

Version 0.11
------------
* Experimental support for NumPy datetime type

Version 0.10
------------
* Annotation tool (./bin/numba --annotate --fancy) (thanks to Jay Bourque)
* Open sourced prange
* Support for raise statement
* Pluggable array representation
* Support for enumerate and zip (thanks to Eugene Toder)
* Better string formatting support (thanks to Eugene Toder)
* Builtins min(), max() and bool() (thanks to Eugene Toder)
* Fix some code reloading issues (thanks to Björn Linse)
* Recognize NumPy scalar objects (thanks to Björn Linse)


Version 0.9
-----------
* Improved math support
* Open sourced generalized ufuncs
* Improved array expressions

Version 0.8
-----------
* Support for autojit classes
    * Inheritance not yet supported
* Python 3 support for pycc
* Allow retrieval of ctypes function wrapper
    * And hence support retrieval of a pointer to the function
* Fixed a memory leak of array slicing views

Version 0.7.2
-------------
* Official Python 3 support (python 3.2 and 3.3)
* Support for intrinsics and instructions
* Various bug fixes (see https://github.com/numba/numba/issues?milestone=7&state=closed)

Version 0.7.1
-------------
* Various bug fixes

Version 0.7
-----------
* Open sourced single-threaded ufunc vectorizer
* Open sourced NumPy array expression compilation
* Open sourced fast NumPy array slicing
* Experimental Python 3 support
* Support for typed containers
    * typed lists and tuples
* Support for iteration over objects
* Support object comparisons
* Preliminary CFFI support
    * Jit calls to CFFI functions (passed into autojit functions)
    * TODO: Recognize ffi_lib.my_func attributes
* Improved support for ctypes
* Allow declaring extension attribute types as through class attributes
* Support for type casting in Python
    * Get the same semantics with or without numba compilation
* Support for recursion
    * For jit methods and extension classes
* Allow jit functions as C callbacks
* Friendlier error reporting
* Internal improvements
* A variety of bug fixes

Version 0.6.1
--------------
* Support for bitwise operations

Version 0.6
--------------
* Python 2.6 support
* Programmable typing
    * Allow users to add type inference for external code
* Better NumPy type inference
    * outer, inner, dot, vdot, tensordot, nonzero, where,
      binary ufuncs + methods (reduce, accumulate, reduceat, outer)
* Type based alias analysis
    * Support for strict aliasing
* Much faster autojit dispatch when calling from Python
* Faster numerical loops through data and stride pre-loading
* Integral overflow and underflow checking for conversions from objects
* Make Meta dependency optional

Version 0.5
--------------
* SSA-based type inference
    * Allows variable reuse
    * Allow referring to variables before lexical definition
* Support multiple comparisons
* Support for template types
* List comprehensions
* Support for pointers
* Many bug fixes
* Added user documentation

Version 0.4
--------------

Version 0.3.2
--------------

* Add support for object arithmetic (issue 56).
* Bug fixes (issue 55).

Version 0.3
--------------
* Changed default compilation approach to ast
* Added support for cross-module linking
* Added support for closures (can jit inner functions and return them) (see examples/closure.py)
* Added support for dtype structures (can access elements of structure with attribute access) (see examples/structures.py)
* Added support for extension types (numba classes) (see examples/numbaclasses.py)
* Added support for general Python code (use nopython to raise an error if Python C-API is used to avoid unexpected slowness because of lack of implementation defaulting to generic Python)
* Fixed many bugs
* Added support to detect math operations.
* Added with python and with nopython contexts
* Added more examples

Many features need to be documented still.  Look at examples and tests for more information.


Version 0.2
--------------
* Added an ast approach to compilation
* Removed d, f, i, b from numba namespace (use f8, f4, i4, b1)
* Changed function to autojit2
* Added autojit function to decorate calls to the function and use types of the variable to create compiled versions.
* changed keyword arguments to jit and autojit functions to restype and argtypes to be consistent with ctypes module.
* Added pycc -- a python to shared library compiler