1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
(* file exemples/ocaml/cmp.ml: compare two modules
*-----------------------------------------------------------------------+
| Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org) |
| |
| This file is part of Numerix. Numerix is free software; you can |
| redistribute it and/or modify it under the terms of the GNU Lesser |
| General Public License as published by the Free Software Foundation; |
| either version 2.1 of the License, or (at your option) any later |
| version. |
| |
| The Numerix Library is distributed in the hope that it will be |
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU MP Library; see the file COPYING. If not, |
| write to the Free Software Foundation, Inc., 59 Temple Place - |
| Suite 330, Boston, MA 02111-1307, USA. |
+-----------------------------------------------------------------------+
| |
| Comparaison de deux modules |
| |
+-----------------------------------------------------------------------*)
open Numerix
open Printf
module Main(E:Int_type) = struct
open E
let r = make_ref zero
and s = make_ref zero
and t = make_ref zero
and u = make_ref zero
and v = make_ref zero
(* tire un nombre au hasard et renvoie le tref le contenant *)
let random_num(n) =
let x = match Random.int(5) with
| 0 -> r
| 1 -> s
| 2 -> t
| 3 -> u
| _ -> v
in
zrandom_in x n;
x
(* nombre entier alatoire *)
let random_int() = Random.int(1000000000) - 500000000
(* mode d'arrondi alatoire *)
let random_mode() =
match Random.int(4) with
| 0 -> Floor
| 1 -> Ceil
| 2 -> Nearest_up
| _ -> Nearest_down
(* oprations testes *)
type op = {nom:string; action:int->unit}
(* n *)
let op_n op n =
let aref = random_num(n) in
let a = look aref in
let _ = op a in ()
(* n x n *)
let op_n_n op n =
let aref = random_num(n)
and bref = random_num(n) in
let a = look aref
and b = look bref in
let _ = op a b in ()
(* 2n * n *)
let op_n_2n op n =
let aref = random_num(2*n)
and bref = random_num(n) in
let a = look aref
and b = look bref in
let _ = op a b in ()
(* n x 1 *)
let op_n_1 op n =
let aref = random_num(n) in
let a = look aref
and b = random_int() in
let _ = op a b in ()
(* 1 x 1 *)
let op_1_1 op n =
let a = random_int()
and b = random_int() in
let _ = op a b in ()
(* 0 x 1 *)
let op_1 op n = let _ = op (random_int()) in ()
(* divisions *)
let tstquo op a b =
if neq b zero then let _ = op a b in ()
let tstquoe op a b =
if neq b zero then let _ = op (add_1 (mul a b) (random_int())) b in ()
let tstquo1 op a b =
if b <> 0 then let _ = op a b in ()
(* racines *)
let tstsqrt op n =
let aref = random_num(n) in
abs_in aref (look aref);
let _ = op (look aref) in ()
let tstsqrte op n =
let aref = random_num(n) in
sqr_in aref (look aref);
add_1_in aref (look aref) (random_int());
abs_in aref (look aref);
let _ = op (look aref) in ()
let tstroot op n =
let aref = random_num(n) in
abs_in aref (look aref);
let b = random_int() land 0xff in
if b <> 0 then let _ = op (look aref) in ()
(* puissances et dcalages *)
let tstpow op a b = let _ = op a (b land 0xff) in ()
let tstfact op b = let _ = op (b land 0xff) in ()
let tstsh op a b = let _ = op a ((b land 0xff) - 128) in ()
let tstjoin op a b = let _ = op a b (random_int() land 0xff) in ()
let tstbit op a b = let _ = op a (Pervasives.abs b) in ()
let tstint op a = let _ = op (shr a (nbits(a)-30)) in ()
(* powmod *)
let tstpowm op n =
let aref = random_num(n)
and bref = random_num(n)
and cref = random_num(n) in
abs_in bref (look bref);
let a = look aref
and b = look bref
and c = look cref in
if neq c zero then let _ = op a b c in ()
(* of_string/string/of *)
let tststring f a = let _ = of_string (f a) in ()
let tststring_in f a = let _ = of_string_in r (f a) in ()
(* ajoute un mode d'arrondi *)
let rmode op a = op (random_mode()) a
let rmode_in op a = op (random_mode()) r a
let rmode_ii op a = op (random_mode()) r s a
let ops = [|
{nom = "abs"; action = op_n abs };
{nom = "abs_in"; action = op_n (abs_in r) };
{nom = "add"; action = op_n_n add };
{nom = "add_1"; action = op_n_1 add_1 };
{nom = "add_1_in"; action = op_n_1 (add_1_in r) };
{nom = "add_in"; action = op_n_n (add_in r) };
{nom = "bstring_of"; action = op_n (tststring bstring_of) };
{nom = "cfrac"; action = op_n_n cfrac };
{nom = "cfrac_in"; action = op_n_n (cfrac_in r s t u v) };
{nom = "cmp"; action = op_n_n cmp };
{nom = "cmp_1"; action = op_n_1 cmp_1 };
{nom = "eq"; action = op_n_n eq };
{nom = "eq_1"; action = op_n_1 eq_1 };
{nom = "fact"; action = op_1 (tstfact fact) };
{nom = "fact_in"; action = op_1 (tstfact (fact_in r)) };
{nom = "gcd"; action = op_n_n gcd };
{nom = "gcd_ex"; action = op_n_n gcd_ex };
{nom = "gcd_ex_in"; action = op_n_n (gcd_ex_in r s t) };
{nom = "gcd_in"; action = op_n_n (gcd_in r) };
{nom = "gmod"; action = op_n_2n (tstquo (rmode gmod)) };
{nom = "gmod_1"; action = op_n_1 (tstquo1 (rmode gmod_1)) };
{nom = "gmod_in"; action = op_n_2n (tstquo (rmode_in gmod_in)) };
{nom = "gpowmod"; action = tstpowm (rmode gpowmod) };
{nom = "gpowmod_in"; action = tstpowm (rmode_in gpowmod_in) };
{nom = "gquo"; action = op_n_2n (tstquo (rmode gquo)) };
{nom = "gquo_1"; action = op_n_1 (tstquo1 (rmode gquo_1)) };
{nom = "gquo_1_in"; action = op_n_1 (tstquo1 (rmode_in gquo_1_in)) };
{nom = "gquo_in"; action = op_n_2n (tstquo (rmode_in gquo_in)) };
{nom = "gquomod"; action = op_n_2n (tstquo (rmode gquomod)) };
{nom = "gquomod_1"; action = op_n_1 (tstquo1 (rmode gquomod_1)) };
{nom = "gquomod_1_in";action = op_n_1 (tstquo1 (rmode_in gquomod_1_in)) };
{nom = "gquomod_in"; action = op_n_2n (tstquo (rmode_ii gquomod_in)) };
{nom = "groot"; action = tstroot (rmode groot) };
{nom = "groot_in"; action = tstroot (rmode_in groot_in) };
{nom = "gsqrt"; action = tstsqrt (rmode gsqrt) };
{nom = "gsqrt_in"; action = tstsqrt (rmode_in gsqrt_in) };
{nom = "highbits"; action = op_n highbits };
{nom = "hstring_of"; action = op_n (tststring hstring_of) };
{nom = "inf"; action = op_n_n inf };
{nom = "inf_1"; action = op_n_1 inf_1 };
{nom = "infeq"; action = op_n_n infeq };
{nom = "infeq_1"; action = op_n_1 infeq_1 };
{nom = "int_of"; action = op_n (tstint int_of) };
{nom = "join"; action = op_n_n (tstjoin join) };
{nom = "join_in"; action = op_n_n (tstjoin (join_in r)) };
{nom = "lowbits"; action = op_n lowbits };
{nom = "mod"; action = op_n_2n (tstquo modulo) };
{nom = "mod_1"; action = op_n_1 (tstquo1 mod_1) };
{nom = "mod_in"; action = op_n_2n (tstquo (mod_in r)) };
{nom = "mul"; action = op_n_n mul };
{nom = "mul_1"; action = op_n_1 mul_1 };
{nom = "mul_1_in"; action = op_n_1 (mul_1_in r) };
{nom = "mul_in"; action = op_n_n (mul_in r) };
{nom = "nbits"; action = op_n nbits };
{nom = "neg"; action = op_n neg };
{nom = "neg_in"; action = op_n (neg_in r) };
{nom = "neq"; action = op_n_n neq };
{nom = "neq_1"; action = op_n_1 neq_1 };
{nom = "nth_bit"; action = op_n_1 (tstbit nth_bit) };
{nom = "nth_word"; action = op_n_1 (tstbit nth_word) };
{nom = "of_int"; action = op_1 of_int };
{nom = "of_int_in"; action = op_1 (of_int_in r) };
{nom = "of_string"; action = op_n (tststring string_of) };
{nom = "of_string_in";action = op_n (tststring_in string_of) };
{nom = "ostring_of"; action = op_n (tststring ostring_of) };
{nom = "pow"; action = op_n_1 (tstpow pow) };
{nom = "pow_1"; action = op_1_1 (tstpow pow_1) };
{nom = "pow_1_in"; action = op_1_1 (tstpow (pow_1_in r)) };
{nom = "pow_in"; action = op_n_1 (tstpow (pow_in r)) };
{nom = "powmod"; action = tstpowm powmod };
{nom = "powmod_in"; action = tstpowm (powmod_in r) };
{nom = "quo"; action = op_n_2n (tstquo quo) };
{nom = "quo_1"; action = op_n_1 (tstquo1 quo_1) };
{nom = "quo_1_in"; action = op_n_1 (tstquo1 (quo_1_in r)) };
{nom = "quo_in"; action = op_n_2n (tstquo (quo_in r)) };
{nom = "quoe"; action = op_n_n (tstquoe quo) };
{nom = "quomod"; action = op_n_2n (tstquo quomod) };
{nom = "quomod_1"; action = op_n_1 (tstquo1 quomod_1) };
{nom = "quomod_1_in"; action = op_n_1 (tstquo1 (quomod_1_in r)) };
{nom = "quomod_in"; action = op_n_2n (tstquo (quomod_in r s)) };
{nom = "root"; action = tstroot root };
{nom = "root_in"; action = tstroot (root_in r) };
{nom = "sgn"; action = op_n sgn };
{nom = "shl"; action = op_n_1 (tstsh shl) };
{nom = "shl_in"; action = op_n_1 (tstsh (shl_in r)) };
{nom = "shr"; action = op_n_1 (tstsh shr) };
{nom = "shr_in"; action = op_n_1 (tstsh (shr_in r)) };
{nom = "split"; action = op_n_1 (tstpow split) };
{nom = "split_in"; action = op_n_1 (tstpow (split_in r s)) };
{nom = "sqr"; action = op_n sqr };
{nom = "sqr_in"; action = op_n (sqr_in r) };
{nom = "sqrt"; action = tstsqrt sqrt };
{nom = "sqrt_in"; action = tstsqrt (sqrt_in r) };
{nom = "sqrte"; action = tstsqrte sqrt };
{nom = "sub"; action = op_n_n sub };
{nom = "sub_1"; action = op_n_1 sub_1 };
{nom = "sub_1_in"; action = op_n_1 (sub_1_in r) };
{nom = "sub_in"; action = op_n_n (sub_in r) };
{nom = "sup"; action = op_n_n sup };
{nom = "sup_1"; action = op_n_1 sup_1 };
{nom = "supeq"; action = op_n_n supeq };
{nom = "supeq_1"; action = op_n_1 supeq_1 }
|]
(* opration alatoire *)
let random_op() = ops.(Random.int (Array.length ops)).action
(* opration nomme *)
let op_of_string(s) =
let i = ref(Array.length(ops)-1) in
while (!i >= 0) & (ops.(!i).nom <> s) do decr i done;
if !i >= 0 then ops.(!i).action
else failwith ("unknown operation: "^s)
let help cmd =
printf "usage: %s [-n bits] [-op operation] [-r compte] [-s seed]\n" cmd;
printf "operations :\n";
for i = 0 to Array.length(ops)-1 do
printf "%-15s " ops.(i).nom;
if i mod 5 = 4 then printf "\n"
done;
printf "\n"; flush stdout;
exit 0
let main arglist =
printf "%s\n" (E.name()); flush stdout;
let (n,r,op) =
let rec parse (n,r,op) = function
| "-test"::s -> parse (100, 1000, op) s
| "-op"::oo::s -> parse (n, r, Some(op_of_string oo) ) s
| "-n" ::nn::s -> parse (int_of_string nn, r, op) s
| "-r" ::rr::s -> parse (n, int_of_string rr, op) s
| "-s" ::x::s -> random_init(int_of_string x); parse (n,r,op) s
| "-h"::_ -> help(List.hd arglist)
| x::_ -> failwith ("invalid option: "^x)
| [] -> (n,r,op)
in parse (100,10000,None) (List.tl arglist) in
try
for i=1 to r do
if i mod 1000 = 0 then begin printf "\ri=%d\027[K" i; flush stdout end;
(match op with None -> random_op() | Some(f) -> f) n;
done;
printf "\n"; flush stdout
with Error(s) -> printf "%s\n" s; flush stdout
end
let _ = let module S = Start(Main) in S.start()
|