File: toom.c

package info (click to toggle)
numerix 0.22-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 4,380 kB
  • ctags: 4,165
  • sloc: asm: 26,210; ansic: 12,168; ml: 4,912; sh: 3,899; pascal: 414; makefile: 179
file content (277 lines) | stat: -rw-r--r-- 9,161 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// file kernel/n/c/toom.c: Toom multiplication of natural integers
/*-----------------------------------------------------------------------+
 |  Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org)      |
 |                                                                       |
 |  This file is part of Numerix. Numerix is free software; you can      |
 |  redistribute it and/or modify it under the terms of the GNU Lesser   |
 |  General Public License as published by the Free Software Foundation; |
 |  either version 2.1 of the License, or (at your option) any later     |
 |  version.                                                             |
 |                                                                       |
 |  The Numerix Library is distributed in the hope that it will be       |
 |  useful, but WITHOUT ANY WARRANTY; without even the implied warranty  |
 |  of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU  |
 |  Lesser General Public License for more details.                      |
 |                                                                       |
 |  You should have received a copy of the GNU Lesser General Public     |
 |  License along with the GNU MP Library; see the file COPYING. If not, |
 |  write to the Free Software Foundation, Inc., 59 Temple Place -       |
 |  Suite 330, Boston, MA 02111-1307, USA.                               |
 +-----------------------------------------------------------------------+
 |                                                                       |
 |                          Multiplication de Toom                       |
 |                                                                       |
 +-----------------------------------------------------------------------*/

                           /* +------------------+
                              |  Multiplication  |
                              +------------------+ */

/*
  entre :
  a = naturel de longueur la
  b = naturel de longueur lb
  c = naturel de longueur la + lb non confondu avec a ou b

  contraintes : 0 < lb <= la

  sortie :
  c <- a*b
*/

#ifndef assembly_sn_toommul
#ifdef debug_toommul
void xn(toommul_buggy)
#else
void xn(toommul)
#endif
(chiffre *a, long la, chiffre *b, long lb, chiffre *c) {
  chiffre *d,*e,*f,x;
  long i,p,q,r;

  /* petite multiplication -> Karatsuba */
  if (lb <= toommul_lim) {xn(karamul)(a,la,b,lb,c); return;}

  /* si lb > 2*ceil(la/3), dcoupage de Toom */
  p = (la+2)/3; q = la - 2*p; r = lb -2*p;
  if (r > 0) {

    /* mmoire de travail */
    d = xn(alloc_tmp)(6*p+10);
    e = d + 2*p+2;
    f = e + 2*p+2;

    /* d <- (a0 + a1 + a2)(b0 + b1 + b2) = c0 + c1 + c2 + c3 + c4 */
    c[p]     = xn(add)(a,p, a+2*p,q, c);
    c[2*p+1] = xn(add)(b,p, b+2*p,r, c+p+1);
    xn(add)(c,    p+1, a+p,p, c+2*p+2);
    xn(add)(c+p+1,p+1, b+p,p, c+3*p+3);
    xn(toommul)(c+2*p+2,p+1, c+3*p+3,p+1, d);

    /* e <- (a0 - a1 + a2)(b0 - b1 + b2) mod BASE^2p+2  = c0 - c1 + c2 - c3 + c4 */
    xn(dec)(c,p+1,     a+p,p);
    xn(dec)(c+p+1,p+1, b+p,p);
    xn(toommul)(c,p+1, c+p+1,p+1,e);
    if (c[p]     == (BASE_2)+(BASE_2-1)) xn(dec)(e+p+1,p+1, c+p+1,p+1);
    if (c[2*p+1] == (BASE_2)+(BASE_2-1)) xn(dec)(e+p+1,p+1, c,    p+1);

    /* f <- (a0 + BASE*a1 + BASE^2*a2)*(b0 + BASE*b1 + BASE^2*b2)
          = c0 + BASE*c1 + BASE^2*c2 + BASE^3*c3 + BASE^4*c4      */
    c[0]     = a[0];
    c[p+1]   = xn(add)(a+p,p, a+1,p-1, c+1);
    c[p+2]   = xn(inc)(c+2,p, a+2*p,q);
    c[p+3]   = b[0];
    c[2*p+4] = xn(add)(b+p,p, b+1,p-1, c+p+4);
    c[2*p+5] = xn(inc)(c+p+5,p, b+2*p,r);
    xn(toommul)(c,p+3, c+p+3,p+3, f);

    /* c[2p..4p] <- (d+e)/2 = c0 + c2 + c4, d <- (d-e)/2 mod BASE^(2p+1) = c1 + c3 */
    xn(add)(d,2*p+2, e,2*p+2, c+2*p);
    for (i=2*p; i <= 4*p; i++) c[i] = (c[i+1] & 1) ? (c[i]/2) + (BASE_2) : c[i]/2;
    xn(dec)(d,2*p+1, c+2*p,2*p+1);

    /* c[0..2p-1] <- a0*b0 = c0, c[4*p..4p+q+r-1] <- a2*b2 = c4 */
    x = c[4*p];
    xn(toommul)(a,p, b,p, c);
    xn(toommul)(a+2*p,q, b+2*p,r, c+4*p);

    /* c[2p..4p] <- c[2p..4p] - c0 - c4 = c2 */
    x -= xn(dec)(c+2*p,2*p, c,2*p);
    x -= xn(dec)(c+2*p,2*p, c+4*p,q+r);

    /* f <- f - c0 - BASE^2*c2 - BASE^4*c4 = BASE*c1 + BASE^3*c3 */
    xn(dec)(f,  2*p+6, c,    2*p);
    xn(dec)(f+2,2*p+4, c+2*p,2*p); xn(dec)(f+2*p+2,4, &x,1);
    xn(dec)(f+4,2*p+2, c+4*p,q+r);

    /* f <- -(f - BASE*d)/(BASE^2 - 1) = -BASE*c3 */
    xn(dec)(f+1,2*p+5, d,  2*p+2);
    xn(inc)(f+3,2*p+3, f+1,2*p+3);

    if (f[2*p+5]) { /* on a (f[2p+5] != 0) <=> (c3 != 0) */

      /* injecte c3 dans c */
      if ((!xn(dec)(c+3*p,p+q+1, f+1,p+q+1)) && (r>1)) xn(inc1)(c+4*p+q+1,r-1);

      /* d <- d + f/BASE = c1 */
      xn(inc)(d,2*p+1, f+1,2*p+1);
    }

    /* injecte c1 et x dans c */
    xn(inc)(c+p,3*p+q+r, d,2*p+1);
    xn(inc)(c+4*p, q+r,  &x,1);

    xn(free_tmp)(d); /* libre la mmoire auxilliaire */
  }

  /* si lb <= 2*ceil(la/3), dcoupe a en tranches de lb chiffres */
  else {
    p = la % lb; if (p == 0) p = lb;
    xn(toommul)(b,lb,a,p,c);         /* 1re multiplication */
    d = xn(alloc_tmp)(lb);           /* tampon pour les mult. suivantes */

    /* multiplie les tranches suivantes et les cumule dans c */
    for (a+=p, la-=p, c+=p; la; a+=lb, la-=lb, c+=lb) {
      xn(move)(c,lb,d);
      xn(toommul)(a,lb, b,lb, c);
      xn(inc)(c,2*lb,d,lb);
    }
    xn(free_tmp)(d); /* libre la mmoire auxilliaire */
  }
}
#endif /* assembly_sn_toommul */

                                /* +---------+
                                   |  Carr  |
                                   +---------+ */

/*
  entre :
  a = naturel de longueur la
  b = naturel de longueur 2*la, non confondu avec a

  contraintes : 0 < la

  sortie :
  b <- a^2
*/

#ifndef assembly_sn_toomsqr
#ifdef debug_toommul
void xn(toomsqr_buggy)
#else
void xn(toomsqr)
#endif
(chiffre *a, long la, chiffre *b) {
  chiffre *d,*e,*f,x;
  long i,p,q;

  /* petit carr -> Karatsuba */
  if (la <= toomsqr_lim) {xn(karasqr)(a,la,b); return;}

  /* dcoupage de Toom */
  p = (la+2)/3; q = la - 2*p;

  /* mmoire de travail */
  d = xn(alloc_tmp)(6*p+10);
  e = d + 2*p+2;
  f = e + 2*p+2;

  /* d <- (a0 + a1 + a2)^2 = b0 + b1 + b2 + b3 + b4 */
  b[p] = xn(add)(a,p, a+2*p,q, b);
  xn(add)(b, p+1, a+p,p, b+2*p+2);
  xn(toomsqr)(b+2*p+2,p+1, d);

  /* e <- (a0 - a1 + a2)^2 mod BASE^2p+2  = b0 - b1 + b2 - b3 + b4 */
  xn(dec)(b,p+1, a+p,p);
  xn(toomsqr)(b,p+1,e);
  if (b[p] == (BASE_2)+(BASE_2-1)) {
    xn(dec)(e+p+1,p+1, b,p+1);
    xn(dec)(e+p+1,p+1, b,p+1);
  }

  /* f <- (a0 + BASE*a1 + BASE^2*a2)^2
        = b0 + BASE*b1 + BASE^2*b2 + BASE^3*b3 + BASE^4*b4      */
  b[0]     = a[0];
  b[p+1]   = xn(add)(a+p,p, a+1,p-1, b+1);
  b[p+2]   = xn(inc)(b+2,p, a+2*p,q);
  xn(toomsqr)(b,p+3, f);

  /* b[2p..4p] <- (d+e)/2 = c0 + c2 + c4, d <- (d-e)/2 mod BASE^(2p+1) = b1 + b3 */
  xn(add)(d,2*p+2, e,2*p+2, b+2*p);
  for (i=2*p; i <= 4*p; i++) b[i] = (b[i+1] & 1) ? (b[i]/2) + (BASE_2) : b[i]/2;
  xn(dec)(d,2*p+1, b+2*p,2*p+1);

  /* b[0..2p-1] <- a0^2 = c0, b[4*p..4p+q+r-1] <- a2^2 = b4 */
  x = b[4*p];
  xn(toomsqr)(a,p,b);
  xn(toomsqr)(a+2*p,q, b+4*p);

  /* b[2p..4p] <- b[2p..4p] - b0 - b4 = b2 */
  x -= xn(dec)(b+2*p,2*p, b,2*p);
  x -= xn(dec)(b+2*p,2*p, b+4*p,2*q);

  /* f <- f - b0 - BASE^2*b2 - BASE^4*b4 = BASE*b1 + BASE^3*b3 */
  xn(dec)(f,  2*p+6, b,    2*p);
  xn(dec)(f+2,2*p+4, b+2*p,2*p); xn(dec)(f+2*p+2,4, &x,1);
  xn(dec)(f+4,2*p+2, b+4*p,2*q);

  /* f <- -(f - BASE*d)/(BASE^2 - 1) = -BASE*b3 */
  xn(dec)(f+1,2*p+5, d,  2*p+2);
  xn(inc)(f+3,2*p+3, f+1,2*p+3);

  if (f[2*p+5]) { /* on a (f[2p+5] != 0) <=> (b3 != 0) */

    /* injecte b3 dans b */
    if (!xn(dec)(b+3*p,p+q+1, f+1,p+q+1)) xn(inc1)(b+4*p+q+1,q-1);

    /* d <- d + f/BASE = b1 */
    xn(inc)(d,2*p+1, f+1,2*p+1);
  }

  /* injecte b1 et x dans b */
  xn(inc)(b+p,3*p+2*q, d,2*p+1);
  xn(inc)(b+4*p, 2*q,  &x,1);

  xn(free_tmp)(d); /* libre la mmoire auxilliaire */
}
#endif /* assembly_sn_toomsqr */

                              /* +------------+
                                 |  Contrle  |
                                 +------------+ */

#ifdef debug_toommul
void xn(toommul_buggy)(chiffre *a, long la, chiffre *b, long lb, chiffre *c);
void xn(toomsqr_buggy)(chiffre *a, long la, chiffre *b);

void xn(toommul)(chiffre *a, long la, chiffre *b, long lb, chiffre *c) {
  chiffre *d;

  /* vrifie les longueurs des arguments */
  if (la < lb) xn(internal_error)("error, toommul is called with la < lb",0);

  /* compare les rsultats produits par toommul_buggy et par karamul */
  d = xn(alloc_tmp)(la+lb);
  xn(karamul)(a,la,b,lb,d);
  xn(toommul_buggy)(a,la,b,lb,c);
  if (xn(cmp)(c,la+lb,d,la+lb))
      xn(internal_error)("error in toommul",4,a,la,b,lb,c,la+lb,d,la+lb);
  xn(free_tmp)(d);

}

void xn(toomsqr)(chiffre *a, long la, chiffre *b) {
  chiffre *d;

  /* compare les rsultats produits par toomsqr_buggy et par karasqr */
  d = xn(alloc_tmp)(2*la);
  xn(karasqr)(a,la,d);
  xn(toomsqr_buggy)(a,la,b);
  if (xn(cmp)(b,2*la,d,2*la))
      xn(internal_error)("error in toomsqr",3,a,la,b,2*la,d,2*la);
  xn(free_tmp)(d);

}
#endif /* debug_toommul */