File: mmod.S

package info (click to toggle)
numerix 0.22-4
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 4,380 kB
  • ctags: 4,165
  • sloc: asm: 26,210; ansic: 12,168; ml: 4,912; sh: 3,899; pascal: 414; makefile: 179
file content (1099 lines) | stat: -rw-r--r-- 33,689 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
// file kernel/n/alpha/mmod.S: operations on residues modulo BASE^n + 1
/*-----------------------------------------------------------------------+
 |  Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org)      |
 |                                                                       |
 |  This file is part of Numerix. Numerix is free software; you can      |
 |  redistribute it and/or modify it under the terms of the GNU Lesser   |
 |  General Public License as published by the Free Software Foundation; |
 |  either version 2.1 of the License, or (at your option) any later     |
 |  version.                                                             |
 |                                                                       |
 |  The Numerix Library is distributed in the hope that it will be       |
 |  useful, but WITHOUT ANY WARRANTY; without even the implied warranty  |
 |  of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU  |
 |  Lesser General Public License for more details.                      |
 |                                                                       |
 |  You should have received a copy of the GNU Lesser General Public     |
 |  License along with the GNU MP Library; see the file COPYING. If not, |
 |  write to the Free Software Foundation, Inc., 59 Temple Place -       |
 |  Suite 330, Boston, MA 02111-1307, USA.                               |
 +-----------------------------------------------------------------------+
 |                                                                       |
 |                  Arithmtique modulo BASE^n + 1                       |
 |                                                                       |
 +-----------------------------------------------------------------------*/


        # +---------------------------------------------------------+
        # |  Rduction modulo BASE^p + 1 et BASE^(2p) - BASE^p + 1  |
        # +---------------------------------------------------------+

   # entre :
   #  r16 = naturel longueur 3p         
   #  r17 = naturel de longueur 3p+1
   #  r18 = p
   #  r26 = adresse de retour
   #
   # contraintes :
   #  p > 0
   #
   # sortie :
   #  r17[0..2p-1] <- (r16) mod BASE^(2p) - BASE^p + 1
   #  r17[2p..3p]  <- (r16) mod BASE^p + 1

#if defined(assembly_sn_mmul) || defined(assembly_sn_msqr)
#define L(x) .Lsn_mred_##x

        .align 5
        .globl sn_mred
        .ent   sn_mred
sn_mred:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):

        s8addq $18, $16, $19    # r19 <- &a1
        s8addq $18, $19, $20    # r20 <- &a2
        s8addq $18, $17, $21    # r21 <- &b1
        s8addq $18, $21, $22    # r22 <- &b2
        bis    $31, $31, $0     # r0 <- 0 (retenue de a0-a2)
        bis    $31, $31, $1     # r1 <- 0 (retenue de a1+a2)
        bis    $31, $31, $2     # r2 <- 0 (retenue de a0-a1+a2)
        bis    $18, $18, $8     # r8 <- p

        # b0 <- a0 - a2, b1 <- a1 + a2, b2 <- a0 - a1 + a2
        .align 5
1:
        ldq    $3,  0($16)      # r3 <- a0[i]
        ldq    $4,  0($19)      # r4 <- a1[i]
        ldq    $5,  0($20)      # r5 <- a2[i]
        addq   $5,  $0,  $6     # r6 <- a2[i] + ret0
        cmpult $6,  $5,  $0
        subq   $3,  $6,  $6     # r6 <- a0[i] - a2[i] - ret0
        stq    $6,  0($17)      # sauve b0[i]
        cmpult $3,  $6,  $6
        addq   $6,  $0,  $0     # r0 <- retenue
        addq   $4,  $1,  $6     # r6 <- a1[i] + ret1
        cmpult $6,  $4,  $1
        addq   $5,  $6,  $6     # r6 <- a1[i] + a2[i] + ret1
        stq    $6,  0($21)      # sauve b1[i]
        cmpult $6,  $5,  $6
        addq   $6,  $1,  $1     # r1 <- retenue
        addq   $3,  $2,  $6     # r6 <- a0[i] + ret2
        sra    $2,  1,   $2
        cmpult $6,  $3,  $3
        addq   $3,  $2,  $2
        subq   $6,  $4,  $4     # r4 <- a0[i] - a1[i] + ret2
        cmpult $6,  $4,  $6
        subq   $2,  $6,  $2
        addq   $4,  $5,  $6     # r6 <- a0[i] - a1[i] + a2[i] + ret2
        stq    $6,  0($22)      # sauve b2[i]
        cmpult $6,  $4,  $6
        addq   $6,  $2,  $2     # r2 <- retenue
        lda    $8,  -1($8)      # avance les pointeurs
        lda    $16, 8($16)
        lda    $17, 8($17)
        lda    $19, 8($19)
        lda    $20, 8($20)
        lda    $21, 8($21)
        lda    $22, 8($22)
        bne    $8,  1b

        # propage la retenue sortant de b0
        beq    $0,  2f
        bis    $18, $18, $8     # r8 <- p
1:
        ldq    $3,  0($17)
        cmpult $3,  1,  $0
        subq   $3,  1,  $3
        stq    $3,  0($17)
        beq    $0,  2f
        lda    $8,  -1($8)
        lda    $17, 8($17)
        bne    $8,  1b          # si la retenue traverse b1 alors
        br     $31, 5f          # a1+a2 = BASE^p et il n y a plus rien  faire

        # recycle la retenue sortant de b1
        # si elle vaut 1, il faut ajouter BASE^p - 1 et comme
        # b1 <= BASE^p - 2, il ne peut pas y avoir de nouvelle retenue
        .align 5
2:
        beq    $1,  5f
        sll    $18, 3,   $8     # r8 <- 8p
        subq   $21, $8,  $19    # r19 <- &b1
        subq   $19, $8,  $16    # r16 <- &b0
3:
        ldq    $3,  0($16)
        cmpult $3,  1,   $0
        subq   $3,  1,   $3
        stq    $3,  0($16)
        beq    $0,  4f
        lda    $8,  -8($8)
        lda    $16, 8($16)
        bne    $8,  3b
        br     $31, 5f
        .align 5
4:
        ldq    $3,  0($19)
        addq   $3,  1,  $3
        stq    $3,  0($19)
        lda    $19, 8($19)
        beq    $3,  4b

        # recycle la retenue sortant de b2
        .align 5
5:
        bge    $2,  7f
        bis    $31, $31, $2
6:
        ldq    $3,  0($21)
        addq   $3,  1,  $3
        stq    $3,  0($21)
        bne    $3,  7f
        lda    $18, -1($18)
        lda    $21, 8($21)
        bne    $18, 6b
        addq   $2,  1,  $2
7:
        stq    $2,  0($22)

        # termin
        ret    $31, ($26),1

        .end   sn_mred
#undef L
#endif /* defined(assembly_sn_mmul) || defined(assembly_sn_msqr) */


        
                   # +-----------------------------------
                   # |  Multiplication modulo BASE^n + 1  |
                   # +------------------------------------+

   # void xn(mmul)(chiffre *a, chiffre *b, long n)
   # 
   # entre :
   # a = naturel de longueur n+1
   # b = naturel de longueur n+1 non confondu avec a
   # 
   # contrainte : n > 0
   # 
   # sortie :
   # a <- (a*b) mod (BASE^n + 1) avec 0 <= a[n] <= 1
   # b <- b mod (BASE^n + 1)

#ifdef assembly_sn_mmul
#define L(x) .Lsn_mmul_##x

        .align 5
#ifdef debug_mmul
        .globl sn_mmul_buggy
        .ent   sn_mmul_buggy
sn_mmul_buggy:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
#else
        .globl sn_mmul
        .ent   sn_mmul
sn_mmul:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):
#endif
        
        #define _a_  $16
        #define _b_  $17
        #define _n_  $18

        # normalise a
        s8addq  _n_, _a_, $20
        ldq     $0,  0($20)
        bis     _a_, _a_, $20
        bis     _n_, _n_, $2
        bsr     $27, sn_decloop
        bis     _a_, _a_, $20
        bis     _n_, _n_, $2
        bsr     $27, sn_incloop
        s8addq  _n_, _a_, $20
        stq     $0,  0($20)
        bis     $0,  $0,  $3

        # normalise b
        s8addq  _n_, _b_, $20
        ldq     $0,  0($20)
        bis     _b_, _b_, $20
        bis     _n_, _n_, $2
        bsr     $27, sn_decloop
        bis     _b_, _b_, $20
        bis     _n_, _n_, $2
        bsr     $27, sn_incloop
        s8addq  _n_, _b_, $20
        stq     $0,  0($20)

        # cas o l un des oprandes vaut BASE^n -> res = oppos(l autre)
        bis     $0,  $3,  $0
        beq     $0,  L(norm)
        cmoveq  $3,  _a_, _b_      # b <- nombre  opposer
        bis     $31, $31, $2       # r2 <- 0 (retenue)
        .align 5
L(neg):
        lda     _n_, -1(_n_)
        ldq     $1,  0(_b_)
        addq    $2,  $1,  $1
        cmpult  $1,  $2,  $2
        subq    $0,  $1,  $1
        stq     $1,  0(_a_)
        cmpult  $0,  $1,  $1
        addq    $2,  $1,  $2
        bis     $31, $31, $0
        lda     _a_, 8(_a_)
        lda     _b_, 8(_b_)
        bne     _n_, L(neg)
        addq    $31, 1,   $1
        subq    $1,  $2,  $1
        stq     $1,  0(_a_)
        ret     $31, ($26),1

         # oprandes normaliss, non gaux  BASE^n
         # si n est petit ou non divisible par 3, multiplication ordinaire
         # puis rduction :
         # a*b = x + y*BASE^n + z*BASE^(2n) = x - y + z mod (BASE^n + 1)
        .align 5
L(norm):
        cmpule _n_, mmul_lim, $0
        bne    $0, L(simple)
        lda    $0, 0x5555($31)
        sll    $0,  16,  $1
        or     $1,  $0,  $0
        sll    $0,  32,  $1
        or     $1,  $0,  $0     # r0 <- (BASE-1)/3
        umulh  $0,  _n_, $0
        addq   $0,  1,   $0     # r0 <- ceil(n/3) = p
        addq   $0,  _n_, $1     # r1 <- n+p, nul mod 4 ssi n = 3p
        and    $1,  3,   $1
        beq    $1,  L(decomp)
        
L(simple):
        s4addq _n_, 8,   $0     # rserve 2n+4 chiffres dans la pile
        sll    $0,  2,   $0
        subq   $30, $0,  $30
        stq    _a_, 0($30)      # sauve a,n et l adresse de retour
        stq    _n_, 8($30)
        stq    $26, 16($30)
        lda    $20, 24($30)     # r20 <- adresse tampon
        bis    _n_, _n_, $19    # r19 <- n
        bis    _b_, _b_, $18    # r18 <- &b
        bis    $19, $19, $17    # r17 <- n
        bsr    $26, .Lsn_toommul_nogp # c <- a*b

        # point de chute pour msqr
L(simple_aux):
        ldq    $20, 0($30)      # r20 <- a
        ldq    $17, 8($30)      # r17 <- n
        bis    $17, $17, $19    # r19 <- n
        lda    $16, 24($30)     # r16 <- &c
        s8addq $17, $16, $18    # r18 <- &c[n]
        bsr    $26, .Lsn_sub_nogp     # a <- c0 - c1
        ldq    $26, 16($30)     # rcupre l adresse de retour
        ldq    $20, 0($30)      # r20 <- &a
        ldq    $2,  8($30)      # r2  <- n
        lda    $30, 8($18)      # nettoie la pile
        s8addq $2,  $20,  $16   # r16 <- &a[n]
        bsr    $27, sn_incloop  # rinjecte la retenue
        stq    $0,  0($16)
        ret    $31, ($26),1
    
        #undef _a_
        #undef _b_
        #undef _n_
        
        # si n est divisible par 3, on dcompose en une multiplication
        # modulo BASE^p + 1 et une modulo BASE^(2p) - BASE^p + 1
        .align 5
L(decomp):
        #define _a_   0($30)
        #define _b_   8($30)
        #define _c_  32($30)
        #define _p_  16($30)
        #define _ra_ 24($30)
        
        # rserve 6p+4 chiffres dans la pile
        sll    $0,  1,   $1
        s4addq $0,  $1,  $1
        s8addq $1,  32,  $1
        subq   $30, $1,  $30
        stq    $16, _a_
        stq    $17, _b_
        stq    $0,  _p_
        stq    $26, _ra_

         # dcompose a et b modulo BASE^(2p) - BASE^p + 1 et BASE^p + 1
        bis    $16, $16, $17       # r17 <- &a
        bis    $0,  $0,  $18       # r18 <- p
        bsr    $26, .Lsn_mred_nogp # dcompose a sur place
        ldq    $16, _b_
        lda    $17, _c_
        ldq    $18, _p_
        bsr    $26, .Lsn_mred_nogp # dcompose b dans c[0..3p]

         # a[2p..3p] <- (a*b) mod BASE^p + 1
        ldq    $16, _a_
        lda    $17, _c_
        ldq    $18, _p_
        sll    $18, 1,   $0
        s8addq $0,  $16, $16    # r16 <- &a[2p]
        s8addq $0,  $17, $17    # r17 <- &c[2p]
        bsr    $26, .Lsn_mmul_nogp
        
        # c[2p..6p-1] <- (a*b) mod (BASE^(2p) - BASE^p + 1), non rduit
        ldq    $16, _a_
        lda    $18, _c_
        ldq    $17, _p_
        sll    $17, 1,   $17    # r17 <- 2p
        bis    $17, $17, $19    # r19 <- 2p
        s8addq $17, $18, $20    # r20 <- &c[2p]
        bsr    $26, .Lsn_toommul_nogp

        # point de chute pour msqr
L(decomp_aux):

        # a[0..2p-1] <- (a*b) mod (BASE^(2p) - BASE^p + 1)
        # a[2p..3p]  <- a[0..2p-1] - (a*b) mod (BASE^p + 1)
        ldq    $23, _p_
        ldq    $16, _a_         # r16 <- &a0
        lda    $19, _c_         # r19 <- &c2
        s8addq $23, $19, $19
        s8addq $23, $19, $19
        s8addq $23, $16, $17    # r17 <- &a1
        s8addq $23, $17, $18    # r18 <- &a2
        s8addq $23, $19, $20    # r20 <- &c3
        s8addq $23, $20, $21    # r21 <- &c4
        s8addq $23, $21, $22    # r22 <- &c5
        bis    $31, $31, $0     # r0  <- 0 (retenue(c2-c4-c5))
        bis    $31, $31, $1     # r1  <- 0 (retenue(c3+c4))
        bis    $31, $31, $2     # r2  <- 0 (retenue(a0-a1-a2))
        bis    $2,  $2,  $24    # r24 <- a2[p] (a2 mod (BASE-1))
        bis    $23, $23, $8     # r8 <- p (compteur)

        .align 5
1:
        ldq    $3,  0($19)      # r3 <- c2[i]
        ldq    $4,  0($20)      # r4 <- c3[i]
        ldq    $5,  0($21)      # r5 <- c4[i]
        ldq    $6,  0($22)      # r6 <- c5[i]
        addq   $5,  $6,  $6     # r6 <- c4[i] + c5[i]
        cmpult $6,  $5,  $7
        addq   $0,  $6,  $6     # r6 <- c4[i] + c5[i] + ret0
        cmpult $6,  $0,  $0
        addq   $7,  $0,  $0
        cmpult $3,  $6,  $7
        subq   $3,  $6,  $3     # r3 <- c2[i] - c4[i] - c5[i] - ret0
        addq   $7,  $0,  $0     # r0 <- retenue
        stq    $3,  0($16)      # sauve a0[i]
        addq   $4,  $5,  $4     # r4 <- c3[i] + c4[i]
        cmpult $4,  $5,  $5
        addq   $4,  $1,  $4     # r4 <- c3[i] + c4[i] + ret1
        cmpult $4,  $1,  $1
        addq   $5,  $1,  $1     # r1 <- retenue
        stq    $4,  0($17)      # sauve a1[i]
        ldq    $7,  0($18)      # r7 <- a2[i]
        addq   $4,  $2,  $4     # r4 <- a1[i] + ret2
        cmpult $4,  $2,  $2
        addq   $7,  $4,  $4     # r4 <- a1[i] + a2[i] + ret2
        cmpult $4,  $7,  $5
        addq   $5,  $2,  $2
        subq   $3,  $4,  $4     # r4 <- a0[i] - a1[i] - a2[i] - ret2
        cmpult $3,  $4,  $5
        addq   $2,  $5,  $2     # r2 <- retenue
        stq    $4,  0($18)      # sauve a2[i]
        addq   $4,  $24, $24    # mise  jour de a2 mod (BASE-1)
        cmpult $24, $4,  $4
        addq   $4,  $24, $24
        lda    $8,  -1($8)      # avance les pointeurs
        lda    $16, 8($16)
        lda    $17, 8($17)
        lda    $18, 8($18)
        lda    $19, 8($19)
        lda    $20, 8($20)
        lda    $21, 8($21)
        lda    $22, 8($22)
        bne    $8,  1b

        addq   $0,  $2,  $2     # r2 <- retenue finale sortant de a2
        addq   $1,  $2,  $2
        ldq    $3,  0($18)
        addq   $2,  $3,  $2

        # propage la retenue sur a1 (0,-1,-2)
        beq    $0,  2f
        bis    $23, $23, $8
1:
        ldq    $3,  0($16)
        subq   $3,  $0,  $0
        stq    $0,  0($16)
        cmpult $3,  $0,  $0
        beq    $0,  2f
        lda    $8,  -1($8)
        lda    $16, 8($16)
        bne    $8,  1b
        subq   $1,  $0,  $1
2:

        # recycle la retenue sur a2 (-1,0,1)
        beq    $1,  3f
        bis    $23, $23, $8     # r8 <- p
        sll    $23, 3,   $0
        subq   $17, $0,  $19    # r19 <- &a1
        subq   $19, $0,  $16    # r16 <- &a0
        subq   $31, $1,  $0     # r0 <- -r1  
        subq   $2,  $1,  $2     # ret(a2) -= 3*r1
        subq   $2,  $1,  $2
        subq   $2,  $1,  $2
1:
        ldq    $3,  0($16)      # a0 -= r1
        addq   $3,  $0,  $3
        stq    $3,  0($16)
        cmpult $3,  $0,  $3
        sra    $0,  1,   $0
        addq   $3,  $0,  $0
        beq    $0,  2f
        lda    $8,  -1($8)
        lda    $16, 8($16)
        bne    $8,  1b
        br     $31, 3f
        
2:
        ldq    $3,  0($19)      # a1 += r1
        addq   $3,  $1,  $3
        stq    $3,  0($19)
        cmpult $3,  $1,  $3
        sra    $1,  1,   $1
        addq   $3,  $1,  $1
        lda    $19, 8($19)
        bne    $1,  2b
3:

        # Ici -r2 contient la retenue sortant de a2 (entre -3 et 8) et
        # r24 contient le rsidu de a2 modulo BASE-1.
        # On doit recycler la retenue sortante et faire en sorte que le
        # nombre final soit non nul, divisible par 3
        # -> ajouter (x-r2)*BASE^p + x
        # avec 2x + r24 - r2 = 0 mod 3 et 0 < x-r2 <= BASE-2

        subq   $24, $2,  $0     # r0 <- x = r24 - r2 mod (BASE-1)
        cmpult $24, $0,  $24
        sra    $2,  63,  $3
        addq   $24, $3,  $24
        subq   $0,  $24, $0
        subq   $0,  $2,  $1     # r1:(-r2) <- x-r2 mod BASE^2
        cmpult $0,  $1,  $2
        addq   $2,  $3,  $2
        addq   $31, 9,   $3     # r3 <-  9 (correctif si x - r2 <  BASE/2)
        subq   $31, 9,   $4     # r4 <- -9 (correctif si x - r2 >= BASE/2)
	cmovgt $2,  $3,  $4     # x - r2 < 0       =>  9  9
	cmovlt $2,  $4,  $3     # x - r2 >= BASE   => -9 -9
	cmovlt $1,  $4,  $3     # x - r2 >= BASE/2 => -9 -9
        addq   $3,  $0,  $0     # corrige x et x-r2
        addq   $3,  $1,  $1
        bis    $23, $23, $8     # ajoute x
1:
        ldq    $3,  0($17)
        addq   $3,  $0,  $3
        cmpult $3,  $0,  $0
        stq    $3,  0($17)
        beq    $0,  2f
        lda    $8,  -1($8)
        lda    $17, 8($17)
        bne    $8,  1b
2:
        addq   $0,  $1,  $1    # a2[p] <- x-r2 + ret
        stq    $1,  0($18)

        # a2 <- a2/(-3), a0 <- a0 + a2/(-3), a1 <- a1 - a2/(-3)
        ldq    $16, _a_         # r16 <- &a0
        s8addq $23, $16, $17    # r17 <- &a1
        s8addq $23, $17, $18    # r18 <- &a2
        lda    $0, 0x5555($31)
        sll    $0,  16,  $1
        or     $1,  $0,  $0
        sll    $0,  32,  $1
        or     $1,  $0,  $0     # r0 <- (BASE-1)/3
        bis    $31, $31, $1     # r1 <- 0 (retenue(a2*(BASE-1)/3))
        bis    $31, $31, $2     # r2:r3 <- 0 (retenue(a2/(-3)))
        bis    $31, $31, $3
        bis    $31, $31, $4     # r4 <- 0 (retenue(a0+a2))
        bis    $31, $31, $5     # r5 <- 0 (retenue(a1-a2))
        addq   $23, 1,   $8     # r8 <- p+1
        .align 5
1:
        ldq    $6,  0($18)      # r6 <- a2[i]
        mulq   $6,  $0,  $7     # r7:r6 <- a2[i]*(BASE-1)/3
        umulh  $6,  $0,  $6
        addq   $1,  $7,  $7     # r7:r1 <- a2[i]*(BASE-1)/3 + ret
        cmpult $7,  $1,  $1
        addq   $6,  $1,  $1
        addq   $7,  $2,  $2     # r2:r3 <- a2/(-3)[i] + ret
        cmpult $2,  $7,  $7
        addq   $3,  $2,  $2
        cmpult $2,  $3,  $3
        addq   $7,  $3,  $3
        stq    $2,  0($18)      # sauve a2/(-3)[i]
        ldq    $6,  0($16)      # r6 <- a0[i]
        addq   $2,  $6,  $6     # r6:r4 <- a0[i] + a2/(-3)[i] + ret
        cmpult $6,  $2,  $7
        addq   $4,  $6,  $6
        cmpult $6,  $4,  $4
        addq   $7,  $4,  $4
        stq    $6,  0($16)      # sauve a0[i]
        ldq    $6,  0($17)      # r6 <- a1[i]
        addq   $2,  $5,  $5     # r6:r5 <- a1[i] - a2/(-3)[i] + ret
        cmpult $5,  $2,  $7
        subq   $6,  $5,  $5
        cmpult $6,  $5,  $6
        stq    $5,  0($17)      # sauve a1[i]
        addq   $6,  $7,  $5
        lda    $8,  -1($8)      # avance les pointeurs
        lda    $16, 8($16)
        lda    $17, 8($17)
        lda    $18, 8($18)
        bne    $8,  1b

        subq   $4,  1,  $4
        subq   $5,  1,  $5
        bis    $23, $23, $7     # r7 <- p
        addq   $23, $23, $8     # r8 <- 2p

        # propage la retenue sortant de a0 (-1,0,1)
1:
        ldq    $0,  0($16)
        addq   $0,  $4,  $0
        stq    $0,  0($16)
        cmpult $0,  $4,  $0
        sra    $4,  1,   $4
        addq   $0,  $4,  $4
        beq    $4,  2f
        lda    $8,  -1($8)
        lda    $16, 8($16)
        bne    $8,  1b

        # propage la retenue sortant de a1 (-1,0,1)
2:
        ldq    $0,  0($17)
        subq   $0,  $5,  $1
        stq    $1,  0($17)
        cmpult $0,  $1,  $0
        sra    $5,  1,   $5
        addq   $0,  $5,  $5
        beq    $5,  3f
        lda    $7,  -1($7)
        lda    $17, 8($17)
        bne    $7,  2b

        # recycle la retenue sortant de a2 (r4 - r5 + BASE)
        # on incorpore le chiffre a2[p]-1 et on laisse 1 dans a2[p] pour
        # absorber une retenue ventuelle
3:
        addq   $31, 1,   $1
        addq   $31, 1,   $2
        ldq    $0,  -8($18)
        stq    $2,  -8($18)
        cmpult $0,  1,   $2
        subq   $0,  1,   $0
        subq   $1,  $2,  $1
        addq   $4,  $0,  $0
        cmpult $0,  $0,  $2
        addq   $2,  $1,  $1
        cmpult $0,  $5,  $2
        subq   $0,  $5,  $0
	subq   $2,  $1,  $1
        ldq    $18, _a_
        ldq    $2,  0($18)
        subq   $2,  $0,  $3
        stq    $3,  0($18)
        cmpult $2,  $3,  $0
        addq   $0,  $1,  $0
        beq    $0,  5f
4:
        lda    $18, 8($18)
        ldq    $2,  0($18)
        subq   $2,  $0,  $3
        stq    $3,  0($18)
        cmpult $2,  $3,  $1
        sra    $0,  1,   $0
        addq   $0,  $1,  $0
        bne    $0,  4b
5:

        # termin
L(done):
        ldq    $26, _ra_
        bis    $22, $22, $30    # nettoie la pile
        ret    $31, ($26),1

        #undef _a_
        #undef _b_
        #undef _c_
        #undef _p_
        #undef _ra_

#undef L
#ifdef debug_mmul
        .end sn_mmul_buggy
#else
        .end sn_mmul
#endif
#undef L
#endif /* assembly_sn_mmul */
#if !defined(assembly_sn_mmul) || defined(debug_mmul)
        REPLACE(sn_mmul)
#endif

                        # +---------------------------+
                        # |  Carr modulo BASE^n + 1  |
                        # +---------------------------+

   #  void xn(msqr)(chiffre *a, long n)
   #
   #  entre :
   #  a = naturel de longueur n+1
   #
   #  contrainte : n > 0
   #
   #  sortie :
   #  a <- a^2 mod (BASE^n + 1), le chiffre de poids fort vaut 0 ou 1

#ifdef assembly_sn_msqr
#define L(x) .Lsn_msqr_##x

        .align 5
#ifdef debug_mmul
        .globl sn_msqr_buggy
        .ent   sn_msqr_buggy
sn_msqr_buggy:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
#else
        .globl sn_msqr
        .ent   sn_msqr
sn_msqr:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):
#endif
        
        #define _a_  $16
        #define _n_  $17

        # normalise a
        s8addq  _n_, _a_, $20
        ldq     $0,  0($20)
        bis     _a_, _a_, $20
        bis     _n_, _n_, $2
        bsr     $27, sn_decloop
        bis     _a_, _a_, $20
        bis     _n_, _n_, $2
        bsr     $27, sn_incloop
        s8addq  _n_, _a_, $20

        # cas o a = BASE^n -> res = 1
        beq     $0,  L(norm)
        stq     $0,  0(_a_)
        stq     $31, 0($20)
        ret     $31, ($26),1

         # oprande normalis, non gal  BASE^n
         # si n est petit ou non divisible par 3, carrz ordinaire puis rduction
        .align 5
L(norm):
        stq     $0,  0($20)
        cmpule  _n_, msqr_lim, $0
        bne     $0, L(simple)
        lda    $0, 0x5555($31)
        sll    $0,  16,  $1
        or     $1,  $0,  $0
        sll    $0,  32,  $1
        or     $1,  $0,  $0     # r0 <- (BASE-1)/3
        umulh  $0,  _n_, $0
        addq   $0,  1,   $0     # r0 <- ceil(n/3) = p
        addq   $0,  _n_, $1     # r1 <- n+p, nul mod 4 ssi n = 3p
        and    $1,  3,   $1
        beq    $1,  L(decomp)
        
L(simple):
        s4addq _n_, 8,   $0     # rserve 2n+4 chiffres dans la pile
        sll    $0,  2,   $0
        subq   $30, $0,  $30
        stq    _a_, 0($30)      # sauve a,n et l adresse de retour
        stq    _n_, 8($30)
        stq    $26, 16($30)
        lda    $18, 24($30)     # r18 <- adresse tampon
        bsr    $26, .Lsn_toomsqr_nogp # c <- a^2
        br     $31, .Lsn_mmul_simple_aux # continue avec mmul
    
        #undef _a_
        #undef _n_
        
        # si n est divisible par 3, on dcompose en un carr
        # modulo BASE^p + 1 et un modulo BASE^(2p) - BASE^p + 1
        .align 5
L(decomp):

        #define _a_   0($30)
        #define _b_   8($30)
        #define _c_  32($30)
        #define _p_  16($30)
        #define _ra_ 24($30)
        
        # rserve 6p+4 chiffres dans la pile
        sll    $0,  1,   $1
        s4addq $0,  $1,  $1
        s8addq $1,  32,  $1
        subq   $30, $1,  $30
        stq    $16, _a_
        stq    $16, _b_
        stq    $0,  _p_
        stq    $26, _ra_

         # dcompose a modulo BASE^(2p) - BASE^p + 1 et BASE^p + 1
        bis    $16, $16, $17       # r17 <- &a
        bis    $0,  $0,  $18       # r18 <- p
        bsr    $26, .Lsn_mred_nogp # dcompose a sur place

         # a[2p..3p] <- a^2 mod BASE^p + 1
        ldq    $16, _a_
        ldq    $17, _p_
        sll    $17, 1,   $0
        s8addq $0,  $16, $16    # r16 <- &a[2p]
        bsr    $26, .Lsn_msqr_nogp
        
        # c[2p..6p-1] <- a^2 mod (BASE^(2p) - BASE^p + 1), non rduit
        ldq    $16, _a_
        lda    $18, _c_
        ldq    $17, _p_
        sll    $17, 1,   $17    # r17 <- 2p
        s8addq $17, $18, $18    # r18 <- &c[2p]
        bsr    $26, .Lsn_toomsqr_nogp
        br     $31, .Lsn_mmul_decomp_aux # continue avec mmul

        #undef _a_
        #undef _b_
        #undef _c_
        #undef _p_
        #undef _ra_

#undef L
#ifdef debug_mmul
        .end sn_msqr_buggy
#else
        .end sn_msqr
#endif
#undef L
#endif /* assembly_sn_msqr */
#if !defined(assembly_sn_msqr) || defined(debug_mmul)
        REPLACE(sn_msqr)
#endif

                      # +------------------------------+
                      # |  Papillon modulo BASE^n + 1  |
                      # +------------------------------+

   # void xn(butterfly1)(chiffre *a, chiffre *b, long n, long q, int s)
   #
   #  entre :
   #  a = naturel de longueur n+1
   #  b = naturel de longueur n+1 non confondu avec a
   #  q = entier positif ou nul
   #  s = 0 ou 1
   #
   #  contraintes : n >= 3 et si q est impair, n doir tre pair
   #
   #  sortie :
   #  a <- a + (-1)^s * b * 2^(q/2) mod (BASE^n + 1)
   #  b <- a - (-1)^s * b * 2^(q/2) mod (BASE^n + 1)
   #
   #  remarque : 2^(1/2) = BASE^(3n/4)*(BASE^(n/2) + 1) mod (BASE^n + 1)

#ifdef assembly_sn_butterfly
#define L(x) .Lsn_butterfly_##x

        .align 5
#ifdef debug_butterfly
        .globl sn_butterfly_buggy
        .ent   sn_butterfly_buggy
sn_butterfly_buggy:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
#else
        .globl sn_butterfly
        .ent   sn_butterfly
sn_butterfly:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
#endif

	# sauvegarde les paramtres
	#define _a_  $22
	#define _b_  $23
	#define _n_  $24
	#define _q_  $19
	#define _s_  $28
	
	bis    $16, $16, _a_
	bis    $17, $17, _b_
	bis    $18, $18, _n_
	bis    $20, $20, _s_

        # force 2 <= a[n] <= BASE-3 pour absorber les retenues
	s8addq _n_, _a_, $0	# r0 <- &a[n]
	ldq    $1,  0($0)		# r1 <- a[n]
	cmpult $1,  2,   $2	# r2 <- a[n] < 2 ?
	addq   $1,  2,   $3	# r3 <- a[n] >= BASE-2 ?
	cmpult $3,  $1,  $3
	subq   $2,  $3,  $2	# r2 <- 1 si a[n] < 2, -1 si a[n] >= BASE-2, 0 sinon
	beq    $2,  2f		# pas besoin de correction
	sll    $2,  1,   $2	# r2 <- 2 ou -2
	addq   $2,  $1,  $1	# a <- a + r2*(BASE^n + 1)
	stq    $1,  0($0)
	bis    _a_, _a_, $0
1:
	ldq    $1,  0($0)
	addq   $1,  $2,  $1
	stq    $1,  0($0)
	cmpult $1,  $2,  $1
	sra    $2,  2,   $2
	addq   $1,  $2,  $2
	lda    $0,  8($0)
	bne    $2,  1b
2:

	# si q est impair, multiplie b par BASE^(n/2) + 1
	blbc   _q_, L(q_even)
	s4subq _n_, _n_, $0	# q <- q + 3*n*HW/2
	sll    $0,  5,   $0
	addq   _q_, $0,  _q_
	s8addq _n_, _b_, $7	# r7 <- b[n]
	ldq    $7,  0($7)
	srl    _n_, 1,   $2	# r2 <- -n/2
	subq   $31, $2,  $2
	and    $2,  31,  $3	# r3 <- (-n/2) mod 32
	bic    $2,  31,  $2	# r2 <- -32*ceil(n/64)
	sll    $3,  3,   $4
	subq   _b_, $4,  $16	# r16 <- &a0[-(-n/2) mod 32]
	s4addq _n_, $16, $18	# r18 <- &a1[-(-n/2) mod 32]
	s4addq _n_, $16, $20	# r20 <- &a1[-(-n/2) mod 32]
	bis    $16, $16, $21	# r21 <- &a0[-(-n/2) mod 32]
	subq   $4,  $3,  $4	# r27 <- adresse de saut dans addsubloop
	lda    $27, sn_addsubloop
	s8addq $4,  $27, $27
	bis    $31, $31, $0	# r0 <- 0 (retenue(b0+b1)
	srl    $7,  1,   $1	# r1 <- floor(b[n]/2) (retenue(b0-b1)
	subq   $7,  $1,  $8	# r8 <- ceil(b[n]/2)
	jsr    $27, ($27)	# b0 <- b0-b1-b[n]/2, b1 <- b1+b0
	addq   $0,  $8,  $8	# b[n] <- retenue sortant du haut
	stq    $8,  0($20)
	addq   $7,  $1,  $1	# r1:r0 <- retenue sortant du bas
	cmpult $1,  $7,  $0
	ldq    $2,  0($21)	# cumule  b1[0]
	subq   $2,  $1,  $1
	stq    $1,  0($21)
	cmpult $2,  $1,  $1
	addq   $1,  $0,  $0	# r0 <- nouvelle retenue
	lda    $20, 8($21)
	subq   $31, 1,   $2
	bsr    $27, sn_decloop	# la propage sur b1 (pas de dbordement)
	.align 5
L(q_even):
        
	# dcompose le dcalage en nombre et fraction de chiffre
	srl    _q_, 1,   $8	# r8 <- (q/2) mod HW = k
	and    $8,  63,  $8
	srl    _q_, 7,   _q_	# q <- (q/2)/HW
1:
	cmpult _q_, _n_, $1
	subq   _q_, _n_, _q_	# rduit q modulo n
	xor    _s_, 1,   _s_
	beq    $1, 1b
	addq   _q_, _n_, _q_
	
	# b <- b*2^k mod (BASE^n + 1), normalis
	beq    $8,  1f
	addq   $31, 64,  $7	# r7 <- 64-k
	subq   $7,  $8,  $7
	subq   $31, _n_, $2	# r2 <- -n
	and    $2,  31,  $3	# r3 <- (-n) mod 32
	bic    $2,  31,  $2	# r2 <- -32*ceil(n/32)
	sll    $3,  3,   $4
	subq   _b_, $4,  $16	# r16 <- &b[-(-n) mod 32]
	subq   _b_, $4,  $20	# r20 <- &b[-(-n) mod 32]
	s4addq $3,  $3,  $3
	lda    $27, sn_shuploop	# r27 <- adresse de saut dans shuploop
	s4addq $3,  $27, $27
	bis    $31, $31, $0	# r0 <- 0 (retenue)
	jsr    $27, ($27)		# b[0..n-1] <<= k
	ldq    $1,  0($16)	# dcale le dernier chiffre dans r0:r1
	sll    $1,  $8,  $3
	bis    $0,  $3,  $0
	srl    $1,  $7,  $1
	br     $31, 2f
	.align 5
1:
	s8addq _n_, _b_, $20	# cas k=0: normalise b
	ldq    $0,  0($20)	# r0:r1 <- b[n]
	bis    $31, $31, $1
2:
	ldq    $2,  0(_b_)	# traite le premier chiffre  part
	subq   $2,  $0,  $0
	stq    $0,  0(_b_)
	cmpult $2,  $0,  $0
	addq   $1,  $0,  $0	# r0 <- retenue sur b[1]
	lda    $20, 8(_b_)	# r20 <- &b[1]
	subq   _n_, 1,   $2	# r2 <- n-1
	bsr    $27, sn_decloop	# b[1..n-1] -= ret
	bis    _b_, _b_, $20	# recycle la retenue sortante
	bis    _n_, _n_, $2
	bsr    $27, sn_incloop
	bis    $0,  $0,  $7	# r7 <- retenue

	# x <- b*BASE^q mod (BASE^n + 1)
	bne    _q_, 1f		# si q = 0, n effectue pas la copie
	bis    $31, $31, $8	# r8 <- 0 (nb chiffres empils)
	bis    _b_, _b_, $18	# r18 <- b = x
	s8addq _n_, _b_, $20
	stq    $7,   0($20)	# sauve b[n]
	br     $31, L(add_sub)
	.align 5
1:
	addq   _n_, 2,   $8	# r8 <- n+1, arrondi au pair suprieur
	bic    $8,  1,   $8
	sll    $8,  3,   $0	# rserve ce nombre de chiffres dans la pile
	subq   $30, $0,  $30
	subq   _n_, _q_, $6	# si q <= n-q, dcale vers le haut
	cmpule _q_, $6,  $5	# sinon dcale vers le bas
	bne    $5,  L(shift_up)

	# ici q > n-q, multiplie par BASE^(n-q) et inverse le signe
	xor    _s_, 1,   _s_
	s8addq $6,  _b_, $16	# r16 <- &b[n-q]
	subq   $31, _q_, $2
	and    $2,  31,  $3	# r3 <- 8*((-q) mod 32)
	sll    $3,  3,   $3
	lda    $27, sn_cpuploop
	subq   $16, $3,  $16	# cadre les pointeurs
	subq   $30, $3,  $20
	addq   $27, $3,  $27
	bic    $2,  31,  $2	# r2 <- -32*ceil(q mod 32)
	jsr    $27, ($27)	# x[0..q-1] <- b[n-q..n-1]
	bis    _b_, _b_, $16	# x[q] <- b[n] - b[0]
	ldq    $1,  0($16)
	subq   $7,  $1,  $1
	stq    $1,  0($20)
	cmpult $7,  $1,  $0
	br     $31, 2f
	.align 5
1:
	ldq    $1,  0($16)	# retranche b[1..q-1]
	addq   $1,  $0,  $1
	cmpult $1,  $0,  $0
	subq   $31, $1,  $1
	stq    $1,  0($20)
	cmpult $31, $1,  $1
	addq   $1,  $0,  $0
2:
	lda    $6, -1($6)
	lda    $16, 8($16)
	lda    $20, 8($20)
	bne    $6,  1b
	stq    $31, 0($20)	# x[n] <- 0
	subq   $31, 1,   $2
	bis    $30, $30, $20
	bsr    $27, sn_incloop	# propage la retenue
	bis    $30, $30, $18	# r18 <- &x
	br     $31, L(add_sub)

	# ici q >= n-q, multiplie par BASE^q	
	.align 5
L(shift_up):
	s8addq _q_, $30, $20	# r20 <- &x[q]
	subq   _q_, _n_, $2
	and    $2,  31,  $3	# r3 <- 8*((q-n) mod 32)
	sll    $3,  3,   $3
	lda    $27, sn_cpuploop
	subq   _b_, $3,  $16	# cadre les pointeurs
	subq   $20, $3,  $20
	addq   $27, $3,  $27
	bic    $2,  31,  $2	# r2 <- -32*ceil((n-q) mod 32)
	jsr    $27, ($27)	# x[q..n-1] <- b[0..n-q-1]
	addq   $31, 1,   $0
	stq    $0,  0($20)	# x[n] <- 1
	bis    $30, $30, $20	# r20 <- &x[0]
	beq    _q_, 3f
	ldq    $1,  0($16)
	subq   $0,  $1,  $1	# x[0] <- 1 - b[q]
	cmpult $0,  $1,  $0
	stq    $1,  0($20)
	br     $31, 2f		# retranche b[1..q-1]
	.align 5
1:
	ldq    $1,  0($16)
	addq   $1,  $0,  $1
	cmpult $1,  $0,  $0
	subq   $31, $1,  $1
	stq    $1,  0($20)
	cmpult $31, $1,  $1
	addq   $1,  $0,  $0
2:
	lda    _q_, -1(_q_)
	lda    $16, 8($16)
	lda    $20, 8($20)
	bne    _q_, 1b
	addq   $0,  $7,  $0	# ret += b[n]
	subq   $31, 1,   $2
	bsr    $27, sn_decloop	# propage la retenue
	bis    $30, $30, $18	# r18 <- &x

	# a <- a - (-1)^s*x, b <- a + (-1)^s*x
L(add_sub):
	bis    _a_, _a_, $16	# r16 <- &a
	bis    _b_, _b_, $20	# r20 <- &b
	addq   _n_, 1,   $2
	subq   $31, $2,  $2
	and    $2,  31,  $3	# r3 <- (-n-1) mod 32
	bic    $2,  31,  $2	# r2 <- -32*ceil((n+1)/32)
	sll    $3,  3,   $0
	subq   $16, $0,  $16	# cadre les pointeurs
	subq   $18, $0,  $18
	subq   $20, $0,  $20
	lda    $27, sn_addsubloop
	subq   $0,  $3,  $0
	s8addq $0,  $27, $27	# r27 <- adresse de saut dans addsubloop
	cmoveq _s_, $16, $21	# r21 <- &a si s = 0
	cmovne _s_, $20, $21	# r21 <- &a si s = 1
	cmovne _s_, $16, $20	# r20 <- &b si s = 1
	bis    $31, $31, $0	# init retenues
	bis    $31, $31, $1
	jsr    $27, ($27)		# effectue l addition-soustraction

	# termin
	s8addq $8,  $30, $30	# nettoie la pile
	ret    $31, ($26),1
	
	#undef _a_
	#undef _b_
	#undef _n_
	#undef _q_
	#undef _s_
	
#ifdef debug_butterfly
        .end sn_butterfly_buggy
#else
        .end sn_butterfly
#endif
#undef L
#endif /* assembly_sn_butterfly */