File: smod.S

package info (click to toggle)
numerix 0.22-4
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 4,380 kB
  • ctags: 4,165
  • sloc: asm: 26,210; ansic: 12,168; ml: 4,912; sh: 3,899; pascal: 414; makefile: 179
file content (1549 lines) | stat: -rw-r--r-- 37,402 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
// file kernel/n/alpha/smod.S: operations on residues modulo BASE^n - 1
/*-----------------------------------------------------------------------+
 |  Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org)      |
 |                                                                       |
 |  This file is part of Numerix. Numerix is free software; you can      |
 |  redistribute it and/or modify it under the terms of the GNU Lesser   |
 |  General Public License as published by the Free Software Foundation; |
 |  either version 2.1 of the License, or (at your option) any later     |
 |  version.                                                             |
 |                                                                       |
 |  The Numerix Library is distributed in the hope that it will be       |
 |  useful, but WITHOUT ANY WARRANTY; without even the implied warranty  |
 |  of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU  |
 |  Lesser General Public License for more details.                      |
 |                                                                       |
 |  You should have received a copy of the GNU Lesser General Public     |
 |  License along with the GNU MP Library; see the file COPYING. If not, |
 |  write to the Free Software Foundation, Inc., 59 Temple Place -       |
 |  Suite 330, Boston, MA 02111-1307, USA.                               |
 +-----------------------------------------------------------------------+
 |                                                                       |
 |                     Arithmtique modulo BASE^n - 1                    |
 |                                                                       |
 +-----------------------------------------------------------------------*/

                    # +----------------------------------+
                    # |  Soustraction modulo BASE^n - 1  |
                    # +----------------------------------+

   # void xn(ssub)(chiffre *a, long la, chiffre *b, long lb)
   #
   # entre :
   # a = naturel de longueur la
   # b = naturel de longueur n > 0
   #
   # sortie :
   # b <- (a - b) mod (BASE^n - 1), non normalis

#ifdef assembly_sn_ssub
#undef L
#define L(x) .Lsn_ssub_##x

        .align 5
        .globl sn_ssub
        .ent   sn_ssub
sn_ssub:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):

	bis     $18, $18, $5	# r5 <- &b
	
	# si la <= n, b <- a + BASE^n - 1 - b
	cmpule  $17, $19, $0
	beq     $0,  L(big)
	addq    $31, 1,   $0	# r0 <- 1 (retenue)
	beq     $17, 1f		# si la = 0, rien  ajouter
	subq    $31, $17, $2	# r2 <- -la
	and     $2,  31,  $3	# r3 <- (-la) mod 32
	bic     $2,  31,  $2	# r2 <- -32*ceil(la/32)
	sll     $3,  3,   $3	# r3 <- 8*((-la) mod 32)
	lda     $27, sn_subloop
	subq    $16, $3,  $16	# cadre les pointeurs
	subq    $18, $3,  $18
	bis     $18, $18, $20
	s4addq  $3,  $27, $27
	jsr     $27, ($27)	# b[0..la-1] <- a - b[0..la-1] - 1
1:
	subq    $19, $17, $2	# r2 <- n - la
2:
	ldq     $1,  0($18)	# b[la..n-1] <- - b[la..n-1] - ret
	addq    $1,  $0,  $1
	cmpult  $1,  $0,  $0
	subq    $31, $1,  $1
	stq     $1,  0($18)
	cmpult  $31, $1,  $1
	addq    $1,  $0,  $0
	lda     $2,  -1($2)
	lda     $18, 8($18)
	bne     $2, 2b

	# recycle la retenue
	xor     $0,  1,   $0
	br      $31, L(cycle)

	# cas la > n : cumule par blocs de n chiffres
	.align 5
L(big):
	subq    $31, $19, $2
	and     $2,  31,  $4
	bic     $2,  31,  $2	# r2 <- -32*ceil(n/32)
	sll     $4,  3,   $4	# r4 <- 8*((-n) mod 32
	lda     $27, sn_subloop
	lda     $28, sn_addloop
	subq    $16, $4,  $16	# cadre les pointeurs
	subq    $18, $4,  $18
	bis     $18, $18, $20
	s4addq  $4,  $27, $27	# r27 <- adresse de saut pour subloop
	s4addq  $4,  $28, $28	# r28 <- adresse de saut pour addloop
	bis     $2,  $2,  $6	# r6 <- -32*ceil(n/32)
	subq    $17, $19, $17	# la -= 2n
	subq    $17, $19, $17
	addq    $31, 1,   $0	# r0 <- 1 (retenue)
	jsr     $27, ($27)	# b <- a[0..n-1] - b - 1
	xor     $0,  1,   $0	# complmente la retenue
	blt     $17, 2f
1:
	subq    $17, $19, $17	# la -= n
	subq    $16, $4,  $16	# recadre les pointeurs
	subq    $5,  $4,  $18
	subq    $5,  $4,  $20
	bis     $6,  $6,  $2	# r2 <- -32*ceil(n/32)
	jsr     $27, ($28)	# b += a[i..i+n-1] + ret
	bge     $17, 1b
2:

	# ajoute le dernier bloc
	addq    $17, $19, $2	# r2 <- -la
	subq    $31, $2,  $2
	beq     $2, L(cycle)
	and     $2,  31,  $4
	sll     $4,  3,   $4	# r4 <- 8*((-la) mod 32
	bic     $2,  31,  $2	# r2 <- -32*ceil(la/32)
	lda     $28, sn_addloop
	s4addq  $4,  $28, $28	# r28 <- adresse de saut pour addloop
	subq    $16, $4,  $16	# cadre les pointeurs
	subq    $5,  $4,  $18
	subq    $5,  $4,  $20
	jsr     $27, ($28)	# b += a[i..la-1] + ret
	subq    $31, $17, $2	# r2 <- n-la
	bsr     $27, sn_incloop # propage la retenue

	# recycle la dernire retenue
L(cycle):
	bis     $5,  $5,  $20	# r20 <- &b
	bis     $19, $19, $2	# r2  <- n
	bsr     $27, sn_incloop # b += ret
	beq     $0,  1f
	stq     $0,  0($5)	# si la retenue ressort, b <- 1
1:
	ret     $31, ($26),1

        .end   sn_ssub
#undef L
#endif /* assembly_sn_ssub */

#if defined(assembly_sn_smul) || defined(assembly_sn_ssqr)

                      # +-------------------------------+
                      # |  Rduction modulo BASE^n - 1  |
                      # +-------------------------------+

   # void xn(sred)(chiffre *a, long la, chiffre *b, long n)
   #
   # entre :
   #   a = naturel de longueur la
   #   b = naturel de longueur n
   #
   # contraintes : n > 0, la >= 0
   #
   # sortie :
   #   b <- a mod BASE^n - 1

#define L(x) .Lsn_sred_##x

        .align 5
        .globl sn_sred
        .ent   sn_sred
sn_sred:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):

	# si la <= n, copie a dans b et complte par des zros
	cmpule  $17, $19, $0
	beq     $0,  L(big)
	bis     $18, $18, $20	# r20 <- &b
	beq     $17, 1f		# si la = 0, rien  copier
	subq    $31, $17, $2	# r2 <- -la
	subq    $19, $17, $19	# n <- n - la
	and     $2,  31,  $3	# r3 <- (-la) mod 32
	bic     $2,  31,  $2	# r2 <- -32*ceil(la/32)
	sll     $3,  3,   $3	# r3 <- 8*((-la) mod 32)
	lda     $27, sn_cpuploop
	subq    $16, $3,  $16	# cadre les pointeurs
	subq    $20, $3,  $20
	addq    $27, $3,  $27
	jsr     $27, ($27)	# copie a
	beq     $19, 2f
1:
	lda     $19, -1($19)
	stq     $31, 0($20)	# complte par des zros
	lda     $20, 8($20)
	bne     $19, 1b
2:
	ret     $31, ($26),1

	# cas la > n : cumule par blocs de n chiffres
	.align 5
L(big):
	subq    $31, $19, $2
	and     $2,  31,  $4
	bic     $2,  31,  $2	# r2 <- -32*ceil(n/32)
	sll     $4,  3,   $4	# r4 <- 8*((-n) mod 32
	lda     $27, sn_cpuploop
	lda     $28, sn_addloop
	subq    $16, $4,  $16	# cadre les pointeurs
	subq    $18, $4,  $20
	addq    $27, $4,  $27	# r27 <- adresse de saut pour cpuploop
	s4addq  $4,  $28, $28	# r28 <- adresse de saut pour addloop
	bis     $18, $18, $5	# r5 <- &b
	bis     $2,  $2,  $6	# r6 <- -32*ceil(n/32)
	bis     $31, $31, $0	# r0 <- 0 (retenue  recycler)
	subq    $17, $19, $17	# la -= 2n
	subq    $17, $19, $17
	jsr     $27, ($27)	# b <- a[0..n-1]
	blt     $17, 2f
1:
	subq    $17, $19, $17	# la -= n
	subq    $16, $4,  $16	# recadre les pointeurs
	subq    $5,  $4,  $18
	subq    $5,  $4,  $20
	bis     $6,  $6,  $2	# r2 <- -32*ceil(n/32)
	jsr     $27, ($28)	# b += a[i..i+n-1] + ret
	bge     $17, 1b
2:

	# ajoute le dernier bloc
	addq    $17, $19, $2	# r2 <- -la
	subq    $31, $2,  $2
	beq     $2, L(cycle)
	and     $2,  31,  $4
	sll     $4,  3,   $4	# r4 <- 8*((-la) mod 32
	bic     $2,  31,  $2	# r2 <- -32*ceil(la/32)
	lda     $28, sn_addloop
	s4addq  $4,  $28, $28	# r28 <- adresse de saut pour addloop
	subq    $16, $4,  $16	# cadre les pointeurs
	subq    $5,  $4,  $18
	subq    $5,  $4,  $20
	jsr     $27, ($28)	# b += a[i..la-1] + ret
	subq    $31, $17, $2	# r2 <- n-la
	bsr     $27, sn_incloop # propage la retenue

	# recycle la dernire retenue
L(cycle):
	bis     $5,  $5,  $20	# r20 <- &b
	bis     $19, $19, $2	# r2  <- n
	bsr     $27, sn_incloop # b += ret
	beq     $0,  1f
	stq     $0,  0($5)	# si la retenue ressort, b <- 1
1:
	ret     $31, ($26),1

        .end   sn_sred
#undef L

	
             # +-------------------------------------------------+
             # |  Dcomposition modulo BASE^p - 1 et BASE^p + 1  |
             # +-------------------------------------------------+

   # void xn(split_even)(chiffre *a, chiffre *b, chiffre *c, long p)
   #
   # entre :
   #  a = naturel de longueur 2p
   #  b = naturel de longueur p
   #  c = naturel de longueur p+1
   #
   # contrainte :  p > 0, a,b,c non confondus
   #
   # sortie :
   #   b  <- a mod BASE^p - 1
   #   c  <- a mod BASE^p + 1

#define L(x) .Lsn_split_even_##x

        .align 5
        .globl sn_split_even
        .ent   sn_split_even
sn_split_even:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):

	subq   $31, $19, $2
	and    $2,  31,  $3
	bic    $2,  31,  $2	# r2 <- -32*ceil(p/32)
	sll    $3,  3,   $3	# r3 <- 8*((-p) mod 32)
	subq   $16, $3,  $16	# cadre les pointeurs
	subq   $17, $3,  $20
	subq   $18, $3,  $21
	s8addq $19, $16, $18
	lda    $27, sn_addsubloop
	s8subq $3,  $3,  $3	# r3 <- 56*((-p) mod 32)
	addq   $27, $3,  $27	# r27 <- adresse de saut dans addsubloop
	bis    $31, $31, $0	# init retenues
	bis    $31, $31, $1
	jsr    $27, ($27)	# b <- a0+a1, c <- a0-a1
	bis    $1,  $1,  $3	# r3 <- retenue sortant de c
	sll    $19, 3,   $19	# r19 <- 8*p
	subq   $20, $19, $20	# r20 <- &b
	subq   $31, 1,   $2	# recycle la retenue sortant de b
	bsr    $27, sn_incloop	# (ne peut pas dborder)
	subq   $21, $19, $20	# r20 <- &c
	srl    $19, 3,   $2	# r2  <- p
	bis    $3,  $3,  $0	# r0 <- retenue sortant de c
	bsr    $27, sn_incloop	# recycle la retenue sortant de c
	stq    $0,  0($21)	# c[p] <- retenue sortante
	ret    $31, ($26),1	

        .end   sn_split_even
#undef L

       # +-------------------------------------------------------------+
       # |  Dcomposition modulo BASE^(p+1/2) - 1 et BASE^(p+1/2) + 1  |
       # +-------------------------------------------------------------+

   # void xn(split_odd)(chiffre *a, chiffre *b, chiffre *c, long p)
   #
   # entre :
   #  a = naturel de longueur 2p+1
   #  b = naturel de longueur p+1
   #  c = naturel de longueur p+1
   #
   # contrainte :  p > 0, a,b,c non confondus
   #
   # sortie :
   #   b  <- a mod BASE^(p+1/2) - 1, normalis
   #   c  <- a mod BASE^(p+1/2) + 1, normalis

#define L(x) .Lsn_split_odd_##x

        .align 5
        .globl sn_split_odd
        .ent   sn_split_odd
sn_split_odd:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):

	s8addq $19, $16, $20	# r20 <- &a0[p]
	bis    $19, $19, $2	# r2 <- p
	bis    $31, $31, $0	# init retenues
	bis    $31, $31, $1
	ldq    $5,  0($20)
	bis    $5,  $5,  $8	# r8 <- high(a0):low(a1)
	bis    $17, $17, $21	# r21 <- &b
	bis    $18, $18, $22	# r22 <- &c

	.align 5
1:
	lda    $20, 8($20)
	srl    $5,  32, $3	# r3 <- low(a1[i])
	lda    $2,  -1($2)
	ldq    $4,  0($16)	# r4 <- a0[i]
	ldq    $5,  0($20)	# r5 <- high(a1[i]):low(a1[i+1])
	sll    $5,  32, $6
	addq   $6,  $3, $3	# r3 <- a1[i]
	addq   $4,  $0, $0	# r0 <- a0[i] + ret(a0+a1)
	addq   $3,  $1, $1	# r1 <- a1[i] + ret(a0-a1)
	cmpult $0,  $4, $6
	cmpult $1,  $3, $7
	addq   $0,  $3, $0	# r0 <- a0[i] + a1[i] + ret(a0+a1)
	subq   $4,  $1, $1	# r1 <- a0[i] - a1[i] - ret(a0-a1)
	stq    $0,  0($17)	# sauve b[i]
	stq    $1,  0($18)	# sauve c[i]
	cmpult $0,  $3, $0
	cmpult $4,  $1, $1
	addq   $0,  $6, $0	# r0 <- ret(a0+a1)
	addq   $1,  $7, $1	# r1 <- ret(a0-a1)
	lda    $16, 8($16)	# avance les pointeurs
	lda    $17, 8($17)
	lda    $18, 8($18)
	bne    $2,  1b

	# dernier demi-chiffre
	sll    $8,  32,  $8	# r8 <- high(a0)
	srl    $8,  32,  $8
	srl    $5,  32,  $5	# r5 <- high(a1)
	addq   $8,  $0,  $0	# r0 <- high(a0) + ret(a0+a1)
	addq   $5,  $1,  $1	# r1 <- high(a1) + ret(a0-a1)
	addq   $0,  $5,  $3	# r3 <- high(a0) + high(a1) + ret(a0+a1)
	subq   $8,  $1,  $4	# r4 <- high(a0) - high(a1) - ret(a0-a1)
	sll    $3,  32,  $0	# r0 <- r3 mod 2^32
	srl    $0,  32,  $0
	sll    $4,  32,  $1	# r1 <- r4 mod 2^32
	srl    $1,  32,  $1
	stq    $0,  0($17)	# sauve b[p]
	stq    $1,  0($18)	# sauve c[p]

	# recycle la retenue sortant de b
	srl    $3,  32,  $0	# r0 <- retenue
1:
	bis    $21, $21, $20	# r20 <- &b
	bis    $19, $19, $2	# r2  <- p
	bsr    $27, sn_incloop
	bne    $0,  1b
	
	# recycle la retenue sortant de c
	srl    $4,  63,  $0	# r0 <- retenue
	bis    $22, $22, $20	# r20 <- &c
	subq   $31, 1,   $2
	bis    $26, $26, $27	# retour terminal
	br     $31, sn_incloop

        .end   sn_split_odd
#undef L

#endif /* defined(assembly_sn_smul) || defined(assembly_sn_ssqr) */

                   # +------------------------------------+
                   # |  Multiplication modulo BASE^n - 1  |
                   # +------------------------------------+

   # void xn(smul) (chiffre *a, long la, chiffre *b, long lb, chiffre *c, long n)
   #
   # entre :
   #   a = naturel de longueur la
   #   b = naturel de longueur lb
   #   c = naturel de longueur n
   #
   # contraintes : n > 0, 0 <= lb <= la
   #   
   # sortie :
   #   c <- a*b mod BASE^n - 1

#ifdef assembly_sn_smul
#define L(x) .Lsn_smul_##x

        .align 5
#ifdef debug_smul
        .globl sn_smul_buggy
        .ent   sn_smul_buggy
sn_smul_buggy:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
#else
        .globl sn_smul
        .ent   sn_smul
sn_smul:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):
#endif

	#define _d_   48($30)
	#define _b_    0($30)
	#define _lb_   8($30)
	#define _c_   16($30)
	#define _n_   24($30)
	#define _ra_  32($30)

	# rserve 2n+6. chiffres dans la pile
	s4addq $21, 0,   $0
	s4addq $0,  48,  $0
	subq   $30, $0,  $30
	stq    $18, _b_
	stq    $19, _lb_
	stq    $20, _c_
	stq    $21, _n_
	stq    $26, _ra_
	
	# d0 <- a mod (BASE^n - 1)
	lda    $18, _d_
	bis    $21, $21, $19
	bsr    $26, .Lsn_sred_nogp
	
	# d1 <- b mod (BASE^n - 1)
	ldq    $16, _b_
	ldq    $17, _lb_
	lda    $18, _d_
	ldq    $19, _n_
	s8addq $19, $18, $18
	bsr    $26, .Lsn_sred_nogp

	# c <- a*b mod (BASE^n - 1)
	lda    $16, _d_
	ldq    $17, _c_
	ldq    $18, _n_
	bsr    $27, L(recurse)
	ldq    $26, _ra_	# rcupre l adresse de retour
	lda    $16, _d_		# nettoie la pile
	ldq    $17, _n_
	s8addq $17, $16, $16
	s8addq $17, $16, $30
	ret    $31, ($26),1

	#undef _d_
	#undef _b_
	#undef _lb_
	#undef _c_
	#undef _n_
	#undef _ra_
	
   # entre rcursive
   # r16 = &a (b = a+n)
   # r17 = &c
   # r18 = n
   # r27 = ra
L(recurse):
	
	# aiguillage selon la longueur et la parit
	blbs   $18, 1f
	cmpule $18, smul_lim_even, $0
	beq    $0,  L(big_even)
	br     $31, L(small)
	.align 5
1:
	cmpule $18, smul_lim_odd, $0
	beq    $0,  L(big_odd)
	
	# petite multiplication => Toom puis rduction
L(small):
	#define _d_   32($30)
	#define _a_    0($30)
	#define _c_    8($30)
	#define _n_   16($30)
	#define _ra_  24($30)

	# rserve 2n+4. chiffres dans la pile
	s4addq $18, 0,   $0
	s4addq $0,  32,  $0
	subq   $30, $0,  $30
	stq    $16, _a_
	stq    $17, _c_
	stq    $18, _n_
	stq    $27, _ra_

	# d1:d2 <- a*b mod (BASE^n - 1)
	bis    $18, $18, $17
	bis    $18, $18, $19
	s8addq $18, $16, $18
	lda    $20, _d_
	bsr    $26, .Lsn_toommul_nogp

	# point d entre pour ssqr
L(small_aux):
	
	# c <- d1 + d2
	lda    $16, _d_
	ldq    $0,  _n_
	ldq    $20, _c_
	subq   $31, $0,  $2
	and    $2,  31,  $3
	bic    $2,  31,  $2	# r2 <- 32*ceil(n/32)
	sll    $3,  3,   $3	# r3 <- 8*((-n) mod 32)
	lda    $27, sn_addloop	# cadre les pointeurs
	subq   $16, $3,  $16
	subq   $20, $3,  $20
	s4addq $3,  $27, $27
	s8addq $0,  $16, $18
	bis    $31, $31, $0	# init retenue
	jsr    $27, ($27)	# c <- d1 + d2
	ldq    $27, _ra_	# rcupre l adresse de retour
	ldq    $20, _c_
	bis    $18, $18, $30	# nettoie la pile
	subq   $31, 1,   $2
	br     $31, sn_incloop	# recycle la retenue

	#undef _d_
	#undef _a_
	#undef _c_
	#undef _n_
	#undef _ra_

	# cas n grand pair
	.align 5
L(big_even):

	#define _d_   32($30)
	#define _a_    0($30)
	#define _r_    0($30)
	#define _c_    8($30)
	#define _p_   16($30)
	#define _ra_  24($30)

	# rserve 3p+5. chiffres dans la pile
	s4subq $18, 0,   $0
	s4addq $0,  48,  $0
	bic    $0,  15,  $0
	subq   $30, $0,  $30
	stq    $16, _a_
	stq    $17, _c_
	srl    $18, 1,   $19	# r19 <- p
	stq    $19, _p_
	stq    $27, _ra_

	# dcompose a et b modulo BASE^p +/- 1
	bis    $17, $17, $18	# r18 <- &c
	lda    $17, _d_
	bsr    $26, .Lsn_split_even_nogp
	ldq    $16, _a_
	lda    $17, _d_
	ldq    $19, _p_
	s8addq $19, $16, $16	# r16 <- &b
	s8addq $19, $16, $16
	s8addq $19, $17, $17	# r17 <- &d1
	s8addq $19, $17, $18	# r18 <- &d2
	bsr    $26, .Lsn_split_even_nogp

	# c[0..p] <- a*b mod BASE^p + 1
	ldq    $16, _c_
	lda    $17, _d_
	ldq    $18, _p_
	s8addq $18, $17, $17
	s8addq $18, $17, $17	# r17 <- &d2
	bsr    $26, .Lsn_mmul_nogp

	# c[p..2p-1] <- a*b mod BASE^p - 1
	lda    $16, _d_
	ldq    $17, _c_
	ldq    $18, _p_
	s8addq $18, $17, $17	# r17 <- &c1
	ldq    $0,  0($17)	# sauve c0[p]
	stq    $0,  _r_
	bsr    $27, L(recurse)

	# point d entre pour ssqr
L(even_aux):
	
	# force c0+c1 pair en ajoutant BASE^p+1  c0:r si ncessaire
	# la version assembleur de sn_mmul produit un chiffre de
	# poids fort valant 0 ou 1, donc il ne peut pas y avoir
	# dbordement sur r.
	ldq    $17, _c_		# r17 <- &c0
	ldq    $20, _p_
	s8addq $20,  $17, $16	# r16 <- &c1
	ldq    $0, 0($16)
	ldq    $1, 0($17)
	addq   $0, $1, $0
	blbc   $0, 3f
	ldq    $2, _r_
	addq   $1, 1,  $1	# ajoute 1  c0 et  r
	addq   $2, 1,  $2
	stq    $1, 0($17)	# sauve c0[0]
	cmpult $1, 1,  $0
	beq    $0, 2f		# propage la retenue
	lda    $18, 8($17)
	lda    $19, -1($20)
1:
	ldq    $0,  0($18)
	addq   $0,  1,   $0
	stq    $0,  0($18)
	bne    $0,  2f
	lda    $18, 8($18)
	lda    $19, -1($19)
	bne    $19, 1b
	addq   $2,  1,  $2
2:
	stq    $2, _r_
3:
	# c0 <- (c0+c1)/2, c1 <- (c1-c0)/2
	bis    $17, $17, $18	# r18 <- &c0
	bis    $16, $16, $19	# r19 <- &c1
	bsr    $26, .Lsn_half_addsub_nogp

	# retenues  propager : r = u + 2*v
	# r*BASE^p/2
	# -r*BASE^(2p)/2
	# -BASE^2p si c1[p-1] >= BASE/2 (ie. c1 < c0)

	# ajoute r*B^p/2
	ldq    $3,  _r_
	srl    $3,  1,   $4	# r4 <- v
	sll    $3,  63,  $3	# r3 <- u*BASE/2
	ldq    $5,  _p_
	ldq    $16, _c_
	s8addq $5,  $16, $20	# r20 <- &c1
	ldq    $0,  -8($20)	# ajoute u  c0[p-1] = c1[-1]
	addq   $0,  $3,  $0
	stq    $0,  -8($20)
	cmpult $0,  $3,  $0
	addq   $0,  $4,  $0	# r0 <- v + ret
	bis    $5,  $5,  $2
	bsr    $27, sn_incloop	# propage sur c1

	# corrige le dernier chiffre de c1
	s8addq $5,  $16, $20
	s8addq $5,  $20, $20
	ldq    $0,  -8($20)
	srl    $0,  63,  $1
	addq   $1,  $4,  $4	# r4 <- v + signe(c1[p-1])
	subq   $0,  $3,  $3
	stq    $3,  -8($20)	# c1[p-1] -= u
	cmpult $0,  $3,  $0
	addq   $0,  $4,  $0	# r0 <- retenue ngative sortant de c1

	# recycle la retenue sortant de c1
1:
	bis    $16, $16, $20	# r20 <- &c
	addq   $5,  $5,  $2	# r2 <- 2p
	bsr    $27, sn_decloop	# c -= ret
	bne    $0,  1b

	# nettoie la pile
	ldq    $27, _ra_
	s4subq $5,  0,   $0
	s8addq $0,  48,  $0
	bic    $0,  15,  $0
	addq   $30, $0,  $30
	ret    $31, ($27),1
	
	#undef _d_
	#undef _a_
	#undef _r_
	#undef _c_
	#undef _p_
	#undef _ra_

	# cas n grand impair
	.align 5
L(big_odd):

	#define _d_   32($30)
	#define _a_    0($30)
	#define _c_    8($30)
	#define _p_   16($30)
	#define _ra_  24($30)

	# rserve 6p+10. chiffres dans la pile
	s4subq $18, $18, $0
	s8addq $0,  56,  $0
	subq   $30, $0,  $30
	stq    $16, _a_
	stq    $17, _c_
	srl    $18, 1,   $19	# r19 <- p
	stq    $19, _p_
	stq    $27, _ra_

	# dcompose a et b modulo BASE^(p+1/2) +/- 1
	lda    $17, _d_
	s8addq $18, $16, $16	# r16 <- &b
	s8addq $18, $17, $18	# r18 <- &d2
	lda    $18, 8($18)
	bsr    $26, .Lsn_split_odd_nogp
	ldq    $16, _a_
	lda    $17, _d_
	ldq    $19, _p_
	addq   $19, 1,   $0	# r0  <- p+1
	s8addq $0,  $17, $17	# r17 <- &d1
	s8addq $0,  $17, $18
	s8addq $0,  $18, $18	# r18 <- &d3
	bsr    $26, .Lsn_split_odd_nogp

	# d4:d5 <- a*b mod BASE^(p+1/2) + 1
	lda    $16, _d_
	ldq    $17, _p_
	addq   $17, 1,   $17	# r17 <- p+1
	s8addq $17, $16, $16	# r16 <- &d2
	s8addq $17, $16, $16
	s8addq $17, $16, $18	# r18 <- &d3
	bis    $17, $17, $19	# r19 <- p+1
	s8addq $17, $18, $20	# r20 <- &d4
	bsr    $26, .Lsn_toommul_nogp

	# d2:d3 <- a*b mod BASE^(p+1/2) - 1
	lda    $16, _d_
	ldq    $17, _p_
	addq   $17, 1,   $17	# r17 <- p+1
	s8addq $17, $16, $18	# r18 <- &d1
	bis    $17, $17, $19	# r19 <- p+1
	s8addq $17, $18, $20	# r20 <- &d2
	bsr    $26, .Lsn_toommul_nogp
	
	# point d entre pour ssqr
L(odd_aux):
	
	# c <- d2:d3 + d4:d5 mod (BASE^n - 1)
	# d <- d2:d3 - d4:d5 mod (BASE^n - 1)
	ldq    $17, _p_
	addq   $17, 1,   $17
	sll    $17, 1,   $17	# r17 <- 2*p+2
	lda    $21, _d_
	s4subq $17, $17, $19
	s8addq $19, $21, $16	# r16 <- &d6
	ldq    $0,  -8($16)	# r0 <- d5[2p+1] (retenue pour addsub)
	bis    $0,  $0,  $1	# r1 <- d2[2p+1]
	ldq    $20, _c_
	addq   $31, 1,   $2
	subq   $2,  $17, $2	# r2 <- -(2p+1)
	and    $2,  31,  $3
	bic    $2,  31,  $2	# r2 <- 32*ceil((2p+1)/32)
	sll    $3,  3,   $3	# r3 <- 8*(-(2p+1) mod 32)
	lda    $27, sn_addsubloop
	subq   $20, $3,  $20	# cadre les pointeurs
	subq   $21, $3,  $21
	s8subq $3,  $3,  $3
	addq   $27, $3,  $27
	s8addq $17, $21, $16
	s8addq $17, $16, $18
	jsr    $27, ($27)	# effectue l addition/soustraction
	bis    $1,  $1,  $3	# r3 <- retenue sortant de d
1:
	ldq    $20, _c_		# recycle la retenue sortant de c
	subq   $17, 1,   $2
	bsr    $27, sn_incloop
	bne    $0,  1b
	bis    $3,  $3,  $0
1:
	lda    $20, _d_		# recycle la retenue sortant de d
	subq   $17, 1,   $2
	bsr    $27, sn_decloop
	bne    $0,  1b
	
	# c <- (c + d*BASE^(p+1/2))/2 mod BASE^(2p+1)-1
	ldq    $16, _c_
	bis    $16, $16, $21	# r21 <- &c
	lda    $18, _d_
	s4addq $17, $18, $19	# r19 <- &d[p+1]
	subq   $17, 4,   $2	# r2  <- 2p-2

	# chiffre 0
	ldq    $1,  -8($19)
	srl    $1,  32,  $1	# r1 <- low(d1[0])
	ldq    $4,  0($16)	# r4 <- c[0]
	ldq    $5,  0($19)
	sll    $5,  32,  $6
	addq   $6,  $1,  $1	# r1 <- d1[0]
	addq   $4,  $1,  $4	# r4 <- (c+d1)[i]
	cmpult $4,  $1,  $0	# r0 <- retenue
	and    $4,  1,   $8	# r8 <- (c+d1)[0] mod 2
	srl    $4,  1,   $3	# r3 <- ((c+d1)/2)[0] mod BASE/2

	# chiffres 1..p-1
	.align 5
1:
	lda    $19, 8($19)	# d1++
	lda    $2,  -2($2)
	srl    $5,  32,  $1	# r1 <- low(d1[i])
	ldq    $4,  8($16)	# r4 <- c[i]
	ldq    $5,  0($19)
	sll    $5,  32,  $6
	addq   $6,  $1,  $1	# r1 <- d1[i]
	addq   $4,  $0,  $4
	cmpult $4,  $0,  $0
	addq   $4,  $1,  $4	# r4 <- (c+d1)[i]
	cmpult $4,  $1,  $1
	addq   $1,  $0,  $0	# r0 <- retenue
	sll    $4,  63,  $6
	addq   $6,  $3,  $3	# r3 <- ((c+d1)/2)[i-1]
	stq    $3,  0($16)	# sauve c[i-1]
	lda    $16, 8($16)	# c++
	srl    $4,  1,   $3	# r3 <- ((c+d1)/2)[i] mod BASE/2
	bne    $2,  1b
	
	# chiffres p..2p
	bis    $17, $17, $2	# r2  <- 2p+2
	.align 5
1:
	lda    $2,  -2($2)
	srl    $5,  32,  $1	# r1 <- low(d0[i])
	ldq    $4,  8($16)	# r4 <- c[i]
	ldq    $5,  0($18)
	sll    $5,  32,  $6
	addq   $6,  $1,  $1	# r1 <- d0[i]
	addq   $4,  $0,  $4
	cmpult $4,  $0,  $0
	addq   $4,  $1,  $4	# r4 <- (c+d0)[i]
	cmpult $4,  $1,  $1
	addq   $1,  $0,  $0	# r0 <- retenue
	sll    $4,  63,  $6
	addq   $6,  $3,  $3	# r3 <- ((c+d0)/2)[i-1]
	stq    $3,  0($16)	# sauve c[i-1]
	lda    $18, 8($18)	# d0++
	lda    $16, 8($16)	# c++
	srl    $4,  1,   $3	# r3 <- ((c+d0)/2)[i] mod BASE/2
	bne    $2,  1b

	# dernier chiffre
	addq   $0,  $8,  $0	# incorpore le bit des units
	sll    $0,  63,  $1
	addq   $1,  $3,  $3
	stq    $3,  0($16)	# sauve c[2p]
	srl    $0,  1,   $0	# r0 <- retenue
	subq   $17, 2,   $17	# r17 <- 2p
1:
	bis    $21, $21, $20	# r20 <- &c
	srl    $17, 1,   $2	# r2  <- p
	bsr    $27, sn_incloop	# recycle la retenue
	bne    $0,  1b

	# nettoie la pile
	ldq    $27, _ra_
	ldq    $0,  _p_
	s4subq $0,  $0,  $0
	sll    $0,  1,   $0
	addq   $0,  10,  $0
	s8addq $0,  $30, $30
	ret    $31, ($27),1
	
	#undef _d_
	#undef _a_
	#undef _c_
	#undef _p_
	#undef _ra_

#ifdef debug_smul
        .end sn_smul_buggy
#else
        .end sn_smul
#endif
#undef L
#endif /* assembly_sn_smul */


                        # +---------------------------+
                        # |  Carr modulo BASE^n - 1  |
                        # +---------------------------+

   # void xn(ssqr) (chiffre *a, long la, chiffre *c, long n)
   #
   # entre :
   #   a = naturel de longueur la
   #   c = naturel de longueur n
   #
   # contraintes : n > 0, 0 <= la
   #   
   # sortie :
   #   c <- a^2 mod BASE^n - 1

#ifdef assembly_sn_ssqr
#define L(x) .Lsn_ssqr_##x

        .align 5
#ifdef debug_smul
        .globl sn_ssqr_buggy
        .ent   sn_ssqr_buggy
sn_ssqr_buggy:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
#else
        .globl sn_ssqr
        .ent   sn_ssqr
sn_ssqr:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):
#endif

	#define _d_   24($30)
	#define _c_    0($30)
	#define _n_    8($30)
	#define _ra_  16($30)

	# rserve n+3. chiffres dans la pile
	s8addq $19, 32,  $0
	bic    $0,  15,  $0
	subq   $30, $0,  $30
	stq    $18, _c_
	stq    $19, _n_
	stq    $26, _ra_
	
	# d <- a mod (BASE^n - 1)
	lda    $18, _d_
	bsr    $26, .Lsn_sred_nogp
	
	# c <- a^2 mod (BASE^n - 1)
	lda    $16, _d_
	ldq    $17, _c_
	ldq    $18, _n_
	bsr    $27, L(recurse)
	ldq    $26, _ra_	# rcupre l adresse de retour
	ldq    $0,  _n_		# nettoie la pile
	s8addq $0,  32,  $0
	bic    $0,  15,  $0
	addq   $30, $0,  $30
	ret    $31, ($26),1

	#undef _d_
	#undef _c_
	#undef _n_
	#undef _ra_
	
   # entre rcursive
   # r16 = &a
   # r17 = &c
   # r18 = n
   # r27 = ra
L(recurse):
	
	# aiguillage selon la longueur et la parit
	blbs   $18, 1f
	cmpule $18, ssqr_lim_even, $0
	beq    $0,  L(big_even)
	br     $31, L(small)
	.align 5
1:
	cmpule $18, ssqr_lim_odd, $0
	beq    $0,  L(big_odd)
	
	# petit carr => Toom puis rduction
L(small):
	#define _d_   32($30)
	#define _a_    0($30)
	#define _c_    8($30)
	#define _n_   16($30)
	#define _ra_  24($30)

	# rserve 2n+4. chiffres dans la pile
	s4addq $18, 0,   $0
	s4addq $0,  32,  $0
	subq   $30, $0,  $30
	stq    $16, _a_
	stq    $17, _c_
	stq    $18, _n_
	stq    $27, _ra_

	# d1:d2 <- a^2 mod (BASE^n - 1)
	bis    $18, $18, $17
	lda    $18, _d_
	bsr    .Lsn_toomsqr_nogp
	br     $31, .Lsn_smul_small_aux # continue auvec smul

	#undef _d_
	#undef _a_
	#undef _c_
	#undef _n_
	#undef _ra_

	# cas n grand pair
	.align 5
L(big_even):

	#define _d_   32($30)
	#define _a_    0($30)
	#define _r_    0($30)
	#define _c_    8($30)
	#define _p_   16($30)
	#define _ra_  24($30)

	# rserve 3p+5. chiffres dans la pile
	s4subq $18, 0,   $0
	s4addq $0,  48,  $0
	bic    $0,  15,  $0
	subq   $30, $0,  $30
	stq    $16, _a_
	stq    $17, _c_
	srl    $18, 1,   $19	# r19 <- p
	stq    $19, _p_
	stq    $27, _ra_

	# dcompose a modulo BASE^p +/- 1
	bis    $17, $17, $18	# r18 <- &c
	lda    $17, _d_
	bsr    $26, .Lsn_split_even_nogp

	# c[0..p] <- a^2 mod BASE^p + 1
	ldq    $16, _c_
	ldq    $17, _p_
	bsr    $26, .Lsn_msqr_nogp

	# c[p..2p-1] <- a^2 mod BASE^p - 1
	lda    $16, _d_
	ldq    $17, _c_
	ldq    $18, _p_
	s8addq $18, $17, $17	# r17 <- &c1
	ldq    $0,  0($17)	# sauve c0[p]
	stq    $0,  _r_
	bsr    $27, L(recurse)
	br     $31, .Lsn_smul_even_aux # continue avec smul
	
	#undef _d_
	#undef _a_
	#undef _r_
	#undef _c_
	#undef _p_
	#undef _ra_

	# cas n grand impair
	.align 5
L(big_odd):

	#define _d_   32($30)
	#define _a_    0($30)
	#define _c_    8($30)
	#define _p_   16($30)
	#define _ra_  24($30)

	# rserve 6p+10. chiffres dans la pile
	s4subq $18, $18, $0
	s8addq $0,  56,  $0
	subq   $30, $0,  $30
	stq    $16, _a_
	stq    $17, _c_
	srl    $18, 1,   $19	# r19 <- p
	stq    $19, _p_
	stq    $27, _ra_

	# dcompose a modulo BASE^(p+1/2) +/- 1
	lda    $17, _d_
	s8addq $18, $17, $18	# r18 <- &d2
	lda    $18, 8($18)
	bsr    $26, .Lsn_split_odd_nogp

	# d4:d5 <- a^2 mod BASE^(p+1/2) + 1
	lda    $16, _d_
	ldq    $17, _p_
	addq   $17, 1,   $17	# r17 <- p+1
	s8addq $17, $16, $16	# r16 <- &d2
	s8addq $17, $16, $16
	s8addq $17, $16, $18
	s8addq $17, $18, $18	# r18 <- &d4
	bsr    $26, .Lsn_toomsqr_nogp

	# d2:d3 <- a^2 mod BASE^(p+1/2) - 1
	lda    $16, _d_
	ldq    $17, _p_
	addq   $17, 1,   $17	# r17 <- p+1
	s8addq $17, $16, $18
	s8addq $17, $18, $18	# r18 <- &d2
	bsr    $26, .Lsn_toomsqr_nogp
	br     $31, .Lsn_smul_odd_aux # continue avec smul
	
	#undef _d_
	#undef _a_
	#undef _c_
	#undef _p_
	#undef _ra_

#ifdef debug_smul
        .end sn_ssqr_buggy
#else
        .end sn_sqr
#endif
#undef L
#endif /* assembly_sn_ssqr */


                       # +----------------------------+
                       # |  Combinaison de 3 rsidus  |
                       # +----------------------------+


   #  void xn(sjoin3)(chiffre *a, long h, long k)
   #
   #  entre :
   #  a = naturel de longueur n+p+q
   #  n = (2h+2)k, p = (2h+1)k, q = (2h)k
   #
   #  contraintes : h >= 2, k >= 2
   #
   #  sortie :
   #  a <- x mod ppcm(BASE^n - 1, BASE^p - 1, BASE^q - 1) normalis
   #  avec
   #    a[0..n-1]       = x mod (BASE^n - 1),
   #    a[n..n+p-1]     = x mod (BASE^p - 1),
   #    a[n+p..n+p+q-1] = x mod (BASE^q - 1)
   #
   #  remarque : ppcm = produit/(BASE^k - 1)/(BASE^(2k) - 1)

#ifdef assembly_sn_sjoin3
#define L(x) .Lsn_sjoin3_##x

        .align 5
#ifdef debug_sjoin
        .globl sn_sjoin3_buggy
        .ent   sn_sjoin3_buggy
sn_sjoin3_buggy:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
#else
        .globl sn_sjoin3
        .ent   sn_sjoin3
sn_sjoin3:
        .frame $30,0,$26,0
        .prologue 1
        ldgp   $gp,  0($27)
L(nogp):
#endif

	#define _a_ $21
	#define _b_ $22
	#define _c_ $23
	#define _k_ $24
	#define _q_ $25

	# sauvegarde les paramtres
	bis    $16, $16, _a_
	bis    $18, $18, _k_
	mulq   $17, $18, _q_
	sll    _q_, 1,   _q_
	s8addq _q_, _a_, _b_
	s8addq _k_, _b_, _b_
	s8addq _k_, _b_, _b_
	s8addq _q_, _b_, _c_
	s8addq _k_, _c_, _c_
	
	# normalise a
	addq   _q_, _k_, $2
	addq   $2,  _k_, $2
1:
	ldq    $1,  0($16)
	addq   $1,  1,   $1
	lda    $2,  -1($2)
	lda    $16, 8($16)
	bne    $1,  3f
	bne    $2,  1b
	addq   _q_, _k_, $2
	addq   $2,  _k_, $2
2:
	lda    $16, -8($16)
	lda    $2,  -1($2)
	stq    $31, 0($16)
	bne    $2,  2b
3:

	# b <- (a - b) mod (BASE^p - 1), normalis vers le haut
	# soustrait les p premiers chiffres
	subq   $31, _q_, $2
	subq   $2,  _k_, $2
	and    $2,  31,  $3
	bic    $2,  31,  $2
	sll    $3,  3,   $3
	lda    $27, sn_subloop
	subq   _a_, $3,  $16
	subq   _b_, $3,  $18
	subq   _b_, $3,  $20
	s4addq $3,  $27, $27
	bis    $31, $31, $0
	jsr    $27, ($27)
	bis    $0,  $0,  $4	# r4 <- retenue ngative

	# ajoute les k derniers chiffres de a
	subq   $31, _k_, $2
	and    $2,  31,  $3
	bic    $2,  31,  $2
	sll    $3,  3,   $3
	lda    $27, sn_addloop
	subq   $16, $3,  $16
	subq   _b_, $3,  $18
	subq   _b_, $3,  $20
	s4addq $3,  $27, $27
	bis    $31, $31, $0
	jsr    $27, ($27)

	# propage la retenue positive
	bis    _q_, _q_, $2
1:
	ldq    $1,  0($20)
	addq   $1,  $0,  $1
	cmpult $1,  $0,  $0
	stq    $1,  0($20)
	beq    $0,  2f
	lda    $2,  -1($2)
	lda    $20, 8($20)
	bne    $2,  1b
2:
	# propage la retenue ngative
	subq   $4,  $0,  $0
	beq    $0,  3f
1:
	bis    _b_, _b_, $20
	addq   _q_, _k_, $2
2:
	ldq    $1,  0($20)
	subq   $1,  1,   $0
	stq    $0,  0($20)
	lda    $2, -1($2)
	lda    $20, 8($20)
	bne    $1,  3f
	bne    $2,  2b
	br     $31, 1b
	.align 5

	# normalise b vers le haut
3:
	bis    _b_, _b_, $20
	addq   _q_, _k_, $2
1:
	ldq    $0,  0($20)
	bne    $0,  3f
	lda    $2,  -1($2)
	lda    $20, 8($20)
	bne    $2,  1b
	addq   _q_, _k_, $2
	subq   $31, 1,   $0
2:
	lda    $20, -8($20)
	lda    $2,  -1($2)
	stq    $0,  0($20)
	bne    $2,  2b
3:

	# c <- (c - a) + (BASE^k + 1)*b - (BASE^(2*k) - 1) mod (BASE^q - 1)
	# chiffres 0..k-1
	bis    _c_, _c_, $16	# r16 <- &c
	bis    _a_, _a_, $17	# r17 <- &a
	s8addq _q_, _a_, $18	# r18 <- &a[q]
	bis    _b_, _b_, $19	# r19 <- &b
	s8addq _q_, _b_, $20	# r20 <- &b[q]
	sll    _k_, 3,   $0
	subq   $20, $0,  $28	# r21 <- &b[q-k]
	bis    _k_, _k_, $2
	addq   $31, 1,   $0	# r0 <- 1 (retenue)
1:
	ldq    $1,  0($16)	# c[i]
	ldq    $3,  0($17)	# a[i]
	ldq    $4,  0($18)	# a[i+q]
	ldq    $5,  0($19)	# b[i]
	ldq    $6,  0($20)	# b[i+q]
	ldq    $7,  0($28)	# b[i+q-k]
	addq   $1,  $0,  $1	# c[i] + ret
	cmpult $1,  $0,  $8
	sra    $0,  63,  $0
	addq   $8,  $0,  $0
	cmpult $1,  $3,  $8	# c[i] - a[i] + ret
	subq   $1,  $3,  $1
	subq   $0,  $8,  $0
	cmpult $1,  $4,  $8	# c[i] - a[i] - a[i+q] + ret
	subq   $1,  $4,  $1
	subq   $0,  $8,  $0
	addq   $1,  $5,  $1	# c[i] - a[i] - a[i+q] + b[i] + ret
	cmpult $1,  $5,  $8
	addq   $0,  $8,  $0
	addq   $1,  $6,  $1	# c[i] - a[i] - a[i+q] + b[i] + b[i+q] + ret
	cmpult $1,  $6,  $8
	addq   $0,  $8,  $0
	addq   $1,  $7,  $1	# c[i] - a[i] - a[i+q] + b[i] + b[i+q] + b[i+q-k] + ret
	cmpult $1,  $7,  $8
	addq   $0,  $8,  $0
	stq    $1,  0($16)	# sauve c[i]
	lda    $2,  -1($2)	# avance les pointeurs
	lda    $16, 8($16)
	lda    $17, 8($17)
	lda    $18, 8($18)
	lda    $19, 8($19)
	lda    $20, 8($20)
	lda    $28, 8($28)
	bne    $2, 1b

	# chiffres k..2k-1
	bis    _b_, _b_, $20
	bis    _k_, _k_, $2
1:
	ldq    $1,  0($16)	# c[i]
	ldq    $3,  0($17)	# a[i]
	ldq    $4,  0($18)	# a[i+q]
	ldq    $5,  0($19)	# b[i]
	ldq    $6,  0($20)	# b[i-k]
	ldq    $7,  0($28)	# b[i+q-k]
	addq   $1,  $0,  $1	# c[i] + ret
	cmpult $1,  $0,  $8
	sra    $0,  63,  $0
	addq   $8,  $0,  $0
	cmpult $1,  $3,  $8	# c[i] - a[i] + ret
	subq   $1,  $3,  $1
	subq   $0,  $8,  $0
	cmpult $1,  $4,  $8	# c[i] - a[i] - a[i+q] + ret
	subq   $1,  $4,  $1
	subq   $0,  $8,  $0
	addq   $1,  $5,  $1	# c[i] - a[i] - a[i+q] + b[i] + ret
	cmpult $1,  $5,  $8
	addq   $0,  $8,  $0
	addq   $1,  $6,  $1	# c[i] - a[i] - a[i+q] + b[i] + b[i-k] + ret
	cmpult $1,  $6,  $8
	addq   $0,  $8,  $0
	addq   $1,  $7,  $1	# c[i] - a[i] - a[i+q] + b[i] + b[i-k] + b[i+q-k] + ret
	cmpult $1,  $7,  $8
	addq   $0,  $8,  $0
	stq    $1,  0($16)	# sauve c[i]
	lda    $2,  -1($2)	# avance les pointeurs
	lda    $16, 8($16)
	lda    $17, 8($17)
	lda    $18, 8($18)
	lda    $19, 8($19)
	lda    $20, 8($20)
	lda    $28, 8($28)
	bne    $2, 1b

	# chiffres 2k..q-1
	subq   _q_, _k_, $2
	subq   $2,  _k_, $2
	subq   $0,  1,   $0
1:
	ldq    $1,  0($16)	# c[i]
	ldq    $3,  0($17)	# a[i]
	ldq    $5,  0($19)	# b[i]
	ldq    $6,  0($20)	# b[i-k]
	addq   $1,  $0,  $1	# c[i] + ret
	cmpult $1,  $0,  $8
	sra    $0,  63,  $0
	addq   $8,  $0,  $0
	cmpult $1,  $3,  $8	# c[i] - a[i] + ret
	subq   $1,  $3,  $1
	subq   $0,  $8,  $0
	addq   $1,  $5,  $1	# c[i] - a[i] + b[i] + ret
	cmpult $1,  $5,  $8
	addq   $0,  $8,  $0
	addq   $1,  $6,  $1	# c[i] - a[i] + b[i] + b[i-k] + ret
	cmpult $1,  $6,  $8
	addq   $0,  $8,  $0
	stq    $1,  0($16)	# sauve c[i]
	lda    $2,  -1($2)	# avance les pointeurs
	lda    $16, 8($16)
	lda    $17, 8($17)
	lda    $19, 8($19)
	lda    $20, 8($20)
	bne    $2, 1b

	# recycle la retenue
1:
	bis    _c_, _c_, $16
	bis    _q_, _q_, $2
2:
	ldq    $1,  0($16)
	addq   $1,  $0,  $1
	stq    $1,  0($16)
	cmpult $1,  $0,  $1
	sra    $0,  63,  $0
	addq   $1,  $0,  $0
	beq    $0,  3f
	lda    $2,  -1($2)
	lda    $16, 8($16)
	bne    $2,  2b
	br     $31, 1b
	.align 5
3:

	# c = 0 mod (BASE^q - 1) ?
	ldq    $0,  0(_c_)
	addq   $0,  1,   $1
	cmovne $1,  $0,  $1
	bne    $1,  L(c_non_nul)
	lda    $16, 8(_c_)
	subq   _q_, 1,   $2
1:
	ldq    $1,  0($16)
	xor    $1,  $0,  $1
	bne    $1,  L(c_non_nul)
	lda    $2,  -1($2)
	lda    $16, 8($16)
	bne    $2,  1b

	# si c = 0, alors c <- BASE^q - 1
	bne    $0,  2f
	bis    _q_, _q_, $2
	subq   $31, 1,   $0
1:
	lda    $2,  -1($2)
	lda    $16, -8($16)
	stq    $0,  0($16)
	bne    $2,  1b
2:
	# c:b += 1
	bis    _b_, _b_, $20
	addq   _q_, _k_, $2
	addq   _q_, $2,  $2
	br     $31, L(inc_b)
	.align 5

	# sinon, c:b <- b + (BASE^p - 1)*(c/(1-BASE^(2k)) - 1) + BASE^q
L(c_non_nul):
	# c <- c/(1-BASE^(2k)) - 1
	addq   _k_, _k_, $2
	subq   $2,  _q_, $2
	and    $2,  31,  $3
	bic    $2,  31,  $2
	sll    $3,  3,   $3
	lda    $27, sn_addloop
	subq   _c_, $3,  $16
	s8addq _k_, $16, $18
	s8addq _k_, $18, $18
	bis    $18, $18, $20
	s4addq $3,  $27, $27
	bis    $31, $31, $0
	jsr    $27, ($27)
	bis    _c_, _c_, $20
	addq   $31, 1,   $0
	bis    _q_, _q_, $2
	bsr    $27, sn_decloop

	# c:b <- c:b - c
	subq   $31, _q_, $2
	and    $2,  31,  $3
	bic    $2,  31,  $2
	sll    $3,  3,   $3
	lda    $27, sn_subloop
	subq   _b_, $3,  $16
	subq   _c_, $3,  $18
	subq   _b_, $3,  $20
	s4addq $3,  $27, $27
	bis    $31, $31, $0
	jsr    $27, ($27)
	addq   _q_, _k_, $2
	bsr    $27, sn_decloop

	# c:b <- c:b + BASE^q
	s8addq _q_, _b_, $20
	addq   _k_, _q_, $2
L(inc_b):
	addq   $31, 1,   $0
	bsr    $27, sn_incloop
	
	# c:b:a <- a + (BASE^n - 1)*(c:b)/(1-BASE^k)
	subq   $31, _q_, $2
	subq   $2,  _q_, $2
	and    $2,  31,  $3
	bic    $2,  31,  $2
	sll    $3,  3,   $3
	lda    $27, sn_addloop
	subq   _b_, $3,  $16
	s8addq _k_, $16  $18
	s8addq _k_, $16  $20
	s4addq $3,  $27, $27
	bis    $31, $31, $0
	jsr    $27, ($27)
	subq   $31, _q_, $2
	subq   $2,  _q_, $2
	subq   $2,  _k_, $2
	and    $2,  31,  $3
	bic    $2,  31,  $2
	sll    $3,  3,   $3
	lda    $27, sn_subloop
	subq   _a_, $3,  $16
	subq   _b_, $3,  $18
	subq   _a_, $3,  $20
	s4addq $3,  $27, $27
	bis    $31, $31, $0
	jsr    $27, ($27)
	addq   _q_, _k_, $2
	addq   $2,  _k_, $2
	bsr    $27, sn_decloop
	
	# termin
	ret   $31, ($26),1
	
	#undef _a_
	#undef _b_
	#undef _c_
	#undef _k_
	#undef _q_	

#ifdef debug_sjoin
        .end sn_sjoin3_buggy
#else
        .end sn_sqr
#endif
#undef L
#endif /* assembly_sn_sjoin3 */