File: toom.S

package info (click to toggle)
numerix 0.22-4
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 4,380 kB
  • ctags: 4,165
  • sloc: asm: 26,210; ansic: 12,168; ml: 4,912; sh: 3,899; pascal: 414; makefile: 179
file content (1014 lines) | stat: -rw-r--r-- 28,639 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
// file kernel/n/alpha/toom.S: Toom multiplication of natural integers
/*-----------------------------------------------------------------------+
 |  Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org)      |
 |                                                                       |
 |  This file is part of Numerix. Numerix is free software; you can      |
 |  redistribute it and/or modify it under the terms of the GNU Lesser   |
 |  General Public License as published by the Free Software Foundation; |
 |  either version 2.1 of the License, or (at your option) any later     |
 |  version.                                                             |
 |                                                                       |
 |  The Numerix Library is distributed in the hope that it will be       |
 |  useful, but WITHOUT ANY WARRANTY; without even the implied warranty  |
 |  of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU  |
 |  Lesser General Public License for more details.                      |
 |                                                                       |
 |  You should have received a copy of the GNU Lesser General Public     |
 |  License along with the GNU MP Library; see the file COPYING. If not, |
 |  write to the Free Software Foundation, Inc., 59 Temple Place -       |
 |  Suite 330, Boston, MA 02111-1307, USA.                               |
 +-----------------------------------------------------------------------+
 |                                                                       |
 |                          Multiplication de Toom                       |
 |                                                                       |
 +-----------------------------------------------------------------------*/

#if defined(assembly_sn_toommul) || defined(assembly_sn_toomsqr)
        
                         # +-------------------------+
                         # |  Addition/soustraction  |
                         # +-------------------------+

   # void xn(add_sub3)(chiffre *a, long p, chiffre *b, long q)
   #
   # entre :
   #   a = naturel de longueur 2p+q
   #   b = naturel de longueur 2p+2
   # contraintes : 0 < q <= p
   #
   # sortie :
   #   b[0..p]      <-  a[0..p-1] + a[p..2p-1] + a[2p..2p+q-1]
   #   b[p+1..2p+1] <-  |a[0..p-1] - a[p..2p-1] + a[2p..2p+q-1]|
   #   retourne le signe de la diffrence

#define L(x) .Lsn_add_sub3_##x

        .align 5
        .globl sn_add_sub3
        .ent   sn_add_sub3
sn_add_sub3:
        .frame $30,0,$26,0
        .prologue 1
	ldgp   $gp,  0($27)
L(nogp):

	# c[0..p-1] <- a0+a2
	bis    $31,  $31,  $0   # r0 <- 0 (retenue)
	ldq    $1,   0($16)     # r1 <- a0[0] (retenue)
	subq   $31,  $19,   $2  # r2 <- -q
	subq   $17,  $19,   $19 # r19 <- p - q
	and    $2,   31,    $3	# r3 <- (-q) % 32
	bic    $2,   31,    $2  # r2 <- -32*ceil(q/32)
	sll    $3,   3,     $3  # r3 <- 8*((-q) % 32)
	subq   $16,  $3,    $16 # cadre les pointeurs  sur le mult. prc. de 32
	subq   $18,  $3,    $20
	s8addq $17,  $16,   $18
	s8addq $17,  $18,   $18
	lda    $27,  sn_addloop
	addq   $3,   3,     $3  # r3 <- nb d instructions a sauter
	s4addq $3,   $27,   $27 # r27 <- adresse d entre dans la boucle
	jsr    $27,  ($27)	# additionne les chiffres communs
	
        beq    $19,  2f         # propage la retenue
        .align 5
1:
        ldq    $1,   0($16)
        lda    $16,  8($16)
        lda    $19,  -1($19)
        addq   $1,   $0,   $1
        cmpult $1,   $0,   $0
        stq    $1,   0($20)
        lda    $20,  8($20)
        bne    $19,  1b
2:
	bis    $0,  $0,  $7     # r7 <- retenue(a0+a2)

	s8addq $17, $16, $23    # r23 <- &a1[p]
	subq   $31, $17, $17    # r17 <- -p
	bis    $20, $20, $22    # r22 <- &b[p]
	and    $17, 31,  $0     # r0 <- (-p) mod 32
	bic    $17, 31,  $2     # r2 <- -ceil(p/32)
	sll    $0,  3,   $1
	subq   $16, $1,  $18    # cadre les pointeurs sur le mult. prc. de 32
	subq   $20, $1,  $21
	s8addq $17, $21, $20
	bis    $20, $20, $16
	lda    $21, 8($21)
	subq   $1,  $0,  $1     # calcule l adresse de saut pour addsub
	lda    $27, sn_addsubloop
	s8addq $1,  $27, $27
	bne    $7,  2f          # si a0+a2 >= BASE^p alors a0-a1+a2 > 0
1:
	lda    $17, 1($17)      # sinon, compare a0+a2 et a1
	ldq    $0,  -8($22)
	ldq    $1,  -8($23)
	lda    $22, -8($22)
	lda    $23, -8($23)
	cmpule $0,  $1,  $19
	cmovne $19, $17, $19
	beq    $19, 2f
	cmpult $0,  $1,  $19
	beq    $19, 1b
	bis    $18, $18, $16    # si a0+a2 < a1, change les pointeurs
	bis    $20, $20, $18
2:
	bis    $31, $31, $0     # init retenues
	bis    $31, $31, $1
	jsr    $27, ($27)       # b[0..p-1] <- a0+a1+a2, b[p+1..2p] <- |a0-a1+a2|
	addq   $7,  $0,  $0     # derniers chiffres
	subq   $7,  $1,  $1
	stq    $0,  0($20)
	stq    $1,  0($21)

	bis    $19, $19, $0     # r0 <- signe(a0-a1+a2)
	ret    $31, ($26),1

        .end   sn_add_sub3
#undef L

                        # +--------------------------+
                        # |  Addition avec dcalage  |
                        # +--------------------------+

   # void xn(add_base)(chiffre *a, chiffre *b, long p, long q)
   #
   # entre :
   #   a = naturel de longueur 2p+q
   #   b = naturel de longueur p+3
   # contraintes : 0 < q <= p, p > 2
   #
   # sortie :
   #   b <-  a[0..p-1] + BASE*a[p..2p-1] + BASE^2*a[2p..2p+q-1]

#define L(x) .Lsn_add_base_##x

        .align 5
        .globl sn_add_base
        .ent   sn_add_base
sn_add_base:
        .frame $30,0,$26,0
        .prologue 1
	ldgp   $gp,  0($27)
L(nogp):

	subq   $18, 2,   $1     # r1 <- p-2
	bis    $1,  $1,  $2     # r2 <- p-2
	subq   $19, $1,  $6     # r6 <- q - (p-2)
	cmovlt $6,  $19, $1     # r1 <- min(p-2,q)
	subq   $2,  $1,  $2     # r2 <- p-2 - min(p-2,q)
	
	bis    $17, $17, $19    # r19 <- b0
	s8addq $18, $16, $17    # r17 <- &a1
	s8addq $18, $17, $18    # r18 <- &a2

	# traite les deux premiers chiffres  part
	ldq    $3,  0($16)
	stq    $3,  0($19)      # b[0] <- a0[0]
	ldq    $3,  8($16)
	ldq    $4,  0($17)
	addq   $4,  $3,  $3
	stq    $3,  8($19)      # b[1] <- a0[1] + a1[0]
	cmpult $3,  $4,  $0     # r0 <- retenue
	
	# additionne les chiffres communs
	.align 5
L(loop_1):
	ldq    $3, 16($16)      # r3 <- a0[i+2]
	ldq    $4,  8($17)      # r4 <- a1[i+1]
	ldq    $5,  0($18)      # r5 <- a2[i]
	addq   $0,  $3,  $3     # r3 <- a0[i+2] + ret
	cmpult $3,  $0,  $0
	addq   $4,  $3,  $3     # r3 <- a0[i+2] + a1[i+1] + ret
	cmpult $3,  $4,  $4
	addq   $5,  $3,  $3     # r3 <- a0[i+2] + a1[i+1] + a2[i] + ret
	cmpult $3,  $5,  $5
	addq   $4,  $0,  $0
	addq   $5,  $0,  $0     # r0 <- somme des retenues
	stq    $3, 16($19)      # sauve a0[i+2] + a1[i+1] + a2[i]
	lda    $1,  -1($1)      # i++
	lda    $16, 8($16)      # avance les pointeurs
	lda    $17, 8($17)
	lda    $18, 8($18)
	lda    $19, 8($19)
	bne    $1,  L(loop_1)

	# continue sans a2
	beq    $2,  L(done)
	.align 5
L(loop_2):
	ldq    $3, 16($16)      # r3 <- a0[i+2]
	ldq    $4,  8($17)      # r4 <- a1[i+1]
	addq   $0,  $3,  $3     # r3 <- a0[i+2] + ret
	cmpult $3,  $0,  $0
	addq   $4,  $3,  $3     # r3 <- a0[i+2] + a1[i+1] + ret
	cmpult $3,  $4,  $4
	addq   $4,  $0,  $0     # r0 <- somme des retenues
	stq    $3, 16($19)      # sauve a0[i+2] + a1[i+1] + a2[i]
	lda    $2,  -1($2)      # i++
	lda    $16, 8($16)      # avance les pointeurs
	lda    $17, 8($17)
	lda    $19, 8($19)
	bne    $2,  L(loop_2)
L(done):

	# derniers chiffres
	subq   $6,  1,  $6     # r6 <- q - (p-1)
	blt    $6,  1f
	ldq    $1,  0($18)     # r1 <- 0 ou a2[p-2]
	beq    $6,  1f
	ldq    $2,  8($18)     # r2 <- 0 ou a2[p-1]
1:
	ldq    $3,  8($17)     # r3 <- a1[p-1]
	addq   $0,  $3,  $3    # r3 <- a1[p-1] + ret
	cmpult $3,  $0,  $0
	addq   $1,  $3,  $3    # r3 <- a1[p-1] + a2[p-2] + ret
	cmpult $3,  $1,  $1
	addq   $1,  $0,  $0    # r0 <- retenue
	addq   $0,  $2,  $2    # r2 <- a2[p-1] + ret
	cmpult $2,  $0,  $0    # r0 <- retenue
	stq    $3, 16($19)     # sauve a1[p-1] + a2[p-2]
	stq    $2, 24($19)     # sauve a2[p-1]
	stq    $0, 32($19)     # sauve la retenue
	ret    $31, ($26),1

	.end   sn_add_base
#undef L
	
#endif /* defined(assembly_sn_toommul) || defined(assembly_sn_toomsqr) */

                            # +------------------+
                            # |  Multiplication  |
                            # +------------------+
        

   #  void xn(toommul)(chiffre *a, long la, chiffre *b, long lb, chiffre *c)
   #
   #  entre :
   #  a = naturel de longueur la
   #  b = naturel de longueur lb
   #  c = naturel de longueur la+lb, non confondu avec a ou b
   #  contraintes : 0 < lb <= la
   #
   #  sortie :
   #  c <- a*b

#ifdef assembly_sn_toommul
#define L(x) .Lsn_toommul_##x

        .align 5
#ifdef debug_toommul
        .globl sn_toommul_buggy
        .ent   sn_toommul_buggy
sn_toommul_buggy:
        .frame $30,0,$26,0
        .prologue 1
	ldgp   $gp,  0($27)
#else
        .globl sn_toommul
        .ent   sn_toommul
sn_toommul:
        .frame $30,0,$26,0
        .prologue 1
	ldgp   $gp,  0($27)
L(nogp):
#endif

	cmpule $19,  toommul_lim, $0 # petite multiplication ?
	bne    $0,   .Lsn_karamul_nogp # => algorithme de Karatsuba

	lda    $0, 0x5555($31)
	sll    $0,  16,  $1
	or     $1,  $0,  $0
	sll    $0,  32,  $1
	or     $1,  $0,  $0	# r0 <- (BASE-1)/3
	umulh  $0,  $17, $0
	addq   $0,  1,   $0     # r0 <- ceil(la/3) = p
	addq   $0,  $0,  $1     # r1 <- 2p
	subq   $19, $1,  $2     # r2 <- lb - 2p = r
	ble    $2,  L(tranches) # si lb <= 2p, dcoupe en tranches

	# ici lb > 2p, dcoupage de Toom
	# variables locales
	#define _d_  64($30)
	#define _x_  56($30)
        #define _a_  48($30)
        #define _b_  40($30)
        #define _c_  32($30)
	#define _p_  24($30)
	#define _q_  16($30)
	#define _r_   8($30)
	#define _ra_  0($30)
	
	subq   $17, $1,  $19    # r19 <- la - 2p = q
	addq   $0,  $1,  $1     # rserve 6p+18 chiffres dans la pile
	sll    $1,  4,   $1
	addq   $1,  144, $1
	subq   $30, $1,  $30
	stq    $31,  _x_        # sauve les paramtres
	stq    $16,  _a_
	stq    $18,  _b_
	stq    $20,  _c_
	stq    $0,   _p_
	stq    $19,  _q_
	stq    $2,   _r_
	stq    $26,  _ra_

	# c[0..p] <- a0 + a1 + a2, c[p+1..2p+1] <- |a0 - a1 + a2|
	bis    $0,  $0,  $17	# r17 <- p
	bis    $20, $20, $18	# r18 <- &c
	bsr    $26, .Lsn_add_sub3_nogp
	stq    $0, _x_

	# c[2p+2..3p+2] <- b0 + b1 + b2, c[3p+3..4p+3] <- |b0 - b1 + b2|
	ldq    $16, _b_
	ldq    $17, _p_
	ldq    $18, _c_
	s4addq $17, 4,   $0
	s4addq $0,  $18, $18	# r18 <- &c[2p+2]
	ldq    $19, _r_
	bsr    $26, .Lsn_add_sub3_nogp
	ldq    $1,  _x_
	xor    $1,  $0,  $0
	stq    $0,  _x_

        # d <- (a0 + a1 + a2)(b0 + b1 + b2) = c0 + c1 + c2 + c3 + c4
	ldq    $16, _c_
	ldq    $17, _p_
	addq   $17, 1,   $17    # r17 <- p+1
	s8addq $17, $16, $18
	s8addq $17, $18, $18    # r18 <- &c[2p+2]
	bis    $17, $17, $19    # r19 <- p+1
	lda    $20, _d_
	bsr    $26,  L(nogp)

        # e <- |a0 - a1 + a2||b0 - b1 + b2| = |c0 - c1 + c2 - c3 + c4|
	ldq    $16, _c_
	ldq    $17, _p_
	addq   $17, 1,   $17    # r17 <- p+1
	s8addq $17, $16, $16    # r16 <- &c[p+1]
	s8addq $17, $16, $18
	s8addq $17, $18, $18    # r18 <- &c[3p+3]
	bis    $17, $17, $19    # r19 <- p+1
	lda    $20, _d_
	s8addq $17, $20, $20
	s8addq $17, $20, $20    # r20 <- &e
	bsr    $26,  L(nogp)

        # f <- (a0 + BASE*a1 + BASE^2*a2)*(b0 + BASE*b1 + BASE^2*b2)
        #    = c0 + BASE*c1 + BASE^2*c2 + BASE^3*c3 + BASE^4*c4
	ldq    $16, _a_
	ldq    $17, _c_
	ldq    $18, _p_
	ldq    $19, _q_
	bsr    $26, .Lsn_add_base_nogp
	
	ldq    $16, _b_
	ldq    $17, _c_
	ldq    $18, _p_
	ldq    $19, _r_
	s8addq $18, $17, $17
	lda    $17, 24($17)	# r17 <- &c[p+3]
	bsr    $26, .Lsn_add_base_nogp

	ldq    $16, _c_
	ldq    $17, _p_
	addq   $17, 3,   $17	# r17 <- p+3
	s8addq $17, $16, $18    # r18 <- &c[p+3]
	bis    $17, $17, $19    # r19 <- p+3
	lda    $20, _d_
	s4addq $17, -8,  $0     # r0 <- 4p+4
	s8addq $0,  $20, $20    # r20 <- &f

	# diminue les longeurs des facteurs si les chiffres de tte sont nuls
	# seuls les chiffres de rang <= 2p+1 de f vont tre utiliss, donc ce
	# n est pas grave si les suivants ne sont pas initialiss
	s8addq $17, $16, $0
	ldq    $1,   -8($0)
	ldq    $2,  -16($0)
	cmpeq  $1,  $31, $1
	cmpeq  $2,  $31, $2
	and    $1,  $2,  $2
	addq   $1,  $2,  $1     # r1 <- nb. de zros de tte pour a
	subq   $17, $1,  $17
	s8addq $19, $18, $0
	ldq    $1,   -8($0)
	ldq    $2,  -16($0)
	cmpeq  $1,  $11, $1
	cmpeq  $2,  $11, $2
	and    $1,  $2,  $2
	addq   $1,  $2,  $1     # r1 <- nb. de zros de tte pour b
	subq   $19, $1,  $19
	cmpult $17, $19, $0     # si a est plus court, change les facteurs
	beq    $0,  1f
	bis    $16, $16, $0
	bis    $18, $18, $16
	bis    $0,  $0,  $18
	bis    $17, $17, $0
	bis    $19, $19, $17
	bis    $0,  $0,  $19
1:
	bsr    $26,  L(nogp)
	
        # c[0..2p-1] <- a0*b0 = c0, c[4*p..4p+q+r-1] <- a2*b2 = c4
	ldq    $16, _a_
	ldq    $17, _p_
	ldq    $18, _b_
	bis    $17, $17, $19	# r19 <- p
	ldq    $20, _c_
	bsr    $26,  L(nogp)
	
	ldq    $16, _a_
	ldq    $17, _q_
	ldq    $18, _b_
	ldq    $19, _r_
	ldq    $20, _c_
	ldq    $0,  _p_
	s4addq $0,  0,   $0	# r0 <- 4p
	s4addq $0,  $16, $16    # r16 <- &a[2p]
	s4addq $0,  $18, $18    # r18 <- &b[2p]
	s8addq $0,  $20, $20    # r20 <- &c[4p]
	bsr    $26,  L(nogp)
	
        # point de chute pour toomsqr
.Lsn_toom_aux:

	# d <- (d-e)/2 mod BASE^(2p+1) = c1 + c3, e <- (d+e)/2 = c0 + c2 + c4
	ldq    $20, _p_
	sll    $20, 1,   $20
	addq   $20, 1,   $20	# r20 <- 2p+1
	lda    $16, _d_
	s8addq $20, $16, $17    # r17 <- &e
	lda    $17, 8($17)
	ldq    $0,  _x_
	cmoveq $0,  $17, $18    # r18 <- &e (cas (a0-a1+a2)(b0-b1+b2) >= 0)
	cmoveq $0,  $16, $19    # r19 <- &d
	cmovne $0,  $17, $19    # r19 <- &e (cas (a0-a1+a2)(b0-b1+b2) <  0)
	cmovne $0,  $16, $18    # r18 <- &d
	bsr    $26, .Lsn_half_addsub_nogp

        # c[2p..4p] <- e - c0 - c4 = c2
        # f <- BASE^4*c4 - f = -c0 - BASE*c1 - BASE^2*c2 - BASE^3*c3
	ldq    $0,  _p_
	addq   $0,  $0,  $0    # r0  <- 2p
	ldq    $16, _c_        # r16 <- &c0
	s8addq $0,  $16, $20   # r20 <- &c2
	s8addq $0,  $20, $18   # r18 <- &c4
	lda    $19, _d_
	s8addq $0,  $19, $19   # r19 <- &e
	lda    $19, 16($19)
	s8addq $0,  $19, $21   # r21 <- &f[4]
	lda    $21, 48($21)
	ldq    $1,  _q_
	ldq    $2,  _r_
	addq   $1,  $2,  $22   # r22 <- q+r
	subq   $0,  $22, $23   # r23 <- 2p-q-r

	# f[0..3] <- -f[0..3]
	ldq    $5,  -32($21)   # r5 <- f[0]
	ldq    $6,  -24($21)   # r6 <- f[1]
	ldq    $7,  -16($21)   # r7 <- f[2]
	ldq    $8,   -8($21)   # r8 <- f[3]
	subq   $31, $5,  $5    # ngation sur 4 chiffres
	cmpeq  $5,  $31, $4
	eqv    $6,  $31, $6
	addq   $6,  $4,  $6
	cmpult $6,  $4,  $4
	eqv    $7,  $31, $7
	addq   $7,  $4,  $7
	cmpult $7,  $4,  $4
	eqv    $8,  $31, $8
	addq   $8,  $4,  $8
	stq    $5,  -32($21)
	stq    $6,  -24($21)
	stq    $7,  -16($21)
	stq    $8,   -8($21)
	cmpule $4,  $8,  $1    # r1 <- retenue(BASE^4*c4-f)
	bis    $31, $31, $0    # r0 <- retenue(d-c0-c4)

	# combinaison des chiffres communs
	.align 5
1:
	ldq    $2,  0($19)     # r2 <- e[i]
	ldq    $3,  0($21)     # r3 <- f[i+4]
	ldq    $4,  0($16)     # r4 <- c0[i]
	ldq    $5,  0($18)     # r5 <- c4[i]

	subq   $2,  $0,  $0    # r0 <- e[i] - ret(e-c0-c4)
	cmpult $2,  $0,  $2
	subq   $0,  $4,  $4    # r4 <- e[i] - c0[i] - ret(e-c0-c4)
	cmpult $0,  $4,  $0
	addq   $2,  $0,  $0
	subq   $4,  $5,  $2    # r2 <- e[i] - c0[i] - c4[i] - ret(e-c0-c4)
	cmpult $4,  $2,  $4
	addq   $4,  $0,  $0    # r0 <- retenue(e-c0-c4)
	stq    $2,  0($20)     # sauve c2[i]
	
	addq   $3,  $1,  $3    # r3 <- f[i+4] + ret(BASE^4*c4-f)
	cmpult $3,  $1,  $1
	subq   $5,  $3,  $3    # r3 <- c4[i] - f[i+4] - ret(BASE^4*c4-f)
	cmpult $5,  $3,  $5
	addq   $5,  $1,  $1    # r1 <- retenue(BASE^4*c4-f)
	stq    $3,  0($21)     # sauve f[i+4]
	
	lda    $22, -1($22)    # i++
	lda    $16,  8($16)    # avance les pointeurs
	lda    $19,  8($19)
	lda    $21,  8($21)
	lda    $18,  8($18)
	lda    $20,  8($20)
	bne    $22,  1b

	# continue sans c4
	beq    $23,  2f
	.align 5
1:
	ldq    $2,  0($19)     # r2 <- e[i]
	ldq    $3,  0($21)     # r3 <- f[i+4]
	ldq    $4,  0($16)     # r4 <- c0[i]

	subq   $2,  $0,  $0    # r0 <- e[i] - ret(e-c0-c4)
	cmpult $2,  $0,  $2
	subq   $0,  $4,  $4    # r4 <- e[i] - c0[i] - ret(e-c0-c4)
	cmpult $0,  $4,  $0
	addq   $2,  $0,  $0    # r0 <- retenue(e-c0-c4)
	stq    $4,  0($20)     # sauve c2[i]

	addq   $3,  $1,  $3    # r3 <- f[i+4] + ret(BASE^4*c4-f)
	cmpult $3,  $1,  $1
	subq   $31, $3,  $3    # r3 <- -f[i+4] - ret(BASE^4*c4-f)
	cmpult $31, $3,  $5
	addq   $5,  $1,  $1    # r1 <- retenue(BASE^4*c4-f)
	stq    $3,  0($21)     # sauve f[i+4]
	
	lda    $23, -1($23)    # i++
	lda    $16,  8($16)    # avance les pointeurs
	lda    $19,  8($19)
	lda    $21,  8($21)
	lda    $20,  8($20)
	bne    $23,  1b
2:

	# ajoute le dernier chiffre de c2  c4
	ldq    $2,  0($19)     # r2 <- e[2p]
	subq   $2,  $0,  $0    # r0 <- e[2p] - ret(e-c0-c4)
	subq   $31, 1,   $2    # r2 <- illimit
	bsr    $27, sn_incloop

        # f <- (f + c0 + BASE*d + BASE^2*c2)/(1-BASE^2) = BASE*c3
        # e[3..2p+3] <- d - f/BASE = c1
	ldq    $0,  _p_
	addq   $0,  $0, $0     # r0 <- 2p
	ldq    $16, _c_        # r16 <- &c0
	s8addq $0,  $16, $17   # r17 <- &c2
	lda    $18, _d_        # r18 <- &d
	addq   $0,  5,   $1
	s8addq $1,  $18, $19   # r19 <- &e[3]
	s8addq $0,  $19, $20   # r20 <- &f[1]
	subq   $0,  2,   $21   # r21 <- 2p-2

	# traite les deux premiers chiffres  part
	bis    $31, $31, $3     # r3 <- 0 (retenue de la division)
	bis    $31, $31, $4     # r4 <- 0 (= nf[0])
	ldq    $2,  0($20)	# r2 <- f[1]
	ldq    $0,  0($16)
	ldq    $1,  8($16)
	cmpult $31, $0,  $0     # r0 <- c0[0] != 0 (= retenue(f+c0))
	addq   $2,  $0,  $2     # r1 <- f[1] + ret
	cmpult $2,  $0,  $0
	addq   $2,  $1,  $1     # r1 <- f[1] + c0[1] + ret
	cmpult $1,  $2,  $2
	addq   $2,  $0,  $0
	ldq    $7,  0($18)      # r7 <- d[0]
	addq   $1,  $7,  $5     # r5 <- f[1] + c0[1] + d[0] + ret = nf[1]
	cmpult $5,  $1,  $1
	addq   $1,  $0,  $0
	stq    $5,  0($20)      # sauve nf[1]
	cmpult $7,  $5,  $6     # r6 <- retenue(d - f/BASE)
	subq   $7,  $5,  $7     # r7 <- d[0] - nf[1]
	stq    $7,  0($19)      # sauve nd[0]

	# boucle sur les chiffres communs
	.align 5
1:
	ldq    $1,  8($20)
	addq   $1,  $0,  $2	# r2 <- f[i] + ret
	cmpult $2,  $1,  $0
	ldq    $1,  16($16)
	addq   $2,  $1,  $1     # r1 <- f[i] + c0[i] + ret
	cmpult $1,  $2,  $2
	addq   $2,  $0,  $0
	ldq    $7,  8($18)      # r7 <- d[i-1]
	addq   $1,  $7,  $2     # r2 <- f[i] + c0[i] + d[i-1] + ret
	cmpult $2,  $1,  $1
	addq   $1,  $0,  $0
	ldq    $1,  0($17)
	addq   $2,  $1,  $1     # r1 <- f[i] + c0[i] + d[i-1] + c2[i-2] + ret
	cmpult $1,  $2,  $2
	addq   $2,  $0,  $0
	addq   $1,  $4,  $1     # r1 += nf[i-2]
	cmpult $1,  $4,  $2
	bis    $5,  $5,  $4     # r4 <- nf[i-1]
	addq   $1,  $3,  $5     # r5 <- nf[i]
	cmpult $5,  $3,  $3
	addq   $2,  $3,  $3     # r3 <- nouvelle retenue de la division
	stq    $5,  8($20)      # sauve nf[i]
	addq   $5,  $6,  $6
	cmpult $6,  $5,  $2
	subq   $7,  $6,  $6     # r6 <- d[i-1] - nf[i] - ret
	cmpult $7,  $6,  $7
	stq    $6,  8($19)      # sauve nd[i-1]
	addq   $2,  $7,  $6     # r6 <- retenue(d - f/BASE)
	
	lda    $21, -1($21)     # i++
	lda    $16,  8($16)     # avance les pointeurs
	lda    $18,  8($18)
	lda    $20,  8($20)
	lda    $17,  8($17)
	lda    $19,  8($19)
	bne    $21,  1b

	# derniers chiffres
	ldq    $2,  8($20)
	addq   $2,  $0,  $1     # r1 <- f[2p] + ret
	cmpult $1,  $2,  $0
	ldq    $7,  8($18)      # r7 <- d[2p-1]
	addq   $1,  $7,  $2     # r2 <- f[2p] + d[2p-1] + ret
	cmpult $2,  $1,  $1
	addq   $1,  $0,  $0
	ldq    $1,  0($17)
	addq   $2,  $1,  $1     # r1 <- f[2p] + d[2p-1] + c2[2p-2] + ret
	cmpult $1,  $2,  $2
	addq   $2,  $0,  $0
	addq   $1,  $4,  $1     # r1 += nf[2p-2]
	cmpult $1,  $4,  $2
	bis    $5,  $5,  $4     # r4 <- nf[2p-1]
	addq   $1,  $3,  $5     # r5 <- nf[2p]
	cmpult $5,  $3,  $3
	addq   $2,  $3,  $3     # r3 <- nouvelle retenue de la division
	stq    $5,  8($20)      # sauve nf[2p]
	addq   $5,  $6,  $6
	cmpult $6,  $5,  $2
	subq   $7,  $6,  $6     # r6 <- d[2p-1] - nf[2p] - ret
	cmpult $7,  $6,  $7
	stq    $6,  8($19)      # sauve nd[2p-1]
	addq   $2,  $7,  $6     # r6 <- retenue(d + f/BASE)

	ldq    $2,  16($20)
	addq   $2,  $0,  $1     # r1 <- f[2p+1] + ret
	ldq    $7,  16($18)     # r7 <- d[2p]
	addq   $1,  $7,  $2     # r2 <- f[2p+1] + d[2p] + ret
	ldq    $1,  8($17)
	addq   $2,  $1,  $1     # r1 <- f[2p+1] + d[2p] + c2[2p-1] + ret
	addq   $1,  $4,  $1     # r1 += nf[2p-1]
	addq   $1,  $3,  $5     # r5 <- nf[2p+1]
	stq    $5,  16($20)     # sauve nf[2p+1]
	addq   $5,  $6,  $6
	subq   $7,  $6,  $6     # r6 <- d[2p] - nf[2p+1] - ret

        # ajoute nd[2p]  nf
	ldq    $0,  16($19)
	addq   $0,  $6,  $6
	stq    $6,  16($19)
	cmpult $6,  $0,  $0
	beq    $0,  2f
1:
	lda    $19, 8($19)
	ldq    $6,  16($19)
	addq   $6,  1,  $6
	stq    $6,  16($19)
	beq    $6,  1f
2:

        # injecte c1,c3 dans c
	ldq    $0,  _p_
	ldq    $1,  _q_
	ldq    $2,  _r_
	addq   $0,  $0,  $3     # r3  <- 2p
	addq   $0,  $3,  $4
	addq   $1,  $4,  $4     # r4  <- 3p+q
	addq   $4,  $2,  $17	# r17 <- 3p+q+r
	addq   $4,  1,   $19    # r19 <- 3p+q+1
	ldq    $16, _c_
	s8addq $0,  $16, $16    # r16 <- &c[p]
	lda    $18, _d_
	addq   $3,  5,   $3
	s8addq $3,  $18, $18    # r18 <- &e[3]
	bsr    $26, .Lsn_inc_nogp
	
	# termin
	ldq    $26, _ra_
	ldq    $0,  _p_
	addq   $0,  $0,  $1     # nettoie la pile
	addq   $0,  $1,  $0
	addq   $0,  $0,  $0
	addq   $0,  18,  $0
	s8addq $0,  $30, $30
	ret    $31, ($26),1

	#undef _x_
	#undef _a_
	#undef _b_
	#undef _c_
	#undef _d_
	#undef _p_
	#undef _q_
	#undef _r_
	#undef _ra_

        # ici lb <= 2*ceil(la/3) : dcoupage en tranches de longueur lb
        # variables locales
	#define _sp_    80($30)
        #define _d_     72($30)
        #define _a_     64($30)
        #define _la_    56($30)
        #define _b_     48($30)
        #define _lb_    40($30)
        #define _c_  	32($30)
	#define _l_  	24($30)
        #define _ra_ 	16($30)
	#define _add_  	 8($30)
	#define _move_ 	 0($30)
	
        .align 5
L(tranches):
	s8addq $19,  88,   $1 	# rserve lb+10 chiffres dans la pile
	bic    $1,   15,   $1   # en arrondissant  un compte pair
	subq   $30,  $1,   $30
	stq    $16,  _a_        # sauve les paramtres
	stq    $17,  _la_
	stq    $18,  _b_
	stq    $19,  _lb_
	stq    $31,  _l_
	stq    $26,  _ra_

	# prpare le droulement des boucles
	subq   $31,  $19,  $0	# r0 <- -lb
	and    $0,   31,   $0	# r0 <- (-lb) % 32
	lda    $1,   sn_cpuploop
	s8addq $0,   $1,   $1   # r1 <- adresse de saut pour move
	stq    $1,   _move_
	sll    $0,   3,    $0   # r0 <- 8*((-lb) % 32)
	lda    $1,   sn_addloop
	s4addq $0,   $1,   $1   # r1 <- adresse de saut pour add
	stq    $1,   _add_
	subq   $20,  $0,   $1   # r1 <- c cadr sur un multiple de 32
	stq    $1,   _c_
	lda    $1,   _sp_
	subq   $1,   $0,   $1   # r1 <- d cadr sur un multiple de 32
	stq    $1,   _d_
	
        # premire multiplication : c <- a[0..lb-1]*b
	bis    $19,  $19,  $17
	bsr    $26,  L(nogp)
	br     $31,  3f

        # multiplications suivantes
	.align 5
1:
	stq    $18,  _a_	# sauvegarde les paramtres
	stq    $19,  _la_
	stq    $16,  _c_
	cmpult $17,  $19,  $0	# l <- min(lb,la)
	cmovne $0,   $17,  $19
	stq    $19,  _l_

	# sauvegarde c[0..lb-1] dans la pile
	ldq    $27,  _move_
	ldq    $20,  _d_
	subq   $31,  $17,  $2	# r2 <- -lb
	jsr    $27,  ($27)      # d <- c[0..lb-1]

        # multiplication
	sll    $17,  3,   $0
	subq   $16,  $0,  $20   # r20 <- &c[0]
	ldq    $16,  _b_
	bsr    $26,  L(nogp)

	# ajoute d
	ldq    $16,  _c_
	ldq    $18,  _d_
	ldq    $2,   _lb_
	ldq    $27,  _add_
	subq   $31,  $2,   $2   # r2 <- -lb
	bis    $16,  $16,  $20
	bis    $31,  $31,  $0   # r0 <- 0 (retenue)
	jsr    $27,  ($27)	# effectue l addition
	ldq    $2,   _l_
	jsr    $27,  sn_incloop # propage la retenue

3:
	ldq    $18,  _a_	# rcupre les paramtres
	ldq    $19,  _la_
	ldq    $17,  _lb_
	ldq    $16,  _c_
	s8addq $17,  $18,  $18  # a  += lb
	s8addq $17,  $16,  $16  # c  += lb
	subq   $19,  $17,  $19  # la -= lb
	bgt    $19,  1b

	addq   $17,  1,   $17   # nettoie la pile
	bic    $17,  1,   $17   
	ldq    $26,  _ra_
	lda    $30,  _sp_
	s8addq $17,  $30,  $30
	ret    $31,  ($26),1
	
        #undef  _sp_
        #undef  _a_
        #undef  _b_
        #undef  _c_
        #undef  _d_
        #undef  _la_
        #undef  _lb_
        #undef  _l_
	#undef  _ra_
	#undef _move_
	#undef _add_

#ifdef debug_toommul
	.end sn_toommul_buggy
#else
	.end sn_toommul
#endif
#undef L
#endif /* assembly_sn_toommul */
#if !defined(assembly_sn_toommul) || defined(debug_toommul)
	REPLACE(sn_toommul)
#endif

                                 # +---------+
                                 # |  Carr  |
	                         # +---------+

   #  void xn(toomsqr)(chiffre *a, long la, chiffre *c)
   #
   #  entre :
   #  a = naturel de longueur la
   #  c = naturel de longueur 2*la, non confondu avec a
   #  contraintes : 0 < la
   #
   #  sortie :
   #  c <- a^2

#ifdef assembly_sn_toomsqr
#define L(x) .Lsn_toomsqr_##x

        .align 5
#ifdef debug_toommul
        .globl sn_toomsqr_buggy
        .ent   sn_toomsqr_buggy
sn_toomsqr_buggy:
        .frame $30,0,$26,0
        .prologue 1
	ldgp   $gp,  0($27)
#else
        .globl sn_toomsqr
        .ent   sn_toomsqr
sn_toomsqr:
        .frame $30,0,$26,0
        .prologue 1
	ldgp   $gp,  0($27)
L(nogp):
#endif
      
	cmpule $17,  toomsqr_lim, $0 # petit carr ?
	bne    $0,   .Lsn_karasqr_nogp # => algorithme de Karatsuba

	lda    $0, 0x5555($31)
	sll    $0,  16,  $1
	or     $1,  $0,  $0
	sll    $0,  32,  $1
	or     $1,  $0,  $0	# r0 <- (BASE-1)/3
	umulh  $0,  $17, $0
	addq   $0,  1,   $0     # r0 <- ceil(la/3) = p
	addq   $0,  $0,  $1     # r1 <- 2p
	subq   $17, $1,  $19    # r19 <- la - 2p = q

	# variables locales
	#define _d_  64($30)
	#define _x_  56($30)
        #define _a_  48($30)
        #define _b_  40($30)
        #define _c_  32($30)
	#define _p_  24($30)
	#define _q_  16($30)
	#define _r_   8($30)
	#define _ra_  0($30)
	
	addq   $0,  $1,  $1     # rserve 6p+18 chiffres dans la pile
	sll    $1,  4,   $1
	addq   $1,  144, $1
	subq   $30, $1,  $30
	stq    $31,  _x_        # sauve les paramtres
	stq    $16,  _a_
	stq    $16,  _b_
	stq    $18,  _c_
	stq    $0,   _p_
	stq    $19,  _q_
	stq    $19,  _r_
	stq    $26,  _ra_

	# c[0..p] <- a0 + a1 + a2, c[p+1..2p+1] <- |a0 - a1 + a2|
	bis    $0,  $0,  $17	# r17 <- p
	bsr    $26, .Lsn_add_sub3_nogp

        # d <- (a0 + a1 + a2)^2 = c0 + c1 + c2 + c3 + c4
	ldq    $16, _c_
	ldq    $17, _p_
	addq   $17, 1,   $17    # r17 <- p+1
	lda    $18, _d_
	bsr    $26,  L(nogp)

        # e <- |a0 - a1 + a2|^2 = c0 - c1 + c2 - c3 + c4
	ldq    $16, _c_
	ldq    $17, _p_
	addq   $17, 1,   $17    # r17 <- p+1
	s8addq $17, $16, $16    # r16 <- &c[p+1]
	lda    $18, _d_
	s8addq $17, $18, $18
	s8addq $17, $18, $18    # r18 <- &e
	s8addq $17, $16, $0     # teste si a0-a1+a2 >= 0
	ldq    $0,  -8($0)
	bge    $0,  2f
	bis    $16, $16, $0     # sinon, remplace par l oppos
	bis    $17, $17, $1
	addq   $31, 1,   $2
	.align 5
1:
	lda    $1, -1($1)
	ldq    $3,  0($0)
	eqv    $3,  $31, $3
	addq   $2,  $3,  $3
	cmpult $3,  $2,  $2
	stq    $3,  0($0)
	lda    $0,  8($0)
	bne    $1,  1b
2:
	bsr    $26,  L(nogp)
	
        # f <- (a0 + BASE*a1 + BASE^2*a2)^2
        #    = c0 + BASE*c1 + BASE^2*c2 + BASE^3*c3 + BASE^4*c4
	ldq    $16, _a_
	ldq    $17, _c_
	ldq    $18, _p_
	ldq    $19, _q_
	bsr    $26, .Lsn_add_base_nogp
	
	ldq    $16, _c_
	ldq    $17, _p_
	addq   $17, 3,   $17	# r17 <- p+3
	lda    $18, _d_
	s4addq $17, -8,  $0     # r0 <- 4p+4
	s8addq $0,  $18, $18    # r18 <- &f

	# diminue les longeurs des facteurs si les chiffres de tte sont nuls
	# seuls les chiffres de rang <= 2p+1 de f vont tre utiliss, donc ce
	# n est pas grave si les suivants ne sont pas initialiss
	s8addq $17, $16, $0
	ldq    $1,   -8($0)
	ldq    $2,  -16($0)
	cmpeq  $1,  $31, $1
	cmpeq  $2,  $31, $2
	and    $1,  $2,  $2
	addq   $1,  $2,  $1     # r1 <- nb. de zros de tte pour a
	subq   $17, $1,  $17
	bsr    $26,  L(nogp)
	
        # c[0..2p-1] <- a0^2 = c0, c[4*p..4p+q+r-1] <- a2^2 = c4
	ldq    $16, _a_
	ldq    $17, _p_
	ldq    $18, _c_
	bsr    $26,  L(nogp)
	
	ldq    $16, _a_
	ldq    $17, _q_
	ldq    $18, _c_
	ldq    $0,  _p_
	s4addq $0,  0,   $0	# r0 <- 4p
	s4addq $0,  $16, $16    # r16 <- &a[2p]
	s8addq $0,  $18, $18    # r18 <- &c[4p]
	bsr    $26,  L(nogp)
	
	# continue avec toommul
	br     $31,  .Lsn_toom_aux

        #undef  _a_
        #undef  _b_
        #undef  _c_
	#undef  _d_
	#undef  _p_
	#undef  _q_
	#undef  _r_
	#undef  _x_
	#undef  _ra_

#ifdef debug_toommul
	.end sn_toomsqr_buggy
#else
	.end sn_toomsqr
#endif
#undef L
#endif /* assembly_sn_toomsqr */
#if !defined(assembly_sn_toomsqr) || defined(debug_toommul)
	REPLACE(sn_toomsqr)
#endif