1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
|
// file kernel/n/alpha/toom.S: Toom multiplication of natural integers
/*-----------------------------------------------------------------------+
| Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org) |
| |
| This file is part of Numerix. Numerix is free software; you can |
| redistribute it and/or modify it under the terms of the GNU Lesser |
| General Public License as published by the Free Software Foundation; |
| either version 2.1 of the License, or (at your option) any later |
| version. |
| |
| The Numerix Library is distributed in the hope that it will be |
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU MP Library; see the file COPYING. If not, |
| write to the Free Software Foundation, Inc., 59 Temple Place - |
| Suite 330, Boston, MA 02111-1307, USA. |
+-----------------------------------------------------------------------+
| |
| Multiplication de Toom |
| |
+-----------------------------------------------------------------------*/
#if defined(assembly_sn_toommul) || defined(assembly_sn_toomsqr)
# +-------------------------+
# | Addition/soustraction |
# +-------------------------+
# void xn(add_sub3)(chiffre *a, long p, chiffre *b, long q)
#
# entre :
# a = naturel de longueur 2p+q
# b = naturel de longueur 2p+2
# contraintes : 0 < q <= p
#
# sortie :
# b[0..p] <- a[0..p-1] + a[p..2p-1] + a[2p..2p+q-1]
# b[p+1..2p+1] <- |a[0..p-1] - a[p..2p-1] + a[2p..2p+q-1]|
# retourne le signe de la diffrence
#define L(x) .Lsn_add_sub3_##x
.align 5
.globl sn_add_sub3
.ent sn_add_sub3
sn_add_sub3:
.frame $30,0,$26,0
.prologue 1
ldgp $gp, 0($27)
L(nogp):
# c[0..p-1] <- a0+a2
bis $31, $31, $0 # r0 <- 0 (retenue)
ldq $1, 0($16) # r1 <- a0[0] (retenue)
subq $31, $19, $2 # r2 <- -q
subq $17, $19, $19 # r19 <- p - q
and $2, 31, $3 # r3 <- (-q) % 32
bic $2, 31, $2 # r2 <- -32*ceil(q/32)
sll $3, 3, $3 # r3 <- 8*((-q) % 32)
subq $16, $3, $16 # cadre les pointeurs sur le mult. prc. de 32
subq $18, $3, $20
s8addq $17, $16, $18
s8addq $17, $18, $18
lda $27, sn_addloop
addq $3, 3, $3 # r3 <- nb d instructions a sauter
s4addq $3, $27, $27 # r27 <- adresse d entre dans la boucle
jsr $27, ($27) # additionne les chiffres communs
beq $19, 2f # propage la retenue
.align 5
1:
ldq $1, 0($16)
lda $16, 8($16)
lda $19, -1($19)
addq $1, $0, $1
cmpult $1, $0, $0
stq $1, 0($20)
lda $20, 8($20)
bne $19, 1b
2:
bis $0, $0, $7 # r7 <- retenue(a0+a2)
s8addq $17, $16, $23 # r23 <- &a1[p]
subq $31, $17, $17 # r17 <- -p
bis $20, $20, $22 # r22 <- &b[p]
and $17, 31, $0 # r0 <- (-p) mod 32
bic $17, 31, $2 # r2 <- -ceil(p/32)
sll $0, 3, $1
subq $16, $1, $18 # cadre les pointeurs sur le mult. prc. de 32
subq $20, $1, $21
s8addq $17, $21, $20
bis $20, $20, $16
lda $21, 8($21)
subq $1, $0, $1 # calcule l adresse de saut pour addsub
lda $27, sn_addsubloop
s8addq $1, $27, $27
bne $7, 2f # si a0+a2 >= BASE^p alors a0-a1+a2 > 0
1:
lda $17, 1($17) # sinon, compare a0+a2 et a1
ldq $0, -8($22)
ldq $1, -8($23)
lda $22, -8($22)
lda $23, -8($23)
cmpule $0, $1, $19
cmovne $19, $17, $19
beq $19, 2f
cmpult $0, $1, $19
beq $19, 1b
bis $18, $18, $16 # si a0+a2 < a1, change les pointeurs
bis $20, $20, $18
2:
bis $31, $31, $0 # init retenues
bis $31, $31, $1
jsr $27, ($27) # b[0..p-1] <- a0+a1+a2, b[p+1..2p] <- |a0-a1+a2|
addq $7, $0, $0 # derniers chiffres
subq $7, $1, $1
stq $0, 0($20)
stq $1, 0($21)
bis $19, $19, $0 # r0 <- signe(a0-a1+a2)
ret $31, ($26),1
.end sn_add_sub3
#undef L
# +--------------------------+
# | Addition avec dcalage |
# +--------------------------+
# void xn(add_base)(chiffre *a, chiffre *b, long p, long q)
#
# entre :
# a = naturel de longueur 2p+q
# b = naturel de longueur p+3
# contraintes : 0 < q <= p, p > 2
#
# sortie :
# b <- a[0..p-1] + BASE*a[p..2p-1] + BASE^2*a[2p..2p+q-1]
#define L(x) .Lsn_add_base_##x
.align 5
.globl sn_add_base
.ent sn_add_base
sn_add_base:
.frame $30,0,$26,0
.prologue 1
ldgp $gp, 0($27)
L(nogp):
subq $18, 2, $1 # r1 <- p-2
bis $1, $1, $2 # r2 <- p-2
subq $19, $1, $6 # r6 <- q - (p-2)
cmovlt $6, $19, $1 # r1 <- min(p-2,q)
subq $2, $1, $2 # r2 <- p-2 - min(p-2,q)
bis $17, $17, $19 # r19 <- b0
s8addq $18, $16, $17 # r17 <- &a1
s8addq $18, $17, $18 # r18 <- &a2
# traite les deux premiers chiffres part
ldq $3, 0($16)
stq $3, 0($19) # b[0] <- a0[0]
ldq $3, 8($16)
ldq $4, 0($17)
addq $4, $3, $3
stq $3, 8($19) # b[1] <- a0[1] + a1[0]
cmpult $3, $4, $0 # r0 <- retenue
# additionne les chiffres communs
.align 5
L(loop_1):
ldq $3, 16($16) # r3 <- a0[i+2]
ldq $4, 8($17) # r4 <- a1[i+1]
ldq $5, 0($18) # r5 <- a2[i]
addq $0, $3, $3 # r3 <- a0[i+2] + ret
cmpult $3, $0, $0
addq $4, $3, $3 # r3 <- a0[i+2] + a1[i+1] + ret
cmpult $3, $4, $4
addq $5, $3, $3 # r3 <- a0[i+2] + a1[i+1] + a2[i] + ret
cmpult $3, $5, $5
addq $4, $0, $0
addq $5, $0, $0 # r0 <- somme des retenues
stq $3, 16($19) # sauve a0[i+2] + a1[i+1] + a2[i]
lda $1, -1($1) # i++
lda $16, 8($16) # avance les pointeurs
lda $17, 8($17)
lda $18, 8($18)
lda $19, 8($19)
bne $1, L(loop_1)
# continue sans a2
beq $2, L(done)
.align 5
L(loop_2):
ldq $3, 16($16) # r3 <- a0[i+2]
ldq $4, 8($17) # r4 <- a1[i+1]
addq $0, $3, $3 # r3 <- a0[i+2] + ret
cmpult $3, $0, $0
addq $4, $3, $3 # r3 <- a0[i+2] + a1[i+1] + ret
cmpult $3, $4, $4
addq $4, $0, $0 # r0 <- somme des retenues
stq $3, 16($19) # sauve a0[i+2] + a1[i+1] + a2[i]
lda $2, -1($2) # i++
lda $16, 8($16) # avance les pointeurs
lda $17, 8($17)
lda $19, 8($19)
bne $2, L(loop_2)
L(done):
# derniers chiffres
subq $6, 1, $6 # r6 <- q - (p-1)
blt $6, 1f
ldq $1, 0($18) # r1 <- 0 ou a2[p-2]
beq $6, 1f
ldq $2, 8($18) # r2 <- 0 ou a2[p-1]
1:
ldq $3, 8($17) # r3 <- a1[p-1]
addq $0, $3, $3 # r3 <- a1[p-1] + ret
cmpult $3, $0, $0
addq $1, $3, $3 # r3 <- a1[p-1] + a2[p-2] + ret
cmpult $3, $1, $1
addq $1, $0, $0 # r0 <- retenue
addq $0, $2, $2 # r2 <- a2[p-1] + ret
cmpult $2, $0, $0 # r0 <- retenue
stq $3, 16($19) # sauve a1[p-1] + a2[p-2]
stq $2, 24($19) # sauve a2[p-1]
stq $0, 32($19) # sauve la retenue
ret $31, ($26),1
.end sn_add_base
#undef L
#endif /* defined(assembly_sn_toommul) || defined(assembly_sn_toomsqr) */
# +------------------+
# | Multiplication |
# +------------------+
# void xn(toommul)(chiffre *a, long la, chiffre *b, long lb, chiffre *c)
#
# entre :
# a = naturel de longueur la
# b = naturel de longueur lb
# c = naturel de longueur la+lb, non confondu avec a ou b
# contraintes : 0 < lb <= la
#
# sortie :
# c <- a*b
#ifdef assembly_sn_toommul
#define L(x) .Lsn_toommul_##x
.align 5
#ifdef debug_toommul
.globl sn_toommul_buggy
.ent sn_toommul_buggy
sn_toommul_buggy:
.frame $30,0,$26,0
.prologue 1
ldgp $gp, 0($27)
#else
.globl sn_toommul
.ent sn_toommul
sn_toommul:
.frame $30,0,$26,0
.prologue 1
ldgp $gp, 0($27)
L(nogp):
#endif
cmpule $19, toommul_lim, $0 # petite multiplication ?
bne $0, .Lsn_karamul_nogp # => algorithme de Karatsuba
lda $0, 0x5555($31)
sll $0, 16, $1
or $1, $0, $0
sll $0, 32, $1
or $1, $0, $0 # r0 <- (BASE-1)/3
umulh $0, $17, $0
addq $0, 1, $0 # r0 <- ceil(la/3) = p
addq $0, $0, $1 # r1 <- 2p
subq $19, $1, $2 # r2 <- lb - 2p = r
ble $2, L(tranches) # si lb <= 2p, dcoupe en tranches
# ici lb > 2p, dcoupage de Toom
# variables locales
#define _d_ 64($30)
#define _x_ 56($30)
#define _a_ 48($30)
#define _b_ 40($30)
#define _c_ 32($30)
#define _p_ 24($30)
#define _q_ 16($30)
#define _r_ 8($30)
#define _ra_ 0($30)
subq $17, $1, $19 # r19 <- la - 2p = q
addq $0, $1, $1 # rserve 6p+18 chiffres dans la pile
sll $1, 4, $1
addq $1, 144, $1
subq $30, $1, $30
stq $31, _x_ # sauve les paramtres
stq $16, _a_
stq $18, _b_
stq $20, _c_
stq $0, _p_
stq $19, _q_
stq $2, _r_
stq $26, _ra_
# c[0..p] <- a0 + a1 + a2, c[p+1..2p+1] <- |a0 - a1 + a2|
bis $0, $0, $17 # r17 <- p
bis $20, $20, $18 # r18 <- &c
bsr $26, .Lsn_add_sub3_nogp
stq $0, _x_
# c[2p+2..3p+2] <- b0 + b1 + b2, c[3p+3..4p+3] <- |b0 - b1 + b2|
ldq $16, _b_
ldq $17, _p_
ldq $18, _c_
s4addq $17, 4, $0
s4addq $0, $18, $18 # r18 <- &c[2p+2]
ldq $19, _r_
bsr $26, .Lsn_add_sub3_nogp
ldq $1, _x_
xor $1, $0, $0
stq $0, _x_
# d <- (a0 + a1 + a2)(b0 + b1 + b2) = c0 + c1 + c2 + c3 + c4
ldq $16, _c_
ldq $17, _p_
addq $17, 1, $17 # r17 <- p+1
s8addq $17, $16, $18
s8addq $17, $18, $18 # r18 <- &c[2p+2]
bis $17, $17, $19 # r19 <- p+1
lda $20, _d_
bsr $26, L(nogp)
# e <- |a0 - a1 + a2||b0 - b1 + b2| = |c0 - c1 + c2 - c3 + c4|
ldq $16, _c_
ldq $17, _p_
addq $17, 1, $17 # r17 <- p+1
s8addq $17, $16, $16 # r16 <- &c[p+1]
s8addq $17, $16, $18
s8addq $17, $18, $18 # r18 <- &c[3p+3]
bis $17, $17, $19 # r19 <- p+1
lda $20, _d_
s8addq $17, $20, $20
s8addq $17, $20, $20 # r20 <- &e
bsr $26, L(nogp)
# f <- (a0 + BASE*a1 + BASE^2*a2)*(b0 + BASE*b1 + BASE^2*b2)
# = c0 + BASE*c1 + BASE^2*c2 + BASE^3*c3 + BASE^4*c4
ldq $16, _a_
ldq $17, _c_
ldq $18, _p_
ldq $19, _q_
bsr $26, .Lsn_add_base_nogp
ldq $16, _b_
ldq $17, _c_
ldq $18, _p_
ldq $19, _r_
s8addq $18, $17, $17
lda $17, 24($17) # r17 <- &c[p+3]
bsr $26, .Lsn_add_base_nogp
ldq $16, _c_
ldq $17, _p_
addq $17, 3, $17 # r17 <- p+3
s8addq $17, $16, $18 # r18 <- &c[p+3]
bis $17, $17, $19 # r19 <- p+3
lda $20, _d_
s4addq $17, -8, $0 # r0 <- 4p+4
s8addq $0, $20, $20 # r20 <- &f
# diminue les longeurs des facteurs si les chiffres de tte sont nuls
# seuls les chiffres de rang <= 2p+1 de f vont tre utiliss, donc ce
# n est pas grave si les suivants ne sont pas initialiss
s8addq $17, $16, $0
ldq $1, -8($0)
ldq $2, -16($0)
cmpeq $1, $31, $1
cmpeq $2, $31, $2
and $1, $2, $2
addq $1, $2, $1 # r1 <- nb. de zros de tte pour a
subq $17, $1, $17
s8addq $19, $18, $0
ldq $1, -8($0)
ldq $2, -16($0)
cmpeq $1, $11, $1
cmpeq $2, $11, $2
and $1, $2, $2
addq $1, $2, $1 # r1 <- nb. de zros de tte pour b
subq $19, $1, $19
cmpult $17, $19, $0 # si a est plus court, change les facteurs
beq $0, 1f
bis $16, $16, $0
bis $18, $18, $16
bis $0, $0, $18
bis $17, $17, $0
bis $19, $19, $17
bis $0, $0, $19
1:
bsr $26, L(nogp)
# c[0..2p-1] <- a0*b0 = c0, c[4*p..4p+q+r-1] <- a2*b2 = c4
ldq $16, _a_
ldq $17, _p_
ldq $18, _b_
bis $17, $17, $19 # r19 <- p
ldq $20, _c_
bsr $26, L(nogp)
ldq $16, _a_
ldq $17, _q_
ldq $18, _b_
ldq $19, _r_
ldq $20, _c_
ldq $0, _p_
s4addq $0, 0, $0 # r0 <- 4p
s4addq $0, $16, $16 # r16 <- &a[2p]
s4addq $0, $18, $18 # r18 <- &b[2p]
s8addq $0, $20, $20 # r20 <- &c[4p]
bsr $26, L(nogp)
# point de chute pour toomsqr
.Lsn_toom_aux:
# d <- (d-e)/2 mod BASE^(2p+1) = c1 + c3, e <- (d+e)/2 = c0 + c2 + c4
ldq $20, _p_
sll $20, 1, $20
addq $20, 1, $20 # r20 <- 2p+1
lda $16, _d_
s8addq $20, $16, $17 # r17 <- &e
lda $17, 8($17)
ldq $0, _x_
cmoveq $0, $17, $18 # r18 <- &e (cas (a0-a1+a2)(b0-b1+b2) >= 0)
cmoveq $0, $16, $19 # r19 <- &d
cmovne $0, $17, $19 # r19 <- &e (cas (a0-a1+a2)(b0-b1+b2) < 0)
cmovne $0, $16, $18 # r18 <- &d
bsr $26, .Lsn_half_addsub_nogp
# c[2p..4p] <- e - c0 - c4 = c2
# f <- BASE^4*c4 - f = -c0 - BASE*c1 - BASE^2*c2 - BASE^3*c3
ldq $0, _p_
addq $0, $0, $0 # r0 <- 2p
ldq $16, _c_ # r16 <- &c0
s8addq $0, $16, $20 # r20 <- &c2
s8addq $0, $20, $18 # r18 <- &c4
lda $19, _d_
s8addq $0, $19, $19 # r19 <- &e
lda $19, 16($19)
s8addq $0, $19, $21 # r21 <- &f[4]
lda $21, 48($21)
ldq $1, _q_
ldq $2, _r_
addq $1, $2, $22 # r22 <- q+r
subq $0, $22, $23 # r23 <- 2p-q-r
# f[0..3] <- -f[0..3]
ldq $5, -32($21) # r5 <- f[0]
ldq $6, -24($21) # r6 <- f[1]
ldq $7, -16($21) # r7 <- f[2]
ldq $8, -8($21) # r8 <- f[3]
subq $31, $5, $5 # ngation sur 4 chiffres
cmpeq $5, $31, $4
eqv $6, $31, $6
addq $6, $4, $6
cmpult $6, $4, $4
eqv $7, $31, $7
addq $7, $4, $7
cmpult $7, $4, $4
eqv $8, $31, $8
addq $8, $4, $8
stq $5, -32($21)
stq $6, -24($21)
stq $7, -16($21)
stq $8, -8($21)
cmpule $4, $8, $1 # r1 <- retenue(BASE^4*c4-f)
bis $31, $31, $0 # r0 <- retenue(d-c0-c4)
# combinaison des chiffres communs
.align 5
1:
ldq $2, 0($19) # r2 <- e[i]
ldq $3, 0($21) # r3 <- f[i+4]
ldq $4, 0($16) # r4 <- c0[i]
ldq $5, 0($18) # r5 <- c4[i]
subq $2, $0, $0 # r0 <- e[i] - ret(e-c0-c4)
cmpult $2, $0, $2
subq $0, $4, $4 # r4 <- e[i] - c0[i] - ret(e-c0-c4)
cmpult $0, $4, $0
addq $2, $0, $0
subq $4, $5, $2 # r2 <- e[i] - c0[i] - c4[i] - ret(e-c0-c4)
cmpult $4, $2, $4
addq $4, $0, $0 # r0 <- retenue(e-c0-c4)
stq $2, 0($20) # sauve c2[i]
addq $3, $1, $3 # r3 <- f[i+4] + ret(BASE^4*c4-f)
cmpult $3, $1, $1
subq $5, $3, $3 # r3 <- c4[i] - f[i+4] - ret(BASE^4*c4-f)
cmpult $5, $3, $5
addq $5, $1, $1 # r1 <- retenue(BASE^4*c4-f)
stq $3, 0($21) # sauve f[i+4]
lda $22, -1($22) # i++
lda $16, 8($16) # avance les pointeurs
lda $19, 8($19)
lda $21, 8($21)
lda $18, 8($18)
lda $20, 8($20)
bne $22, 1b
# continue sans c4
beq $23, 2f
.align 5
1:
ldq $2, 0($19) # r2 <- e[i]
ldq $3, 0($21) # r3 <- f[i+4]
ldq $4, 0($16) # r4 <- c0[i]
subq $2, $0, $0 # r0 <- e[i] - ret(e-c0-c4)
cmpult $2, $0, $2
subq $0, $4, $4 # r4 <- e[i] - c0[i] - ret(e-c0-c4)
cmpult $0, $4, $0
addq $2, $0, $0 # r0 <- retenue(e-c0-c4)
stq $4, 0($20) # sauve c2[i]
addq $3, $1, $3 # r3 <- f[i+4] + ret(BASE^4*c4-f)
cmpult $3, $1, $1
subq $31, $3, $3 # r3 <- -f[i+4] - ret(BASE^4*c4-f)
cmpult $31, $3, $5
addq $5, $1, $1 # r1 <- retenue(BASE^4*c4-f)
stq $3, 0($21) # sauve f[i+4]
lda $23, -1($23) # i++
lda $16, 8($16) # avance les pointeurs
lda $19, 8($19)
lda $21, 8($21)
lda $20, 8($20)
bne $23, 1b
2:
# ajoute le dernier chiffre de c2 c4
ldq $2, 0($19) # r2 <- e[2p]
subq $2, $0, $0 # r0 <- e[2p] - ret(e-c0-c4)
subq $31, 1, $2 # r2 <- illimit
bsr $27, sn_incloop
# f <- (f + c0 + BASE*d + BASE^2*c2)/(1-BASE^2) = BASE*c3
# e[3..2p+3] <- d - f/BASE = c1
ldq $0, _p_
addq $0, $0, $0 # r0 <- 2p
ldq $16, _c_ # r16 <- &c0
s8addq $0, $16, $17 # r17 <- &c2
lda $18, _d_ # r18 <- &d
addq $0, 5, $1
s8addq $1, $18, $19 # r19 <- &e[3]
s8addq $0, $19, $20 # r20 <- &f[1]
subq $0, 2, $21 # r21 <- 2p-2
# traite les deux premiers chiffres part
bis $31, $31, $3 # r3 <- 0 (retenue de la division)
bis $31, $31, $4 # r4 <- 0 (= nf[0])
ldq $2, 0($20) # r2 <- f[1]
ldq $0, 0($16)
ldq $1, 8($16)
cmpult $31, $0, $0 # r0 <- c0[0] != 0 (= retenue(f+c0))
addq $2, $0, $2 # r1 <- f[1] + ret
cmpult $2, $0, $0
addq $2, $1, $1 # r1 <- f[1] + c0[1] + ret
cmpult $1, $2, $2
addq $2, $0, $0
ldq $7, 0($18) # r7 <- d[0]
addq $1, $7, $5 # r5 <- f[1] + c0[1] + d[0] + ret = nf[1]
cmpult $5, $1, $1
addq $1, $0, $0
stq $5, 0($20) # sauve nf[1]
cmpult $7, $5, $6 # r6 <- retenue(d - f/BASE)
subq $7, $5, $7 # r7 <- d[0] - nf[1]
stq $7, 0($19) # sauve nd[0]
# boucle sur les chiffres communs
.align 5
1:
ldq $1, 8($20)
addq $1, $0, $2 # r2 <- f[i] + ret
cmpult $2, $1, $0
ldq $1, 16($16)
addq $2, $1, $1 # r1 <- f[i] + c0[i] + ret
cmpult $1, $2, $2
addq $2, $0, $0
ldq $7, 8($18) # r7 <- d[i-1]
addq $1, $7, $2 # r2 <- f[i] + c0[i] + d[i-1] + ret
cmpult $2, $1, $1
addq $1, $0, $0
ldq $1, 0($17)
addq $2, $1, $1 # r1 <- f[i] + c0[i] + d[i-1] + c2[i-2] + ret
cmpult $1, $2, $2
addq $2, $0, $0
addq $1, $4, $1 # r1 += nf[i-2]
cmpult $1, $4, $2
bis $5, $5, $4 # r4 <- nf[i-1]
addq $1, $3, $5 # r5 <- nf[i]
cmpult $5, $3, $3
addq $2, $3, $3 # r3 <- nouvelle retenue de la division
stq $5, 8($20) # sauve nf[i]
addq $5, $6, $6
cmpult $6, $5, $2
subq $7, $6, $6 # r6 <- d[i-1] - nf[i] - ret
cmpult $7, $6, $7
stq $6, 8($19) # sauve nd[i-1]
addq $2, $7, $6 # r6 <- retenue(d - f/BASE)
lda $21, -1($21) # i++
lda $16, 8($16) # avance les pointeurs
lda $18, 8($18)
lda $20, 8($20)
lda $17, 8($17)
lda $19, 8($19)
bne $21, 1b
# derniers chiffres
ldq $2, 8($20)
addq $2, $0, $1 # r1 <- f[2p] + ret
cmpult $1, $2, $0
ldq $7, 8($18) # r7 <- d[2p-1]
addq $1, $7, $2 # r2 <- f[2p] + d[2p-1] + ret
cmpult $2, $1, $1
addq $1, $0, $0
ldq $1, 0($17)
addq $2, $1, $1 # r1 <- f[2p] + d[2p-1] + c2[2p-2] + ret
cmpult $1, $2, $2
addq $2, $0, $0
addq $1, $4, $1 # r1 += nf[2p-2]
cmpult $1, $4, $2
bis $5, $5, $4 # r4 <- nf[2p-1]
addq $1, $3, $5 # r5 <- nf[2p]
cmpult $5, $3, $3
addq $2, $3, $3 # r3 <- nouvelle retenue de la division
stq $5, 8($20) # sauve nf[2p]
addq $5, $6, $6
cmpult $6, $5, $2
subq $7, $6, $6 # r6 <- d[2p-1] - nf[2p] - ret
cmpult $7, $6, $7
stq $6, 8($19) # sauve nd[2p-1]
addq $2, $7, $6 # r6 <- retenue(d + f/BASE)
ldq $2, 16($20)
addq $2, $0, $1 # r1 <- f[2p+1] + ret
ldq $7, 16($18) # r7 <- d[2p]
addq $1, $7, $2 # r2 <- f[2p+1] + d[2p] + ret
ldq $1, 8($17)
addq $2, $1, $1 # r1 <- f[2p+1] + d[2p] + c2[2p-1] + ret
addq $1, $4, $1 # r1 += nf[2p-1]
addq $1, $3, $5 # r5 <- nf[2p+1]
stq $5, 16($20) # sauve nf[2p+1]
addq $5, $6, $6
subq $7, $6, $6 # r6 <- d[2p] - nf[2p+1] - ret
# ajoute nd[2p] nf
ldq $0, 16($19)
addq $0, $6, $6
stq $6, 16($19)
cmpult $6, $0, $0
beq $0, 2f
1:
lda $19, 8($19)
ldq $6, 16($19)
addq $6, 1, $6
stq $6, 16($19)
beq $6, 1f
2:
# injecte c1,c3 dans c
ldq $0, _p_
ldq $1, _q_
ldq $2, _r_
addq $0, $0, $3 # r3 <- 2p
addq $0, $3, $4
addq $1, $4, $4 # r4 <- 3p+q
addq $4, $2, $17 # r17 <- 3p+q+r
addq $4, 1, $19 # r19 <- 3p+q+1
ldq $16, _c_
s8addq $0, $16, $16 # r16 <- &c[p]
lda $18, _d_
addq $3, 5, $3
s8addq $3, $18, $18 # r18 <- &e[3]
bsr $26, .Lsn_inc_nogp
# termin
ldq $26, _ra_
ldq $0, _p_
addq $0, $0, $1 # nettoie la pile
addq $0, $1, $0
addq $0, $0, $0
addq $0, 18, $0
s8addq $0, $30, $30
ret $31, ($26),1
#undef _x_
#undef _a_
#undef _b_
#undef _c_
#undef _d_
#undef _p_
#undef _q_
#undef _r_
#undef _ra_
# ici lb <= 2*ceil(la/3) : dcoupage en tranches de longueur lb
# variables locales
#define _sp_ 80($30)
#define _d_ 72($30)
#define _a_ 64($30)
#define _la_ 56($30)
#define _b_ 48($30)
#define _lb_ 40($30)
#define _c_ 32($30)
#define _l_ 24($30)
#define _ra_ 16($30)
#define _add_ 8($30)
#define _move_ 0($30)
.align 5
L(tranches):
s8addq $19, 88, $1 # rserve lb+10 chiffres dans la pile
bic $1, 15, $1 # en arrondissant un compte pair
subq $30, $1, $30
stq $16, _a_ # sauve les paramtres
stq $17, _la_
stq $18, _b_
stq $19, _lb_
stq $31, _l_
stq $26, _ra_
# prpare le droulement des boucles
subq $31, $19, $0 # r0 <- -lb
and $0, 31, $0 # r0 <- (-lb) % 32
lda $1, sn_cpuploop
s8addq $0, $1, $1 # r1 <- adresse de saut pour move
stq $1, _move_
sll $0, 3, $0 # r0 <- 8*((-lb) % 32)
lda $1, sn_addloop
s4addq $0, $1, $1 # r1 <- adresse de saut pour add
stq $1, _add_
subq $20, $0, $1 # r1 <- c cadr sur un multiple de 32
stq $1, _c_
lda $1, _sp_
subq $1, $0, $1 # r1 <- d cadr sur un multiple de 32
stq $1, _d_
# premire multiplication : c <- a[0..lb-1]*b
bis $19, $19, $17
bsr $26, L(nogp)
br $31, 3f
# multiplications suivantes
.align 5
1:
stq $18, _a_ # sauvegarde les paramtres
stq $19, _la_
stq $16, _c_
cmpult $17, $19, $0 # l <- min(lb,la)
cmovne $0, $17, $19
stq $19, _l_
# sauvegarde c[0..lb-1] dans la pile
ldq $27, _move_
ldq $20, _d_
subq $31, $17, $2 # r2 <- -lb
jsr $27, ($27) # d <- c[0..lb-1]
# multiplication
sll $17, 3, $0
subq $16, $0, $20 # r20 <- &c[0]
ldq $16, _b_
bsr $26, L(nogp)
# ajoute d
ldq $16, _c_
ldq $18, _d_
ldq $2, _lb_
ldq $27, _add_
subq $31, $2, $2 # r2 <- -lb
bis $16, $16, $20
bis $31, $31, $0 # r0 <- 0 (retenue)
jsr $27, ($27) # effectue l addition
ldq $2, _l_
jsr $27, sn_incloop # propage la retenue
3:
ldq $18, _a_ # rcupre les paramtres
ldq $19, _la_
ldq $17, _lb_
ldq $16, _c_
s8addq $17, $18, $18 # a += lb
s8addq $17, $16, $16 # c += lb
subq $19, $17, $19 # la -= lb
bgt $19, 1b
addq $17, 1, $17 # nettoie la pile
bic $17, 1, $17
ldq $26, _ra_
lda $30, _sp_
s8addq $17, $30, $30
ret $31, ($26),1
#undef _sp_
#undef _a_
#undef _b_
#undef _c_
#undef _d_
#undef _la_
#undef _lb_
#undef _l_
#undef _ra_
#undef _move_
#undef _add_
#ifdef debug_toommul
.end sn_toommul_buggy
#else
.end sn_toommul
#endif
#undef L
#endif /* assembly_sn_toommul */
#if !defined(assembly_sn_toommul) || defined(debug_toommul)
REPLACE(sn_toommul)
#endif
# +---------+
# | Carr |
# +---------+
# void xn(toomsqr)(chiffre *a, long la, chiffre *c)
#
# entre :
# a = naturel de longueur la
# c = naturel de longueur 2*la, non confondu avec a
# contraintes : 0 < la
#
# sortie :
# c <- a^2
#ifdef assembly_sn_toomsqr
#define L(x) .Lsn_toomsqr_##x
.align 5
#ifdef debug_toommul
.globl sn_toomsqr_buggy
.ent sn_toomsqr_buggy
sn_toomsqr_buggy:
.frame $30,0,$26,0
.prologue 1
ldgp $gp, 0($27)
#else
.globl sn_toomsqr
.ent sn_toomsqr
sn_toomsqr:
.frame $30,0,$26,0
.prologue 1
ldgp $gp, 0($27)
L(nogp):
#endif
cmpule $17, toomsqr_lim, $0 # petit carr ?
bne $0, .Lsn_karasqr_nogp # => algorithme de Karatsuba
lda $0, 0x5555($31)
sll $0, 16, $1
or $1, $0, $0
sll $0, 32, $1
or $1, $0, $0 # r0 <- (BASE-1)/3
umulh $0, $17, $0
addq $0, 1, $0 # r0 <- ceil(la/3) = p
addq $0, $0, $1 # r1 <- 2p
subq $17, $1, $19 # r19 <- la - 2p = q
# variables locales
#define _d_ 64($30)
#define _x_ 56($30)
#define _a_ 48($30)
#define _b_ 40($30)
#define _c_ 32($30)
#define _p_ 24($30)
#define _q_ 16($30)
#define _r_ 8($30)
#define _ra_ 0($30)
addq $0, $1, $1 # rserve 6p+18 chiffres dans la pile
sll $1, 4, $1
addq $1, 144, $1
subq $30, $1, $30
stq $31, _x_ # sauve les paramtres
stq $16, _a_
stq $16, _b_
stq $18, _c_
stq $0, _p_
stq $19, _q_
stq $19, _r_
stq $26, _ra_
# c[0..p] <- a0 + a1 + a2, c[p+1..2p+1] <- |a0 - a1 + a2|
bis $0, $0, $17 # r17 <- p
bsr $26, .Lsn_add_sub3_nogp
# d <- (a0 + a1 + a2)^2 = c0 + c1 + c2 + c3 + c4
ldq $16, _c_
ldq $17, _p_
addq $17, 1, $17 # r17 <- p+1
lda $18, _d_
bsr $26, L(nogp)
# e <- |a0 - a1 + a2|^2 = c0 - c1 + c2 - c3 + c4
ldq $16, _c_
ldq $17, _p_
addq $17, 1, $17 # r17 <- p+1
s8addq $17, $16, $16 # r16 <- &c[p+1]
lda $18, _d_
s8addq $17, $18, $18
s8addq $17, $18, $18 # r18 <- &e
s8addq $17, $16, $0 # teste si a0-a1+a2 >= 0
ldq $0, -8($0)
bge $0, 2f
bis $16, $16, $0 # sinon, remplace par l oppos
bis $17, $17, $1
addq $31, 1, $2
.align 5
1:
lda $1, -1($1)
ldq $3, 0($0)
eqv $3, $31, $3
addq $2, $3, $3
cmpult $3, $2, $2
stq $3, 0($0)
lda $0, 8($0)
bne $1, 1b
2:
bsr $26, L(nogp)
# f <- (a0 + BASE*a1 + BASE^2*a2)^2
# = c0 + BASE*c1 + BASE^2*c2 + BASE^3*c3 + BASE^4*c4
ldq $16, _a_
ldq $17, _c_
ldq $18, _p_
ldq $19, _q_
bsr $26, .Lsn_add_base_nogp
ldq $16, _c_
ldq $17, _p_
addq $17, 3, $17 # r17 <- p+3
lda $18, _d_
s4addq $17, -8, $0 # r0 <- 4p+4
s8addq $0, $18, $18 # r18 <- &f
# diminue les longeurs des facteurs si les chiffres de tte sont nuls
# seuls les chiffres de rang <= 2p+1 de f vont tre utiliss, donc ce
# n est pas grave si les suivants ne sont pas initialiss
s8addq $17, $16, $0
ldq $1, -8($0)
ldq $2, -16($0)
cmpeq $1, $31, $1
cmpeq $2, $31, $2
and $1, $2, $2
addq $1, $2, $1 # r1 <- nb. de zros de tte pour a
subq $17, $1, $17
bsr $26, L(nogp)
# c[0..2p-1] <- a0^2 = c0, c[4*p..4p+q+r-1] <- a2^2 = c4
ldq $16, _a_
ldq $17, _p_
ldq $18, _c_
bsr $26, L(nogp)
ldq $16, _a_
ldq $17, _q_
ldq $18, _c_
ldq $0, _p_
s4addq $0, 0, $0 # r0 <- 4p
s4addq $0, $16, $16 # r16 <- &a[2p]
s8addq $0, $18, $18 # r18 <- &c[4p]
bsr $26, L(nogp)
# continue avec toommul
br $31, .Lsn_toom_aux
#undef _a_
#undef _b_
#undef _c_
#undef _d_
#undef _p_
#undef _q_
#undef _r_
#undef _x_
#undef _ra_
#ifdef debug_toommul
.end sn_toomsqr_buggy
#else
.end sn_toomsqr
#endif
#undef L
#endif /* assembly_sn_toomsqr */
#if !defined(assembly_sn_toomsqr) || defined(debug_toommul)
REPLACE(sn_toomsqr)
#endif
|