File: moddiv.c

package info (click to toggle)
numerix 0.22-4
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 4,380 kB
  • ctags: 4,165
  • sloc: asm: 26,210; ansic: 12,168; ml: 4,912; sh: 3,899; pascal: 414; makefile: 179
file content (273 lines) | stat: -rw-r--r-- 8,804 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// file kernel/n/c/moddiv.c: division/square root with modular remainder
/*-----------------------------------------------------------------------+
 |  Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org)      |
 |                                                                       |
 |  This file is part of Numerix. Numerix is free software; you can      |
 |  redistribute it and/or modify it under the terms of the GNU Lesser   |
 |  General Public License as published by the Free Software Foundation; |
 |  either version 2.1 of the License, or (at your option) any later     |
 |  version.                                                             |
 |                                                                       |
 |  The Numerix Library is distributed in the hope that it will be       |
 |  useful, but WITHOUT ANY WARRANTY; without even the implied warranty  |
 |  of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU  |
 |  Lesser General Public License for more details.                      |
 |                                                                       |
 |  You should have received a copy of the GNU Lesser General Public     |
 |  License along with the GNU MP Library; see the file COPYING. If not, |
 |  write to the Free Software Foundation, Inc., 59 Temple Place -       |
 |  Suite 330, Boston, MA 02111-1307, USA.                               |
 +-----------------------------------------------------------------------+
 |                                                                       |
 |            Division et racine carre avec reste modulaire             |
 |                                                                       |
 +-----------------------------------------------------------------------*/


                     /* +-------------------------------+
                        |  Division avec et sans reste  |
                        +-------------------------------+ */

/*
  entre :
  a = naturel de longueur lc+lb
  b = naturel de longueur lb
  c = naturel de longueur lc
  rem = 0 ou 1 ou 2

  contraintes :
  lb >= 2, lc > 0, le bit de poids fort de b est non nul,
  a < BASE^lc*b
  a,b,c non confondus

  sortie si rem = 0 :
    a <- ind.
    c <- approx(a/b) avec -ceil(log_2(lb))*BASE^(lb-1) < a - b*c < b
  sortie si rem = 1 :
    a <- a mod b
    c <- floor(a/b)
  sortie si rem = 2 :
    a <- ind.
    c <- approx(a/b) avec -ceil(log_2(lb))*BASE^(lb-1) < a - b*c < b
         et c = floor(a/b) si c[0] = 0
*/
#ifndef assembly_sn_moddiv
#ifdef debug_moddiv
void xn(moddiv_buggy)
#else
void xn(moddiv)
#endif
(chiffre *a, long lc, chiffre *b, long lb, chiffre *c, int rem) {
  long p,q,q1,r;
  chiffre *x = NULL;

  p = lb/2; q = lb-p; q1 = q-1;
  if (q1 < p) {q++; q1++; p--;}

  /* r <- nb de chiffres du quotient pour la premire division sans reste */
  if (lc <= q1) {q=lc+1; q1=lc; p=lb-q; r=lc;}
  else {r = lc%q1; if (r == 0) r = q1;}

  /* division avec reste par tranches de q-1 chiffres */
  lc -= r; a += lc; c += lc;
  if ((lc) || (rem)) x = xn(alloc)(q+q1);
  while(lc) {

    /* si lb ou r est assez petit, on utilise burnidiv ou div_n2 */
    if      (lb <= moddiv_lim)      xn(burnidiv) (a,r,b,lb,c);
    else if (r  <= div_small_c_lim) xn(div_n2)(a,r,b,lb,c);

    /* sinon, division sans reste puis calcul modulaire du reste */
    else {
      if (xn(cmp)(a+p+r,q,b+p,q)) {
        xn(move)(a+p,q+r,x);
        xn(moddiv)(x,r,b+p,q,c,0);
      }
      else xn(fill)(c,r);
      xn(remdiv)(a,r,b,lb,c);
    }

    /* tranche suivante */
    a -= q1; c -= q1; lc -= q1; r = q1;
  }

  if (rem) { /* dernire division, avec reste si ncessaire */

    /* si lb ou r est assez petit, on utilise burnidiv ou div_n2 */
    if      (lb <= moddiv_lim)      xn(burnidiv) (a,r,b,lb,c);
    else if (r  <= div_small_c_lim) xn(div_n2)(a,r,b,lb,c);

    /* sinon, division sans reste puis calcul modulaire du reste */
    else {
      if (xn(cmp)(a+p+r,q,b+p,q)) {
        xn(move)(a+p,q+r,x);
        xn(moddiv)(x,r,b+p,q,c,0);
      }
      else xn(fill)(c,r);
      if ((rem == 1) || (c[0] == 0)) xn(remdiv)(a,r,b,lb,c);
    }
  }
  else { /* dernire division, sans reste */
    p += q1-r; q = lb-p;
    if (xn(cmp)(a+p+r,q,b+p,q)) {
      if (q <= moddiv_lim)           xn(burnidiv) (a+p,r,b+p,q,c);
      else if (r <= div_small_c_lim) xn(div_n2)(a+p,r,b+p,q,c);
      else                           xn(moddiv)  (a+p,r,b+p,q,c,0);
    }
    else xn(fill)(c,r);
  }

  xn(free)(x); /* on peut avoir x = NULL ici */

}
#endif /* assembly_sn_moddiv */

                              /* +------------+
                                 |  Contrle  |
                                 +------------+ */

#ifdef debug_moddiv
void xn(moddiv_buggy)(chiffre *a, long lc, chiffre *b, long lb, chiffre *c, int rem);
void xn(moddiv)(chiffre *a, long lc, chiffre *b, long lb, chiffre *c, int rem) {
  long la = lc+lb,l;
  chiffre *x,*y,r;
  int ok;

  /* validit des longueurs ? */
  if ((lb < 2) || (la < lb))
      xn(internal_error)("error, moddiv is called with lb < 2 or la < lb",0);

  /* le bit de poids fort de b est non nul ? */
  if ((b[lb-1] & (BASE_2)) == 0)
      xn(internal_error)("error, moddiv is called with msb(b) = 0",0);

  /* a < BASE^lc*b ? */
  if (xn(cmp)(a+lc,lb,b,lb) >= 0)
    xn(internal_error)("error, moddiv is called with a >= BASE^lc*b",2,a,la,b,lb);


  /* effectue la division douteuse */
  x = xn(alloc)(2*la); y = x+la;
  xn(move)(a,la,x);
  xn(moddiv_buggy)(a,lc,b,lb,c,rem);

  /* calcule a - b*c */
  if (lc < lb) xn(fftmul)(b,lb,c,lc,y); else xn(fftmul)(c,lc,b,lb,y);
  if (xn(sub)(x,la,y,la,y)) {

    /* ngatif : vrifie que a - bc + ceil(log_2(b))*BASE^(lb-1) > 0 */
    if (rem != 1) {
      for (l=1, r=0; l<lb; l<<=1, r++);
      ok =((xn(inc)(y+lb-1,lc+1,&r,1)) && (xn(cmp)(y,la,&r,0)));
    }
    else ok = 0;
  }
  else {

    /* positif ou nul : vrifie que a - bc < b */
    ok = (xn(cmp)(y,la,b,lb) < 0);

    /* si rem = 1, vrifie que a_sortie = a_entre - b*c */
    if ((ok) && (rem==1)) ok = (xn(cmp)(a,lb,y,lb) == 0);
  }

  if (!ok) {
    if (rem == 1) xn(internal_error)("error in moddiv", 4,x,la,b,lb,c,lc,a,lb);
    else          xn(internal_error)("error in moddiv", 3,x,la,b,lb,c,lc);
  }
  xn(free)(x);

}
#endif /* debug_moddiv */

                            /* +-----------------+
                               |  Racine carre  |
                               +-----------------+ */
/*
  entre :
  a = naturel de longueur la
  b = naturel de longueur la/2

  contraintes :
  la > 0, la pair, BASE/16 <= a[la-1] < BASE/4
  a,b non confondus

  sortie :
  b <- 2*floor(sqrt(a))
  a <- a - b^2/4
*/

#ifndef assembly_sn_modsqrt
#ifdef debug_modsqrt
void xn(modsqrt_buggy)
#else
void xn(modsqrt)
#endif
(chiffre *a, long la, chiffre *b) {
  long p,q;
  chiffre *x;

  /* petite racine -> zimsqrt */
  if (la <= modsqrt_lim) {xn(zimsqrt)(a,la,b); return;}

  /* cas rcursif : divise a en 2 et calcule la racine du haut */
  p = la/4; q = la/2-p;
  if (p == q) {p--; q++;}
  x = xn(alloc)(p+2*q);
  xn(move)(a+p,p+2*q,x);
  xn(modsqrt)(x+p,2*q,b+p);

  /* divise le reste par 2b[p..p+q-1] */
  /* Rmq : on pourrait gagner du temps ici car karpdiv va recalculer
     l'inverse de la moiti haute de 2b[p..p+q-1]  partir de zro,
     alors qu'on pourrait profiter de l'inverse du quart haut, dj
     calcul dans l'appel rcursif  modsqrt ...  voir.
  */
  if (xn(cmp)(x+p,q,b+p,q)) xn(karpdiv)(x,p,b+p,q,b,0); else xn(fill)(b,p);
  xn(free)(x);

  /* dcale le quotient */
  if (xn(shift_up)(b,p,b,1)) b[p]++;

  /* calcule le reste */
  xn(remsqrt)(a,la,b);

}
#endif /* assembly_sn_modsqrt */

                              /* +------------+
                                 |  Contrle  |
                                 +------------+ */

#ifdef debug_modsqrt
void xn(modsqrt_buggy)(chiffre *a, long la, chiffre *b);
void xn(modsqrt)(chiffre *a, long la, chiffre *b) {
  long lb = la/2;
  chiffre *x,*y, r;

  /* vrifie que la est pair > 0 et BASE/16 <= a[la-1] < BASE/4 */
  if ((la%2) || (la < 2))
    xn(internal_error)("error, modsqrt is called with la odd or la < 2",0);

  r = a[la-1] >> (HW-4);
  if ((r == 0) || (r > 3))
    xn(internal_error)("error, modsqrt is called without BASE/16 <= msb(la) < BASE/4",1,a,la);

  /* calcule la racine carre douteuse */
  x = xn(alloc)(2*la); y = x + la;
  xn(move)(a,la,x);
  xn(modsqrt_buggy)(a,la,b);

  /* vrifie que a_entre = a_sortie + (b/2)^2 et a_sortie <= b */
  xn(fftsqr)(b,lb,y);
  r = xn(shift_down)(y,la,y,2);
  if (r == 0) r = xn(inc)(y,la,a,lb);
  if (r == 0) r = xn(cmp)(x,la,y,la);
  if (r == 0) r = (xn(cmp)(a,lb,b,lb) > 0);

  if (r) xn(internal_error)("error in modsqrt", 3,x,la,b,lb,a,lb);

  xn(free)(x);

}
#endif /* debug_modsqrt */