1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
// file kernel/n/c/sqrt_n2.c: O(n^2) square root of natural integers
/*-----------------------------------------------------------------------+
| Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org) |
| |
| This file is part of Numerix. Numerix is free software; you can |
| redistribute it and/or modify it under the terms of the GNU Lesser |
| General Public License as published by the Free Software Foundation; |
| either version 2.1 of the License, or (at your option) any later |
| version. |
| |
| The Numerix Library is distributed in the hope that it will be |
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU MP Library; see the file COPYING. If not, |
| write to the Free Software Foundation, Inc., 59 Temple Place - |
| Suite 330, Boston, MA 02111-1307, USA. |
+-----------------------------------------------------------------------+
| |
| Racine carre quadratique |
| |
+-----------------------------------------------------------------------*/
/* +-----------------------------+
| Racine carre quadratique |
+-----------------------------+ */
/*
entre :
a = naturel de longueur la
b = naturel de longueur la/2
contraintes :
la > 0, la pair, BASE/16 <= a[la-1] < BASE/4
a,b non confondus
sortie :
b <- 2*floor(sqrt(a))
a <- a - b^2/4
*/
#ifndef assembly_sn_sqrt_n2
#ifdef debug_sqrt_n2
void xn(sqrt_n2_buggy)
#else
void xn(sqrt_n2)
#endif
(chiffre *a, long la, chiffre *b) {
#ifdef zdouble
chiffre u,v;
ndouble x;
zdouble z;
long i,lb;
/* avance a et b aux chiffres de tte */
a += la-2; b += la/2 - 1;
/* b[0] <- 2*floor(sqrt(a[0]+BASE*a[1])), a <- a - b^2/4 */
x = (ndouble)a[0] + ((ndouble)a[1] << HW);
for (u=BASE_2, v=(u+x/u)/2; v < u; u=v, v=(u+x/u)/2);
a[0] = x - u*u;
a[1] = 0;
b[0] = u << 1;
/* calcule les chiffres suivants par divisions */
for (lb=2, la-=2, a-=2, b--; la; lb++, la-=2, a-=2, b--) {
/* quotient approch, peut tre trop grand d'une ou deux units */
if ((ndouble)a[lb] >= (ndouble)b[lb-1]) v = (BASE_2)+(BASE_2-1);
else {
x = (ndouble)a[lb-1] + ((ndouble)a[lb] << HW);
v = x/(ndouble)b[lb-1];
}
/* a <- a - v*b - v^2, b <- b + 2*v */
b[0] = v;
for (x=0, z=0, i=0; i<lb; i++) {
x += v*(ndouble)b[i];
z += (ndouble)a[i] - (x & ((BASE_2)+(BASE_2-1)));
a[i] = z;
x >>= HW; z >>= HW;
}
z += (ndouble)a[lb] - x;
a[lb] = z;
b[0] = v << 1;
if (v & (BASE_2)) b[1]++;
/* corrige le quotient et le reste si < 0 */
while(a[lb]) {
xn(dec1)(b,lb);
xn(inc)(a,lb+1,b,lb);
b[0]--;
}
}
#else /* pas de doubles */
chiffre u,v,x,y;
long i,lb;
/* avance a et b aux chiffres de tte */
a += la-2; b += la/2 - 1;
/* b[0] <- 2*floor(sqrt(a[0]+BASE*a[1])), a <- a - b^2/4 */
for (u = 0, v = BASE_2; v; v >>= 1) {
u += v;
xn(sqr_0)(u,&x,&y);
if ((a[1] < y) || ((a[1] == y) && (a[0] < x))) u -= v;
}
a[0] -= u*u;
a[1] = 0;
b[0] = u << 1;
/* calcule les chiffres suivants par divisions */
for (lb=2, la-=2, a-=2, b--; la; lb++, la-=2, a-=2, b--) {
/* quotient approch, peut tre trop grand d'une ou deux units */
if (a[lb] >= b[lb-1]) v = (BASE_2)+(BASE_2-1);
else xn(div_0)(a[lb-1],a[lb],b[lb-1],&v,&u);
/* a <- a - v*b - v^2, b <- b + 2*v */
b[0] = v;
for (u=0, i=0; i<lb; i++) {
xn(mul_0)(v,b[i],&x,&y);
x += u; u = y + (x < u) + (a[i] < x);
a[i] -= x;
}
a[lb] -= u;
b[0] = v << 1;
if (v & (BASE_2)) b[1]++;
/* corrige le quotient et le reste si < 0 */
while(a[lb]) {
xn(dec1)(b,lb);
xn(inc)(a,lb+1,b,lb);
b[0]--;
}
}
#endif /* ndouble */
}
#endif /* assembly_sn_sqrt_n2 */
/* +------------+
| Contrle |
+------------+ */
#ifdef debug_sqrt_n2
void xn(sqrt_n2_buggy)(chiffre *a, long la, chiffre *b);
void xn(sqrt_n2)(chiffre *a, long la, chiffre *b) {
long lb = la/2;
chiffre *x,*y, r;
/* vrifie que la est pair > 0 et BASE/16 <= a[la-1] < BASE/4 */
if ((la%2) || (la < 2))
xn(internal_error)("error, sqrt_n2 is called with la odd or la < 2",0);
if ((a[la-1] < (chiffre)(BASE_2/8)) || (a[la-1] >= (chiffre)(BASE_2/2)))
xn(internal_error)("error, sqrt_n2 is called without BASE/16 <= msb(la) < BASE/4",1,a,la);
/* calcule la racine carre douteuse */
x = xn(alloc_tmp)(2*la); y = x + la;
xn(move)(a,la,x);
xn(sqrt_n2_buggy)(a,la,b);
/* vrifie que a_entre = a_sortie + (b/2)^2 et a_sortie <= b */
xn(toomsqr)(b,lb,y);
r = xn(shift_down)(y,la,y,2);
if (r == 0) r = xn(inc)(y,la,a,lb);
if (r == 0) r = xn(cmp)(x,la,y,la);
if (r == 0) r = (xn(cmp)(a,lb,b,lb) > 0);
if (r) xn(internal_error)("error in sqrt_n2", 3,x,la,b,lb,a,lb);
xn(free_tmp)(x);
}
#endif /* debug_sqrt_n2 */
|