1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
// file kernel/x/c/root.c: pth-root of extensible integers
/*-----------------------------------------------------------------------+
| Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org) |
| |
| This file is part of Numerix. Numerix is free software; you can |
| redistribute it and/or modify it under the terms of the GNU Lesser |
| General Public License as published by the Free Software Foundation; |
| either version 2.1 of the License, or (at your option) any later |
| version. |
| |
| The Numerix Library is distributed in the hope that it will be |
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU MP Library; see the file COPYING. If not, |
| write to the Free Software Foundation, Inc., 59 Temple Place - |
| Suite 330, Boston, MA 02111-1307, USA. |
+-----------------------------------------------------------------------+
| |
| Racine p-me |
| |
+-----------------------------------------------------------------------*/
/*
entre :
a = entier extensible
_b = NULL ou pointeur sur un entier extensible
p = entier > 0
mode = 0,1 ou 2
sortie :
si mode & 3 = 0: b <- floor(a^(1/p))
si mode & 3 = 1: b <- floor(a^(1/p)+1/2)
si mode & 3 = 2: b <- ceil(a^(1/p))
si mode & 3 = 1: b <- ceil(a^(1/p)-1/2) (= floor(a^(1/p)+1/2))
si _b != NULL, *_b <- b
retourne b
erreurs :
NEGATIVE_EXPONENT si p <= 0
NEGATIVE_BASE si a < 0 et p est pair
*/
xint xx(private_root)(xint *_b, xint a, long p, long mode) {
long la = xx_lg(a), sa = xx_sgn(a), lb, q,r, exact;
chiffre *aa;
int free_a;
xint b;
xx_push_roots_2(a,_b);
#ifdef caml_api
#define a __lr.a
#define _b __lr._b
#endif
/* contrle les arguments */
if (p <= 0) xx(failwith)(NEGATIVE_EXPONENT);
if ((sa) && (!(p&1))) xx(failwith)(NEGATIVE_BASE);
/* cas a = 0 ou p = 1 */
if (la == 0) {
b = xx(enlarge)(_b,0);
b->hd = 0;
xx_update_and_return(_b,b);
}
if (p == 1) {
b = xx(enlarge)(_b,la);
if (a != b) {xn(move)(a->val,la,b->val); b->hd = a->hd;}
xx_update_and_return(_b,b);
}
/* mode = 1 ou 3 -> calcule floor((2^p|a|)^(1/p)) */
if (mode & 1) {
/* aa <- 2^p*|a| */
q = p/HW; r = p & (HW-1);
aa = xn(alloc)(la+q+1);
xn(clear)(aa,q);
aa[la+q] = xn(shift_up)(a->val,la,aa+q,r);
for (la += q+1; aa[la-1] == 0; la--);
free_a = 1;
/* b->val <- floor( (floor((2^p|a|)^(1/p))+1)/2 ) */
lb = (la+p-1)/p + 1;
b = xx(enlarge)(_b,lb);
xn(root)(aa,la,b->val,p);
b->val[lb-1] = xn(inc1)(b->val,lb-1);
xn(shift_down)(b->val,lb,b->val,1);
}
/* mode = 0 ou 2 -> calcule floor(|a|^(1/p)) */
else {
/* b->val = floor(|a|^(1/p)) */
lb = (la+p-1)/p;
b = xx(enlarge)(_b,lb+1);
if (a == b) {
aa = xn(alloc)(la);
xn(move)(a->val,la,aa);
free_a = 1;
} else {aa = a->val; free_a = 0;}
exact = xn(root)(aa,la,b->val,p);
/* si la racine n'est pas entire, incrmente b si a < 0 en mode 0
ou a > 0 en mode 2 */
if (sa) mode ^= 2;
if ((!exact) && (mode & 2)) {b->val[lb] = xn(inc1)(b->val,lb); lb++;}
}
/* sgn(b) = sgn(a) */
xx(make_head)(b,lb,sa);
if (free_a) xn(free)(aa);
xx_update_and_return(_b,b);
#undef a
#undef _b
}
#if defined(caml_api) || defined(ocaml_api)
xint xx(root) ( xint *_b, xint a, long p) {return xx(private_root)(_b, a,Long_val(p),0);}
xint xx(groot) (value mode, xint *_b, xint a, long p) {return xx(private_root)(_b, a,Long_val(p),Round_val(mode));}
xint xx(f_root) ( xint a, long p) {return xx(private_root)(xx_null,a,Long_val(p),0);}
xint xx(f_groot)(value mode, xint a, long p) {return xx(private_root)(xx_null,a,Long_val(p),Round_val(mode));}
#endif /* api */
|