1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
// file kernel/x/h/random.h: random extensible integers
/*-----------------------------------------------------------------------+
| Copyright 2005-2006, Michel Quercia (michel.quercia@prepas.org) |
| |
| This file is part of Numerix. Numerix is free software; you can |
| redistribute it and/or modify it under the terms of the GNU Lesser |
| General Public License as published by the Free Software Foundation; |
| either version 2.1 of the License, or (at your option) any later |
| version. |
| |
| The Numerix Library is distributed in the hope that it will be |
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU MP Library; see the file COPYING. If not, |
| write to the Free Software Foundation, Inc., 59 Temple Place - |
| Suite 330, Boston, MA 02111-1307, USA. |
+-----------------------------------------------------------------------+
| |
| Nombres alatoires |
| |
+-----------------------------------------------------------------------*/
/* initialisation du gnrateur alatoire
si n != 0, le prend comme graine
si n = 0, prend l'heure en secondes comme graine */
#if defined(caml_api) || defined(ocaml_api)
value xx(random_init)(long n);
#elif defined(c_api)
void xx(random_init)(long n);
#endif /* api */
/* Nombre alatoire
entre :
_a = NULL ou pointeur vers un entier extensible
n = longueur >= 0
mode = long C
sortie :
a <- entier alatoire entre -2^n-1 et 2^n-1
les bits 0 et 1 de mode restreignent la plage alatoire de la manire suivante :
b0=0 => le signe est forc >= 0
b1=1 => le bit de rang n-1 est forc = 1 si n > 0
si _a != NULL, *_a <- a
retourne a
erreur :
NEGATIVE_SIZE si n < 0
*/
xint xx(private_random)(xint *_a, long n, long mode);
/*
nrandom(n) -> [0, 2^n[
zrandom(n) -> ]-2^n, 2^n[
nrandom1(n) -> [2^(n-1), 2^n[
zrandom1(n) -> ]-2^n, -2^(n-1)] U [2^(n-1), 2^n[
*/
extern inline xint xx(nrandom) (xint *_a, long n) {return xx(private_random)(_a,n,0);}
extern inline xint xx(zrandom) (xint *_a, long n) {return xx(private_random)(_a,n,1);}
extern inline xint xx(nrandom1)(xint *_a, long n) {return xx(private_random)(_a,n,2);}
extern inline xint xx(zrandom1)(xint *_a, long n) {return xx(private_random)(_a,n,3);}
extern inline xint xx(f_nrandom) (long n) {return xx(private_random)(NULL,n,0);}
extern inline xint xx(f_zrandom) (long n) {return xx(private_random)(NULL,n,1);}
extern inline xint xx(f_nrandom1) (long n) {return xx(private_random)(NULL,n,2);}
extern inline xint xx(f_zrandom1) (long n) {return xx(private_random)(NULL,n,3);}
|