1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#################################################################################
# To compare the performance of numexpr when free-threading CPython is used.
#
# This example makes use of Python threads, as opposed to C native ones
# in order to highlight the improvement introduced by free-threading CPython,
# which now disables the GIL altogether.
#################################################################################
"""
Results with GIL-enabled CPython:
Benchmarking Expression 1:
NumPy time (threaded over 32 chunks with 16 threads): 1.173090 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 0.951071 seconds
numexpr speedup: 1.23x
----------------------------------------
Benchmarking Expression 2:
NumPy time (threaded over 32 chunks with 16 threads): 10.410874 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 8.248753 seconds
numexpr speedup: 1.26x
----------------------------------------
Benchmarking Expression 3:
NumPy time (threaded over 32 chunks with 16 threads): 9.605909 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 11.087108 seconds
numexpr speedup: 0.87x
----------------------------------------
Benchmarking Expression 4:
NumPy time (threaded over 32 chunks with 16 threads): 3.836962 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 18.054531 seconds
numexpr speedup: 0.21x
----------------------------------------
Results with free-threading CPython:
Benchmarking Expression 1:
NumPy time (threaded over 32 chunks with 16 threads): 3.415349 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 2.618876 seconds
numexpr speedup: 1.30x
----------------------------------------
Benchmarking Expression 2:
NumPy time (threaded over 32 chunks with 16 threads): 19.005238 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 12.611407 seconds
numexpr speedup: 1.51x
----------------------------------------
Benchmarking Expression 3:
NumPy time (threaded over 32 chunks with 16 threads): 20.555149 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 17.690749 seconds
numexpr speedup: 1.16x
----------------------------------------
Benchmarking Expression 4:
NumPy time (threaded over 32 chunks with 16 threads): 38.338372 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 35.074684 seconds
numexpr speedup: 1.09x
----------------------------------------
"""
import os
os.environ["NUMEXPR_NUM_THREADS"] = "2"
import threading
import timeit
import numpy as np
import numexpr as ne
array_size = 10**8
num_runs = 10
num_chunks = 32 # Number of chunks
num_threads = 16 # Number of threads constrained by how many chunks memory can hold
a = np.random.rand(array_size).reshape(10**4, -1)
b = np.random.rand(array_size).reshape(10**4, -1)
c = np.random.rand(array_size).reshape(10**4, -1)
chunk_size = array_size // num_chunks
expressions_numpy = [
lambda a, b, c: a + b * c,
lambda a, b, c: a**2 + b**2 - 2 * a * b * np.cos(c),
lambda a, b, c: np.sin(a) + np.log(b) * np.sqrt(c),
lambda a, b, c: np.exp(a) + np.tan(b) - np.sinh(c),
]
expressions_numexpr = [
"a + b * c",
"a**2 + b**2 - 2 * a * b * cos(c)",
"sin(a) + log(b) * sqrt(c)",
"exp(a) + tan(b) - sinh(c)",
]
def benchmark_numpy_chunk(func, a, b, c, results, indices):
for index in indices:
start = index * chunk_size
end = (index + 1) * chunk_size
time_taken = timeit.timeit(
lambda: func(a[start:end], b[start:end], c[start:end]), number=num_runs
)
results.append(time_taken)
def benchmark_numexpr_re_evaluate(expr, a, b, c, results, indices):
for index in indices:
start = index * chunk_size
end = (index + 1) * chunk_size
# if index == 0:
# Evaluate the first chunk with evaluate
time_taken = timeit.timeit(
lambda: ne.evaluate(
expr,
local_dict={
"a": a[start:end],
"b": b[start:end],
"c": c[start:end],
},
),
number=num_runs,
)
results.append(time_taken)
def run_benchmark_threaded():
chunk_indices = list(range(num_chunks))
for i in range(len(expressions_numpy)):
print(f"Benchmarking Expression {i+1}:")
results_numpy = []
results_numexpr = []
threads_numpy = []
for j in range(num_threads):
indices = chunk_indices[j::num_threads] # Distribute chunks across threads
thread = threading.Thread(
target=benchmark_numpy_chunk,
args=(expressions_numpy[i], a, b, c, results_numpy, indices),
)
threads_numpy.append(thread)
thread.start()
for thread in threads_numpy:
thread.join()
numpy_time = sum(results_numpy)
print(
f"NumPy time (threaded over {num_chunks} chunks with {num_threads} threads): {numpy_time:.6f} seconds"
)
threads_numexpr = []
for j in range(num_threads):
indices = chunk_indices[j::num_threads] # Distribute chunks across threads
thread = threading.Thread(
target=benchmark_numexpr_re_evaluate,
args=(expressions_numexpr[i], a, b, c, results_numexpr, indices),
)
threads_numexpr.append(thread)
thread.start()
for thread in threads_numexpr:
thread.join()
numexpr_time = sum(results_numexpr)
print(
f"numexpr time (threaded with re_evaluate over {num_chunks} chunks with {num_threads} threads): {numexpr_time:.6f} seconds"
)
print(f"numexpr speedup: {numpy_time / numexpr_time:.2f}x")
print("-" * 40)
if __name__ == "__main__":
run_benchmark_threaded()
|