1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
#################################################################################
# To mimic the scenario that computation is i/o bound and constrained by memory
#
# It's a much simplified version that the chunk is computed in a loop,
# and expression is evaluated in a sequence, which is not true in reality.
# Neverthless, numexpr outperforms numpy.
#################################################################################
"""
Benchmarking Expression 1:
NumPy time (threaded over 32 chunks with 2 threads): 4.612313 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 2 threads): 0.951172 seconds
numexpr speedup: 4.85x
----------------------------------------
Benchmarking Expression 2:
NumPy time (threaded over 32 chunks with 2 threads): 23.862752 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 2 threads): 2.182058 seconds
numexpr speedup: 10.94x
----------------------------------------
Benchmarking Expression 3:
NumPy time (threaded over 32 chunks with 2 threads): 20.594895 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 2 threads): 2.927881 seconds
numexpr speedup: 7.03x
----------------------------------------
Benchmarking Expression 4:
NumPy time (threaded over 32 chunks with 2 threads): 12.834101 seconds
numexpr time (threaded with re_evaluate over 32 chunks with 2 threads): 5.392480 seconds
numexpr speedup: 2.38x
----------------------------------------
"""
import os
os.environ["NUMEXPR_NUM_THREADS"] = "16"
import threading
import timeit
import numpy as np
import numexpr as ne
array_size = 10**8
num_runs = 10
num_chunks = 32 # Number of chunks
num_threads = 2 # Number of threads constrained by how many chunks memory can hold
a = np.random.rand(array_size).reshape(10**4, -1)
b = np.random.rand(array_size).reshape(10**4, -1)
c = np.random.rand(array_size).reshape(10**4, -1)
chunk_size = array_size // num_chunks
expressions_numpy = [
lambda a, b, c: a + b * c,
lambda a, b, c: a**2 + b**2 - 2 * a * b * np.cos(c),
lambda a, b, c: np.sin(a) + np.log(b) * np.sqrt(c),
lambda a, b, c: np.exp(a) + np.tan(b) - np.sinh(c),
]
expressions_numexpr = [
"a + b * c",
"a**2 + b**2 - 2 * a * b * cos(c)",
"sin(a) + log(b) * sqrt(c)",
"exp(a) + tan(b) - sinh(c)",
]
def benchmark_numpy_chunk(func, a, b, c, results, indices):
for index in indices:
start = index * chunk_size
end = (index + 1) * chunk_size
time_taken = timeit.timeit(
lambda: func(a[start:end], b[start:end], c[start:end]), number=num_runs
)
results.append(time_taken)
def benchmark_numexpr_re_evaluate(expr, a, b, c, results, indices):
for index in indices:
start = index * chunk_size
end = (index + 1) * chunk_size
if index == 0:
# Evaluate the first chunk with evaluate
time_taken = timeit.timeit(
lambda: ne.evaluate(
expr,
local_dict={
"a": a[start:end],
"b": b[start:end],
"c": c[start:end],
},
),
number=num_runs,
)
else:
# Re-evaluate subsequent chunks with re_evaluate
time_taken = timeit.timeit(
lambda: ne.re_evaluate(
local_dict={"a": a[start:end], "b": b[start:end], "c": c[start:end]}
),
number=num_runs,
)
results.append(time_taken)
def run_benchmark_threaded():
chunk_indices = list(range(num_chunks))
for i in range(len(expressions_numpy)):
print(f"Benchmarking Expression {i+1}:")
results_numpy = []
results_numexpr = []
threads_numpy = []
for j in range(num_threads):
indices = chunk_indices[j::num_threads] # Distribute chunks across threads
thread = threading.Thread(
target=benchmark_numpy_chunk,
args=(expressions_numpy[i], a, b, c, results_numpy, indices),
)
threads_numpy.append(thread)
thread.start()
for thread in threads_numpy:
thread.join()
numpy_time = sum(results_numpy)
print(
f"NumPy time (threaded over {num_chunks} chunks with {num_threads} threads): {numpy_time:.6f} seconds"
)
threads_numexpr = []
for j in range(num_threads):
indices = chunk_indices[j::num_threads] # Distribute chunks across threads
thread = threading.Thread(
target=benchmark_numexpr_re_evaluate,
args=(expressions_numexpr[i], a, b, c, results_numexpr, indices),
)
threads_numexpr.append(thread)
thread.start()
for thread in threads_numexpr:
thread.join()
numexpr_time = sum(results_numexpr)
print(
f"numexpr time (threaded with re_evaluate over {num_chunks} chunks with {num_threads} threads): {numexpr_time:.6f} seconds"
)
print(f"numexpr speedup: {numpy_time / numexpr_time:.2f}x")
print("-" * 40)
if __name__ == "__main__":
run_benchmark_threaded()
|