File: vml_timing.py

package info (click to toggle)
numexpr 2.14.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 784 kB
  • sloc: cpp: 4,250; python: 3,985; ansic: 369; makefile: 203
file content (174 lines) | stat: -rw-r--r-- 5,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
###################################################################
#  Numexpr - Fast numerical array expression evaluator for NumPy.
#
#      License: MIT
#      Author:  See AUTHORS.txt
#
#  See LICENSE.txt and LICENSES/*.txt for details about copyright and
#  rights to use.
####################################################################

from __future__ import print_function

import sys
import timeit

import numpy

import numexpr

array_size = 5_000_000
iterations = 10

numpy_ttime = []
numpy_sttime = []
numpy_nttime = []
numexpr_ttime = []
numexpr_sttime = []
numexpr_nttime = []

def compare_times(expr, nexpr):
    global numpy_ttime
    global numpy_sttime
    global numpy_nttime
    global numexpr_ttime
    global numexpr_sttime
    global numexpr_nttime

    print("******************* Expression:", expr)

    setup_contiguous = setupNP_contiguous
    setup_strided = setupNP_strided
    setup_unaligned = setupNP_unaligned

    numpy_timer = timeit.Timer(expr, setup_contiguous)
    numpy_time = round(numpy_timer.timeit(number=iterations), 4)
    numpy_ttime.append(numpy_time)
    print('%30s %.4f'%('numpy:', numpy_time / iterations))

    numpy_timer = timeit.Timer(expr, setup_strided)
    numpy_stime = round(numpy_timer.timeit(number=iterations), 4)
    numpy_sttime.append(numpy_stime)
    print('%30s %.4f'%('numpy strided:', numpy_stime / iterations))

    numpy_timer = timeit.Timer(expr, setup_unaligned)
    numpy_ntime = round(numpy_timer.timeit(number=iterations), 4)
    numpy_nttime.append(numpy_ntime)
    print('%30s %.4f'%('numpy unaligned:', numpy_ntime / iterations))

    evalexpr = 'evaluate("%s", optimization="aggressive")' % expr
    numexpr_timer = timeit.Timer(evalexpr, setup_contiguous)
    numexpr_time = round(numexpr_timer.timeit(number=iterations), 4)
    numexpr_ttime.append(numexpr_time)
    print('%30s %.4f'%("numexpr:", numexpr_time/iterations,), end=" ")
    print("Speed-up of numexpr over numpy:", round(numpy_time/numexpr_time, 4))

    evalexpr = 'evaluate("%s", optimization="aggressive")' % expr
    numexpr_timer = timeit.Timer(evalexpr, setup_strided)
    numexpr_stime = round(numexpr_timer.timeit(number=iterations), 4)
    numexpr_sttime.append(numexpr_stime)
    print('%30s %.4f'%("numexpr strided:", numexpr_stime/iterations,), end=" ")
    print("Speed-up of numexpr over numpy:", \
          round(numpy_stime/numexpr_stime, 4))

    evalexpr = 'evaluate("%s", optimization="aggressive")' % expr
    numexpr_timer = timeit.Timer(evalexpr, setup_unaligned)
    numexpr_ntime = round(numexpr_timer.timeit(number=iterations), 4)
    numexpr_nttime.append(numexpr_ntime)
    print('%30s %.4f'%("numexpr unaligned:", numexpr_ntime/iterations,), end=" ")
    print("Speed-up of numexpr over numpy:", \
          round(numpy_ntime/numexpr_ntime, 4))

    print()


setupNP = """\
from numpy import arange, linspace, arctan2, sqrt, sin, cos, exp, log
from numpy import rec as records
#from numexpr import evaluate
from numexpr import %s

# Initialize a recarray of 16 MB in size
r=records.array(None, formats='a%s,i4,f4,f8', shape=%s)
c1 = r.field('f0')%s
i2 = r.field('f1')%s
f3 = r.field('f2')%s
f4 = r.field('f3')%s
c1[:] = "a"
i2[:] = arange(%s)/1000
f3[:] = linspace(0,1,len(i2))
f4[:] = f3*1.23
"""

eval_method = "evaluate"
setupNP_contiguous = setupNP % ((eval_method, 4, array_size,) + \
                               (".copy()",)*4 + \
                               (array_size,))
setupNP_strided = setupNP % (eval_method, 4, array_size,
                             "", "", "", "", array_size)
setupNP_unaligned = setupNP % (eval_method, 1, array_size,
                               "", "", "", "", array_size)


expressions = []
expressions.append('i2 > 0')
expressions.append('f3+f4')
expressions.append('f3+i2')
expressions.append('exp(f3)')
expressions.append('log(exp(f3)+1)/f4')
expressions.append('0.1*i2 > arctan2(f3, f4)')
expressions.append('sqrt(f3**2 + f4**2) > 1')
expressions.append('sin(f3)>cos(f4)')
expressions.append('f3**f4')

def compare(expression=False):
    if expression:
        compare_times(expression, 1)
        sys.exit(0)
    nexpr = 0
    for expr in expressions:
        nexpr += 1
        compare_times(expr, nexpr)
    print()

if __name__ == '__main__':
    import numexpr
    print("Numexpr version: ", numexpr.__version__)

    numpy.seterr(all='ignore')

    numexpr.set_vml_accuracy_mode('low')
    numexpr.set_vml_num_threads(2)

    if len(sys.argv) > 1:
        expression = sys.argv[1]
        print("expression-->", expression)
        compare(expression)
    else:
        compare()

    tratios = numpy.array(numpy_ttime) / numpy.array(numexpr_ttime)
    stratios = numpy.array(numpy_sttime) / numpy.array(numexpr_sttime)
    ntratios = numpy.array(numpy_nttime) / numpy.array(numexpr_nttime)


    print("eval method: %s" % eval_method)
    print("*************** Numexpr vs NumPy speed-ups *******************")
#     print("numpy total:", sum(numpy_ttime)/iterations)
#     print("numpy strided total:", sum(numpy_sttime)/iterations)
#     print("numpy unaligned total:", sum(numpy_nttime)/iterations)
#     print("numexpr total:", sum(numexpr_ttime)/iterations)
    print("Contiguous case:\t %s (mean), %s (min), %s (max)" % \
          (round(tratios.mean(), 2),
           round(tratios.min(), 2),
           round(tratios.max(), 2)))
#    print("numexpr strided total:", sum(numexpr_sttime)/iterations)
    print("Strided case:\t\t %s (mean), %s (min), %s (max)" % \
          (round(stratios.mean(), 2),
           round(stratios.min(), 2),
           round(stratios.max(), 2)))
#    print("numexpr unaligned total:", sum(numexpr_nttime)/iterations)
    print("Unaligned case:\t\t %s (mean), %s (min), %s (max)" % \
          (round(ntratios.mean(), 2),
           round(ntratios.min(), 2),
           round(ntratios.max(), 2)))