1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
###################################################################
# Numexpr - Fast numerical array expression evaluator for NumPy.
#
# License: MIT
# Author: See AUTHORS.txt
#
# See LICENSE.txt and LICENSES/*.txt for details about copyright and
# rights to use.
####################################################################
from __future__ import print_function
import sys
import timeit
import numpy
import numexpr
array_size = 5_000_000
iterations = 10
numpy_ttime = []
numpy_sttime = []
numpy_nttime = []
numexpr_ttime = []
numexpr_sttime = []
numexpr_nttime = []
def compare_times(expr, nexpr):
global numpy_ttime
global numpy_sttime
global numpy_nttime
global numexpr_ttime
global numexpr_sttime
global numexpr_nttime
print("******************* Expression:", expr)
setup_contiguous = setupNP_contiguous
setup_strided = setupNP_strided
setup_unaligned = setupNP_unaligned
numpy_timer = timeit.Timer(expr, setup_contiguous)
numpy_time = round(numpy_timer.timeit(number=iterations), 4)
numpy_ttime.append(numpy_time)
print('%30s %.4f'%('numpy:', numpy_time / iterations))
numpy_timer = timeit.Timer(expr, setup_strided)
numpy_stime = round(numpy_timer.timeit(number=iterations), 4)
numpy_sttime.append(numpy_stime)
print('%30s %.4f'%('numpy strided:', numpy_stime / iterations))
numpy_timer = timeit.Timer(expr, setup_unaligned)
numpy_ntime = round(numpy_timer.timeit(number=iterations), 4)
numpy_nttime.append(numpy_ntime)
print('%30s %.4f'%('numpy unaligned:', numpy_ntime / iterations))
evalexpr = 'evaluate("%s", optimization="aggressive")' % expr
numexpr_timer = timeit.Timer(evalexpr, setup_contiguous)
numexpr_time = round(numexpr_timer.timeit(number=iterations), 4)
numexpr_ttime.append(numexpr_time)
print('%30s %.4f'%("numexpr:", numexpr_time/iterations,), end=" ")
print("Speed-up of numexpr over numpy:", round(numpy_time/numexpr_time, 4))
evalexpr = 'evaluate("%s", optimization="aggressive")' % expr
numexpr_timer = timeit.Timer(evalexpr, setup_strided)
numexpr_stime = round(numexpr_timer.timeit(number=iterations), 4)
numexpr_sttime.append(numexpr_stime)
print('%30s %.4f'%("numexpr strided:", numexpr_stime/iterations,), end=" ")
print("Speed-up of numexpr over numpy:", \
round(numpy_stime/numexpr_stime, 4))
evalexpr = 'evaluate("%s", optimization="aggressive")' % expr
numexpr_timer = timeit.Timer(evalexpr, setup_unaligned)
numexpr_ntime = round(numexpr_timer.timeit(number=iterations), 4)
numexpr_nttime.append(numexpr_ntime)
print('%30s %.4f'%("numexpr unaligned:", numexpr_ntime/iterations,), end=" ")
print("Speed-up of numexpr over numpy:", \
round(numpy_ntime/numexpr_ntime, 4))
print()
setupNP = """\
from numpy import arange, linspace, arctan2, sqrt, sin, cos, exp, log
from numpy import rec as records
#from numexpr import evaluate
from numexpr import %s
# Initialize a recarray of 16 MB in size
r=records.array(None, formats='a%s,i4,f4,f8', shape=%s)
c1 = r.field('f0')%s
i2 = r.field('f1')%s
f3 = r.field('f2')%s
f4 = r.field('f3')%s
c1[:] = "a"
i2[:] = arange(%s)/1000
f3[:] = linspace(0,1,len(i2))
f4[:] = f3*1.23
"""
eval_method = "evaluate"
setupNP_contiguous = setupNP % ((eval_method, 4, array_size,) + \
(".copy()",)*4 + \
(array_size,))
setupNP_strided = setupNP % (eval_method, 4, array_size,
"", "", "", "", array_size)
setupNP_unaligned = setupNP % (eval_method, 1, array_size,
"", "", "", "", array_size)
expressions = []
expressions.append('i2 > 0')
expressions.append('f3+f4')
expressions.append('f3+i2')
expressions.append('exp(f3)')
expressions.append('log(exp(f3)+1)/f4')
expressions.append('0.1*i2 > arctan2(f3, f4)')
expressions.append('sqrt(f3**2 + f4**2) > 1')
expressions.append('sin(f3)>cos(f4)')
expressions.append('f3**f4')
def compare(expression=False):
if expression:
compare_times(expression, 1)
sys.exit(0)
nexpr = 0
for expr in expressions:
nexpr += 1
compare_times(expr, nexpr)
print()
if __name__ == '__main__':
import numexpr
print("Numexpr version: ", numexpr.__version__)
numpy.seterr(all='ignore')
numexpr.set_vml_accuracy_mode('low')
numexpr.set_vml_num_threads(2)
if len(sys.argv) > 1:
expression = sys.argv[1]
print("expression-->", expression)
compare(expression)
else:
compare()
tratios = numpy.array(numpy_ttime) / numpy.array(numexpr_ttime)
stratios = numpy.array(numpy_sttime) / numpy.array(numexpr_sttime)
ntratios = numpy.array(numpy_nttime) / numpy.array(numexpr_nttime)
print("eval method: %s" % eval_method)
print("*************** Numexpr vs NumPy speed-ups *******************")
# print("numpy total:", sum(numpy_ttime)/iterations)
# print("numpy strided total:", sum(numpy_sttime)/iterations)
# print("numpy unaligned total:", sum(numpy_nttime)/iterations)
# print("numexpr total:", sum(numexpr_ttime)/iterations)
print("Contiguous case:\t %s (mean), %s (min), %s (max)" % \
(round(tratios.mean(), 2),
round(tratios.min(), 2),
round(tratios.max(), 2)))
# print("numexpr strided total:", sum(numexpr_sttime)/iterations)
print("Strided case:\t\t %s (mean), %s (min), %s (max)" % \
(round(stratios.mean(), 2),
round(stratios.min(), 2),
round(stratios.max(), 2)))
# print("numexpr unaligned total:", sum(numexpr_nttime)/iterations)
print("Unaligned case:\t\t %s (mean), %s (min), %s (max)" % \
(round(ntratios.mean(), 2),
round(ntratios.min(), 2),
round(ntratios.max(), 2)))
|