1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2ContactSolver.h"
#include "b2Contact.h"
#include "../b2Body.h"
#include "../b2World.h"
#include "../../Common/b2StackAllocator.h"
b2ContactSolver::b2ContactSolver(const b2TimeStep& step, b2Contact** contacts, int32 contactCount, b2StackAllocator* allocator)
{
m_step = step;
m_allocator = allocator;
m_constraintCount = 0;
for (int32 i = 0; i < contactCount; ++i)
{
b2Assert(contacts[i]->IsSolid());
m_constraintCount += contacts[i]->GetManifoldCount();
}
m_constraints = (b2ContactConstraint*)m_allocator->Allocate(m_constraintCount * sizeof(b2ContactConstraint));
int32 count = 0;
for (int32 i = 0; i < contactCount; ++i)
{
b2Contact* contact = contacts[i];
b2Body* b1 = contact->m_shape1->GetBody();
b2Body* b2 = contact->m_shape2->GetBody();
int32 manifoldCount = contact->GetManifoldCount();
b2Manifold* manifolds = contact->GetManifolds();
float32 friction = contact->m_friction;
float32 restitution = contact->m_restitution;
b2Vec2 v1 = b1->m_linearVelocity;
b2Vec2 v2 = b2->m_linearVelocity;
float32 w1 = b1->m_angularVelocity;
float32 w2 = b2->m_angularVelocity;
for (int32 j = 0; j < manifoldCount; ++j)
{
b2Manifold* manifold = manifolds + j;
b2Assert(manifold->pointCount > 0);
const b2Vec2 normal = manifold->normal;
b2Assert(count < m_constraintCount);
b2ContactConstraint* c = m_constraints + count;
c->body1 = b1;
c->body2 = b2;
c->manifold = manifold;
c->normal = normal;
c->pointCount = manifold->pointCount;
c->friction = friction;
c->restitution = restitution;
for (int32 k = 0; k < c->pointCount; ++k)
{
b2ManifoldPoint* cp = manifold->points + k;
b2ContactConstraintPoint* ccp = c->points + k;
ccp->normalImpulse = cp->normalImpulse;
ccp->tangentImpulse = cp->tangentImpulse;
ccp->separation = cp->separation;
ccp->positionImpulse = 0.0f;
ccp->localAnchor1 = cp->localPoint1;
ccp->localAnchor2 = cp->localPoint2;
ccp->r1 = b2Mul(b1->GetXForm().R, cp->localPoint1 - b1->GetLocalCenter());
ccp->r2 = b2Mul(b2->GetXForm().R, cp->localPoint2 - b2->GetLocalCenter());
float32 r1Sqr = b2Dot(ccp->r1, ccp->r1);
float32 r2Sqr = b2Dot(ccp->r2, ccp->r2);
float32 rn1 = b2Dot(ccp->r1, normal);
float32 rn2 = b2Dot(ccp->r2, normal);
float32 kNormal = b1->m_invMass + b2->m_invMass;
kNormal += b1->m_invI * (r1Sqr - rn1 * rn1) + b2->m_invI * (r2Sqr - rn2 * rn2);
b2Assert(kNormal > B2_FLT_EPSILON);
ccp->normalMass = 1.0f / kNormal;
float32 kEqualized = b1->m_mass * b1->m_invMass + b2->m_mass * b2->m_invMass;
kEqualized += b1->m_mass * b1->m_invI * (r1Sqr - rn1 * rn1) + b2->m_mass * b2->m_invI * (r2Sqr - rn2 * rn2);
b2Assert(kEqualized > B2_FLT_EPSILON);
ccp->equalizedMass = 1.0f / kEqualized;
b2Vec2 tangent = b2Cross(normal, 1.0f);
float32 rt1 = b2Dot(ccp->r1, tangent);
float32 rt2 = b2Dot(ccp->r2, tangent);
float32 kTangent = b1->m_invMass + b2->m_invMass;
kTangent += b1->m_invI * (r1Sqr - rt1 * rt1) + b2->m_invI * (r2Sqr - rt2 * rt2);
b2Assert(kTangent > B2_FLT_EPSILON);
ccp->tangentMass = 1.0f / kTangent;
// Setup a velocity bias for restitution.
ccp->velocityBias = 0.0f;
if (ccp->separation > 0.0f)
{
ccp->velocityBias = -60.0f * ccp->separation; // TODO_ERIN b2TimeStep
}
float32 vRel = b2Dot(c->normal, v2 + b2Cross(w2, ccp->r2) - v1 - b2Cross(w1, ccp->r1));
if (vRel < -b2_velocityThreshold)
{
ccp->velocityBias += -c->restitution * vRel;
}
}
++count;
}
}
b2Assert(count == m_constraintCount);
}
b2ContactSolver::~b2ContactSolver()
{
m_allocator->Free(m_constraints);
}
void b2ContactSolver::InitVelocityConstraints(const b2TimeStep& step)
{
// Warm start.
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* b1 = c->body1;
b2Body* b2 = c->body2;
float32 invMass1 = b1->m_invMass;
float32 invI1 = b1->m_invI;
float32 invMass2 = b2->m_invMass;
float32 invI2 = b2->m_invI;
b2Vec2 normal = c->normal;
b2Vec2 tangent = b2Cross(normal, 1.0f);
if (step.warmStarting)
{
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
ccp->normalImpulse *= step.dtRatio;
ccp->tangentImpulse *= step.dtRatio;
b2Vec2 P = ccp->normalImpulse * normal + ccp->tangentImpulse * tangent;
b1->m_angularVelocity -= invI1 * b2Cross(ccp->r1, P);
b1->m_linearVelocity -= invMass1 * P;
b2->m_angularVelocity += invI2 * b2Cross(ccp->r2, P);
b2->m_linearVelocity += invMass2 * P;
}
}
else
{
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
ccp->normalImpulse = 0.0f;
ccp->tangentImpulse = 0.0f;
}
}
}
}
void b2ContactSolver::SolveVelocityConstraints()
{
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* b1 = c->body1;
b2Body* b2 = c->body2;
float32 w1 = b1->m_angularVelocity;
float32 w2 = b2->m_angularVelocity;
b2Vec2 v1 = b1->m_linearVelocity;
b2Vec2 v2 = b2->m_linearVelocity;
float32 invMass1 = b1->m_invMass;
float32 invI1 = b1->m_invI;
float32 invMass2 = b2->m_invMass;
float32 invI2 = b2->m_invI;
b2Vec2 normal = c->normal;
b2Vec2 tangent = b2Cross(normal, 1.0f);
float32 friction = c->friction;
//#define DEFERRED_UPDATE
#ifdef DEFERRED_UPDATE
b2Vec2 b1_linearVelocity = b1->m_linearVelocity;
float32 b1_angularVelocity = b1->m_angularVelocity;
b2Vec2 b2_linearVelocity = b2->m_linearVelocity;
float32 b2_angularVelocity = b2->m_angularVelocity;
#endif
// Solve normal constraints
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
// Relative velocity at contact
b2Vec2 dv = v2 + b2Cross(w2, ccp->r2) - v1 - b2Cross(w1, ccp->r1);
// Compute normal impulse
float32 vn = b2Dot(dv, normal);
float32 lambda = -ccp->normalMass * (vn - ccp->velocityBias);
// b2Clamp the accumulated impulse
float32 newImpulse = b2Max(ccp->normalImpulse + lambda, 0.0f);
lambda = newImpulse - ccp->normalImpulse;
// Apply contact impulse
b2Vec2 P = lambda * normal;
#ifdef DEFERRED_UPDATE
b1_linearVelocity -= invMass1 * P;
b1_angularVelocity -= invI1 * b2Cross(r1, P);
b2_linearVelocity += invMass2 * P;
b2_angularVelocity += invI2 * b2Cross(r2, P);
#else
v1 -= invMass1 * P;
w1 -= invI1 * b2Cross(ccp->r1, P);
v2 += invMass2 * P;
w2 += invI2 * b2Cross(ccp->r2, P);
#endif
ccp->normalImpulse = newImpulse;
}
#ifdef DEFERRED_UPDATE
b1->m_linearVelocity = b1_linearVelocity;
b1->m_angularVelocity = b1_angularVelocity;
b2->m_linearVelocity = b2_linearVelocity;
b2->m_angularVelocity = b2_angularVelocity;
#endif
// Solve tangent constraints
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
// Relative velocity at contact
b2Vec2 dv = v2 + b2Cross(w2, ccp->r2) - v1 - b2Cross(w1, ccp->r1);
// Compute tangent force
float32 vt = b2Dot(dv, tangent);
float32 lambda = ccp->tangentMass * (-vt);
// b2Clamp the accumulated force
float32 maxFriction = friction * ccp->normalImpulse;
float32 newImpulse = b2Clamp(ccp->tangentImpulse + lambda, -maxFriction, maxFriction);
lambda = newImpulse - ccp->tangentImpulse;
// Apply contact impulse
b2Vec2 P = lambda * tangent;
v1 -= invMass1 * P;
w1 -= invI1 * b2Cross(ccp->r1, P);
v2 += invMass2 * P;
w2 += invI2 * b2Cross(ccp->r2, P);
ccp->tangentImpulse = newImpulse;
}
b1->m_linearVelocity = v1;
b1->m_angularVelocity = w1;
b2->m_linearVelocity = v2;
b2->m_angularVelocity = w2;
}
}
void b2ContactSolver::FinalizeVelocityConstraints()
{
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Manifold* m = c->manifold;
for (int32 j = 0; j < c->pointCount; ++j)
{
m->points[j].normalImpulse = c->points[j].normalImpulse;
m->points[j].tangentImpulse = c->points[j].tangentImpulse;
}
}
}
bool b2ContactSolver::SolvePositionConstraints(float32 baumgarte)
{
float32 minSeparation = 0.0f;
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* b1 = c->body1;
b2Body* b2 = c->body2;
float32 invMass1 = b1->m_mass * b1->m_invMass;
float32 invI1 = b1->m_mass * b1->m_invI;
float32 invMass2 = b2->m_mass * b2->m_invMass;
float32 invI2 = b2->m_mass * b2->m_invI;
b2Vec2 normal = c->normal;
// Solver normal constraints
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
b2Vec2 r1 = b2Mul(b1->GetXForm().R, ccp->localAnchor1 - b1->GetLocalCenter());
b2Vec2 r2 = b2Mul(b2->GetXForm().R, ccp->localAnchor2 - b2->GetLocalCenter());
b2Vec2 p1 = b1->m_sweep.c + r1;
b2Vec2 p2 = b2->m_sweep.c + r2;
b2Vec2 dp = p2 - p1;
// Approximate the current separation.
float32 separation = b2Dot(dp, normal) + ccp->separation;
// Track max constraint error.
minSeparation = b2Min(minSeparation, separation);
// Prevent large corrections and allow slop.
float32 C = baumgarte * b2Clamp(separation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
// Compute normal impulse
float32 dImpulse = -ccp->equalizedMass * C;
// b2Clamp the accumulated impulse
float32 impulse0 = ccp->positionImpulse;
ccp->positionImpulse = b2Max(impulse0 + dImpulse, 0.0f);
dImpulse = ccp->positionImpulse - impulse0;
b2Vec2 impulse = dImpulse * normal;
b1->m_sweep.c -= invMass1 * impulse;
b1->m_sweep.a -= invI1 * b2Cross(r1, impulse);
b1->SynchronizeTransform();
b2->m_sweep.c += invMass2 * impulse;
b2->m_sweep.a += invI2 * b2Cross(r2, impulse);
b2->SynchronizeTransform();
}
}
// We can't expect minSpeparation >= -b2_linearSlop because we don't
// push the separation above -b2_linearSlop.
return minSeparation >= -1.5f * b2_linearSlop;
}
|