File: b2PrismaticJoint.cpp

package info (click to toggle)
numptyphysics 0.2%2Bsvn157-0.5
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye
  • size: 2,684 kB
  • sloc: cpp: 18,283; sh: 810; makefile: 205
file content (478 lines) | stat: -rw-r--r-- 15,814 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#include "b2PrismaticJoint.h"
#include "../b2Body.h"
#include "../b2World.h"

// Linear constraint (point-to-line)
// d = p2 - p1 = x2 + r2 - x1 - r1
// C = dot(ay1, d)
// Cdot = dot(d, cross(w1, ay1)) + dot(ay1, v2 + cross(w2, r2) - v1 - cross(w1, r1))
//      = -dot(ay1, v1) - dot(cross(d + r1, ay1), w1) + dot(ay1, v2) + dot(cross(r2, ay1), v2)
// J = [-ay1 -cross(d+r1,ay1) ay1 cross(r2,ay1)]
//
// Angular constraint
// C = a2 - a1 + a_initial
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]

// Motor/Limit linear constraint
// C = dot(ax1, d)
// Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
// J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]

void b2PrismaticJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor, const b2Vec2& axis)
{
	body1 = b1;
	body2 = b2;
	localAnchor1 = body1->GetLocalPoint(anchor);
	localAnchor2 = body2->GetLocalPoint(anchor);
	localAxis1 = body1->GetLocalVector(axis);
	referenceAngle = body2->GetAngle() - body1->GetAngle();
}

b2PrismaticJoint::b2PrismaticJoint(const b2PrismaticJointDef* def)
: b2Joint(def)
{
	m_localAnchor1 = def->localAnchor1;
	m_localAnchor2 = def->localAnchor2;
	m_localXAxis1 = def->localAxis1;
	m_localYAxis1 = b2Cross(1.0f, m_localXAxis1);
	m_refAngle = def->referenceAngle;

	m_linearJacobian.SetZero();
	m_linearMass = 0.0f;
	m_force = 0.0f;

	m_angularMass = 0.0f;
	m_torque = 0.0f;

	m_motorJacobian.SetZero();
	m_motorMass = 0.0;
	m_motorForce = 0.0f;
	m_limitForce = 0.0f;
	m_limitPositionImpulse = 0.0f;

	m_lowerTranslation = def->lowerTranslation;
	m_upperTranslation = def->upperTranslation;
	m_maxMotorForce = B2FORCE_INV_SCALE(def->maxMotorForce);
	m_motorSpeed = def->motorSpeed;
	m_enableLimit = def->enableLimit;
	m_enableMotor = def->enableMotor;
}

void b2PrismaticJoint::InitVelocityConstraints(const b2TimeStep& step)
{
	b2Body* b1 = m_body1;
	b2Body* b2 = m_body2;

	// Compute the effective masses.
	b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
	b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());

	float32 invMass1 = b1->m_invMass, invMass2 = b2->m_invMass;
	float32 invI1 = b1->m_invI, invI2 = b2->m_invI;

	// Compute point to line constraint effective mass.
	// J = [-ay1 -cross(d+r1,ay1) ay1 cross(r2,ay1)]
	b2Vec2 ay1 = b2Mul(b1->GetXForm().R, m_localYAxis1);
	b2Vec2 e = b2->m_sweep.c + r2 - b1->m_sweep.c;	// e = d + r1

	m_linearJacobian.Set(-ay1, -b2Cross(e, ay1), ay1, b2Cross(r2, ay1));
	m_linearMass =	invMass1 + invI1 * m_linearJacobian.angular1 * m_linearJacobian.angular1 +
					invMass2 + invI2 * m_linearJacobian.angular2 * m_linearJacobian.angular2;
	b2Assert(m_linearMass > B2_FLT_EPSILON);
	m_linearMass = 1.0f / m_linearMass;

	// Compute angular constraint effective mass.
	m_angularMass = invI1 + invI2;
	if (m_angularMass > B2_FLT_EPSILON)
	{
		m_angularMass = 1.0f / m_angularMass;
	}

	// Compute motor and limit terms.
	if (m_enableLimit || m_enableMotor)
	{
		// The motor and limit share a Jacobian and effective mass.
		b2Vec2 ax1 = b2Mul(b1->GetXForm().R, m_localXAxis1);
		m_motorJacobian.Set(-ax1, -b2Cross(e, ax1), ax1, b2Cross(r2, ax1));
		m_motorMass =	invMass1 + invI1 * m_motorJacobian.angular1 * m_motorJacobian.angular1 +
						invMass2 + invI2 * m_motorJacobian.angular2 * m_motorJacobian.angular2;
		b2Assert(m_motorMass > B2_FLT_EPSILON);
		m_motorMass = 1.0f / m_motorMass;

		if (m_enableLimit)
		{
			b2Vec2 d = e - r1;	// p2 - p1
			float32 jointTranslation = b2Dot(ax1, d);
			if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
			{
				m_limitState = e_equalLimits;
			}
			else if (jointTranslation <= m_lowerTranslation)
			{
				if (m_limitState != e_atLowerLimit)
				{
					m_limitForce = 0.0f;
				}
				m_limitState = e_atLowerLimit;
			}
			else if (jointTranslation >= m_upperTranslation)
			{
				if (m_limitState != e_atUpperLimit)
				{
					m_limitForce = 0.0f;
				}
				m_limitState = e_atUpperLimit;
			}
			else
			{
				m_limitState = e_inactiveLimit;
				m_limitForce = 0.0f;
			}
		}
	}

	if (m_enableMotor == false)
	{
		m_motorForce = 0.0f;
	}

	if (m_enableLimit == false)
	{
		m_limitForce = 0.0f;
	}

	if (step.warmStarting)
	{
		b2Vec2 P1 = B2FORCE_SCALE(step.dt) * (m_force * m_linearJacobian.linear1 + (m_motorForce + m_limitForce) * m_motorJacobian.linear1);
		b2Vec2 P2 = B2FORCE_SCALE(step.dt) * (m_force * m_linearJacobian.linear2 + (m_motorForce + m_limitForce) * m_motorJacobian.linear2);
		float32 L1 = B2FORCE_SCALE(step.dt) * (m_force * m_linearJacobian.angular1 - m_torque + (m_motorForce + m_limitForce) * m_motorJacobian.angular1);
		float32 L2 = B2FORCE_SCALE(step.dt) * (m_force * m_linearJacobian.angular2 + m_torque + (m_motorForce + m_limitForce) * m_motorJacobian.angular2);

		b1->m_linearVelocity += invMass1 * P1;
		b1->m_angularVelocity += invI1 * L1;

		b2->m_linearVelocity += invMass2 * P2;
		b2->m_angularVelocity += invI2 * L2;
	}
	else
	{
		m_force = 0.0f;
		m_torque = 0.0f;
		m_limitForce = 0.0f;
		m_motorForce = 0.0f;
	}

	m_limitPositionImpulse = 0.0f;
}

void b2PrismaticJoint::SolveVelocityConstraints(const b2TimeStep& step)
{
	b2Body* b1 = m_body1;
	b2Body* b2 = m_body2;

	float32 invMass1 = b1->m_invMass, invMass2 = b2->m_invMass;
	float32 invI1 = b1->m_invI, invI2 = b2->m_invI;

	// Solve linear constraint.
	float32 linearCdot = m_linearJacobian.Compute(b1->m_linearVelocity, b1->m_angularVelocity, b2->m_linearVelocity, b2->m_angularVelocity);
	float32 force = -B2FORCE_INV_SCALE(step.inv_dt) * m_linearMass * linearCdot;
	m_force += force;

	float32 P = B2FORCE_SCALE(step.dt) * force;
	b1->m_linearVelocity += (invMass1 * P) * m_linearJacobian.linear1;
	b1->m_angularVelocity += invI1 * P * m_linearJacobian.angular1;

	b2->m_linearVelocity += (invMass2 * P) * m_linearJacobian.linear2;
	b2->m_angularVelocity += invI2 * P * m_linearJacobian.angular2;

	// Solve angular constraint.
	float32 angularCdot = b2->m_angularVelocity - b1->m_angularVelocity;
	float32 torque = -B2FORCE_INV_SCALE(step.inv_dt) * m_angularMass * angularCdot;
	m_torque += torque;

	float32 L = B2FORCE_SCALE(step.dt) * torque;
	b1->m_angularVelocity -= invI1 * L;
	b2->m_angularVelocity += invI2 * L;

	// Solve linear motor constraint.
	if (m_enableMotor && m_limitState != e_equalLimits)
	{
		float32 motorCdot = m_motorJacobian.Compute(b1->m_linearVelocity, b1->m_angularVelocity, b2->m_linearVelocity, b2->m_angularVelocity) - m_motorSpeed;
		float32 motorForce = -B2FORCE_INV_SCALE(step.inv_dt) * m_motorMass * motorCdot;
		float32 oldMotorForce = m_motorForce;
		m_motorForce = b2Clamp(m_motorForce + motorForce, -m_maxMotorForce, m_maxMotorForce);
		motorForce = m_motorForce - oldMotorForce;

		float32 P = B2FORCE_SCALE(step.dt) * motorForce;
		b1->m_linearVelocity += (invMass1 * P) * m_motorJacobian.linear1;
		b1->m_angularVelocity += invI1 * P * m_motorJacobian.angular1;

		b2->m_linearVelocity += (invMass2 * P) * m_motorJacobian.linear2;
		b2->m_angularVelocity += invI2 * P * m_motorJacobian.angular2;
	}

	// Solve linear limit constraint.
	if (m_enableLimit && m_limitState != e_inactiveLimit)
	{
		float32 limitCdot = m_motorJacobian.Compute(b1->m_linearVelocity, b1->m_angularVelocity, b2->m_linearVelocity, b2->m_angularVelocity);
		float32 limitForce = -B2FORCE_INV_SCALE(step.inv_dt) * m_motorMass * limitCdot;

		if (m_limitState == e_equalLimits)
		{
			m_limitForce += limitForce;
		}
		else if (m_limitState == e_atLowerLimit)
		{
			float32 oldLimitForce = m_limitForce;
			m_limitForce = b2Max(m_limitForce + limitForce, 0.0f);
			limitForce = m_limitForce - oldLimitForce;
		}
		else if (m_limitState == e_atUpperLimit)
		{
			float32 oldLimitForce = m_limitForce;
			m_limitForce = b2Min(m_limitForce + limitForce, 0.0f);
			limitForce = m_limitForce - oldLimitForce;
		}

		float32 P = B2FORCE_SCALE(step.dt) * limitForce;

		b1->m_linearVelocity += (invMass1 * P) * m_motorJacobian.linear1;
		b1->m_angularVelocity += invI1 * P * m_motorJacobian.angular1;

		b2->m_linearVelocity += (invMass2 * P) * m_motorJacobian.linear2;
		b2->m_angularVelocity += invI2 * P * m_motorJacobian.angular2;
	}
}

bool b2PrismaticJoint::SolvePositionConstraints()
{
	b2Body* b1 = m_body1;
	b2Body* b2 = m_body2;

	float32 invMass1 = b1->m_invMass, invMass2 = b2->m_invMass;
	float32 invI1 = b1->m_invI, invI2 = b2->m_invI;

	b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
	b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
	b2Vec2 p1 = b1->m_sweep.c + r1;
	b2Vec2 p2 = b2->m_sweep.c + r2;
	b2Vec2 d = p2 - p1;
	b2Vec2 ay1 = b2Mul(b1->GetXForm().R, m_localYAxis1);

	// Solve linear (point-to-line) constraint.
	float32 linearC = b2Dot(ay1, d);
	// Prevent overly large corrections.
	linearC = b2Clamp(linearC, -b2_maxLinearCorrection, b2_maxLinearCorrection);
	float32 linearImpulse = -m_linearMass * linearC;

	b1->m_sweep.c += (invMass1 * linearImpulse) * m_linearJacobian.linear1;
	b1->m_sweep.a += invI1 * linearImpulse * m_linearJacobian.angular1;
	//b1->SynchronizeTransform(); // updated by angular constraint
	b2->m_sweep.c += (invMass2 * linearImpulse) * m_linearJacobian.linear2;
	b2->m_sweep.a += invI2 * linearImpulse * m_linearJacobian.angular2;
	//b2->SynchronizeTransform(); // updated by angular constraint

	float32 positionError = b2Abs(linearC);

	// Solve angular constraint.
	float32 angularC = b2->m_sweep.a - b1->m_sweep.a - m_refAngle;
	// Prevent overly large corrections.
	angularC = b2Clamp(angularC, -b2_maxAngularCorrection, b2_maxAngularCorrection);
	float32 angularImpulse = -m_angularMass * angularC;

	b1->m_sweep.a -= b1->m_invI * angularImpulse;
	b2->m_sweep.a += b2->m_invI * angularImpulse;

	b1->SynchronizeTransform();
	b2->SynchronizeTransform();

	float32 angularError = b2Abs(angularC);

	// Solve linear limit constraint.
	if (m_enableLimit && m_limitState != e_inactiveLimit)
	{
		b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
		b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
		b2Vec2 p1 = b1->m_sweep.c + r1;
		b2Vec2 p2 = b2->m_sweep.c + r2;
		b2Vec2 d = p2 - p1;
		b2Vec2 ax1 = b2Mul(b1->GetXForm().R, m_localXAxis1);

		float32 translation = b2Dot(ax1, d);
		float32 limitImpulse = 0.0f;

		if (m_limitState == e_equalLimits)
		{
			// Prevent large angular corrections
			float32 limitC = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection);
			limitImpulse = -m_motorMass * limitC;
			positionError = b2Max(positionError, b2Abs(angularC));
		}
		else if (m_limitState == e_atLowerLimit)
		{
			float32 limitC = translation - m_lowerTranslation;
			positionError = b2Max(positionError, -limitC);

			// Prevent large linear corrections and allow some slop.
			limitC = b2Clamp(limitC + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
			limitImpulse = -m_motorMass * limitC;
			float32 oldLimitImpulse = m_limitPositionImpulse;
			m_limitPositionImpulse = b2Max(m_limitPositionImpulse + limitImpulse, 0.0f);
			limitImpulse = m_limitPositionImpulse - oldLimitImpulse;
		}
		else if (m_limitState == e_atUpperLimit)
		{
			float32 limitC = translation - m_upperTranslation;
			positionError = b2Max(positionError, limitC);

			// Prevent large linear corrections and allow some slop.
			limitC = b2Clamp(limitC - b2_linearSlop, 0.0f, b2_maxLinearCorrection);
			limitImpulse = -m_motorMass * limitC;
			float32 oldLimitImpulse = m_limitPositionImpulse;
			m_limitPositionImpulse = b2Min(m_limitPositionImpulse + limitImpulse, 0.0f);
			limitImpulse = m_limitPositionImpulse - oldLimitImpulse;
		}

		b1->m_sweep.c += (invMass1 * limitImpulse) * m_motorJacobian.linear1;
		b1->m_sweep.a += invI1 * limitImpulse * m_motorJacobian.angular1;
		b2->m_sweep.c += (invMass2 * limitImpulse) * m_motorJacobian.linear2;
		b2->m_sweep.a += invI2 * limitImpulse * m_motorJacobian.angular2;

		b1->SynchronizeTransform();
		b2->SynchronizeTransform();
	}

	return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
}

b2Vec2 b2PrismaticJoint::GetAnchor1() const
{
	return m_body1->GetWorldPoint(m_localAnchor1);
}

b2Vec2 b2PrismaticJoint::GetAnchor2() const
{
	return m_body2->GetWorldPoint(m_localAnchor2);
}

b2Vec2 b2PrismaticJoint::GetReactionForce() const
{
	b2Vec2 ax1 = b2Mul(m_body1->GetXForm().R, m_localXAxis1);
	b2Vec2 ay1 = b2Mul(m_body1->GetXForm().R, m_localYAxis1);

	return B2FORCE_SCALE(float32(1.0))*(m_limitForce * ax1 + m_force * ay1);
}

float32 b2PrismaticJoint::GetReactionTorque() const
{
	return B2FORCE_SCALE(m_torque);
}

float32 b2PrismaticJoint::GetJointTranslation() const
{
	b2Body* b1 = m_body1;
	b2Body* b2 = m_body2;

	b2Vec2 p1 = b1->GetWorldPoint(m_localAnchor1);
	b2Vec2 p2 = b2->GetWorldPoint(m_localAnchor2);
	b2Vec2 d = p2 - p1;
	b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);

	float32 translation = b2Dot(d, axis);
	return translation;
}

float32 b2PrismaticJoint::GetJointSpeed() const
{
	b2Body* b1 = m_body1;
	b2Body* b2 = m_body2;

	b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
	b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
	b2Vec2 p1 = b1->m_sweep.c + r1;
	b2Vec2 p2 = b2->m_sweep.c + r2;
	b2Vec2 d = p2 - p1;
	b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);

	b2Vec2 v1 = b1->m_linearVelocity;
	b2Vec2 v2 = b2->m_linearVelocity;
	float32 w1 = b1->m_angularVelocity;
	float32 w2 = b2->m_angularVelocity;

	float32 speed = b2Dot(d, b2Cross(w1, axis)) + b2Dot(axis, v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1));
	return speed;
}

bool b2PrismaticJoint::IsLimitEnabled() const
{
	return m_enableLimit;
}

void b2PrismaticJoint::EnableLimit(bool flag)
{
	m_enableLimit = flag;
}

float32 b2PrismaticJoint::GetLowerLimit() const
{
	return m_lowerTranslation;
}

float32 b2PrismaticJoint::GetUpperLimit() const
{
	return m_upperTranslation;
}

void b2PrismaticJoint::SetLimits(float32 lower, float32 upper)
{
	b2Assert(lower <= upper);
	m_lowerTranslation = lower;
	m_upperTranslation = upper;
}

bool b2PrismaticJoint::IsMotorEnabled() const
{
	return m_enableMotor;
}

void b2PrismaticJoint::EnableMotor(bool flag)
{
	m_enableMotor = flag;
}

void b2PrismaticJoint::SetMotorSpeed(float32 speed)
{
	m_motorSpeed = speed;
}

void b2PrismaticJoint::SetMaxMotorForce(float32 force)
{
	m_maxMotorForce = B2FORCE_SCALE(float32(1.0))*force;
}

float32 b2PrismaticJoint::GetMotorForce() const
{
	return m_motorForce;
}