1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
|
/*
Copyright (c) 2007, Markus Trenkwalder
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the library's copyright owner nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef VECTOR_MATH_H
#define VECTOR_MATH_H
#include <cmath>
// "minor" can be defined from GCC and can cause problems
#undef minor
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
namespace vmath {
using std::sin;
using std::cos;
using std::acos;
using std::sqrt;
template <typename T>
inline T rsqrt(T x)
{
return T(1) / sqrt(x);
}
template <typename T>
inline T inv(T x)
{
return T(1) / x;
}
namespace detail {
// This function is used heavily in this library. Here is a generic
// implementation for it. If you can provide a faster one for your specific
// types this can speed up things considerably.
template <typename T>
inline T multiply_accumulate(int count, const T *a, const T *b)
{
T result = T(0);
for (int i = 0; i < count; ++i)
result += a[i] * b[i];
return result;
}
}
#define MOP_M_CLASS_TEMPLATE(CLASS, OP, COUNT) \
CLASS & operator OP (const CLASS& rhs) \
{ \
for (int i = 0; i < (COUNT); ++i ) \
(*this)[i] OP rhs[i]; \
return *this; \
}
#define MOP_M_TYPE_TEMPLATE(CLASS, OP, COUNT) \
CLASS & operator OP (const T & rhs) \
{ \
for (int i = 0; i < (COUNT); ++i ) \
(*this)[i] OP rhs; \
return *this; \
}
#define MOP_COMP_TEMPLATE(CLASS, COUNT) \
bool operator == (const CLASS & rhs) \
{ \
bool result = true; \
for (int i = 0; i < (COUNT); ++i) \
result = result && (*this)[i] == rhs[i]; \
return result; \
} \
bool operator != (const CLASS & rhs) \
{ return !((*this) == rhs); }
#define MOP_G_UMINUS_TEMPLATE(CLASS, COUNT) \
CLASS operator - () const \
{ \
CLASS result; \
for (int i = 0; i < (COUNT); ++i) \
result[i] = -(*this)[i]; \
return result; \
}
#define COMMON_OPERATORS(CLASS, COUNT) \
MOP_M_CLASS_TEMPLATE(CLASS, +=, COUNT) \
MOP_M_CLASS_TEMPLATE(CLASS, -=, COUNT) \
/*no *= as this is not the same for vectors and matrices */ \
MOP_M_CLASS_TEMPLATE(CLASS, /=, COUNT) \
MOP_M_TYPE_TEMPLATE(CLASS, +=, COUNT) \
MOP_M_TYPE_TEMPLATE(CLASS, -=, COUNT) \
MOP_M_TYPE_TEMPLATE(CLASS, *=, COUNT) \
MOP_M_TYPE_TEMPLATE(CLASS, /=, COUNT) \
MOP_G_UMINUS_TEMPLATE(CLASS, COUNT) \
MOP_COMP_TEMPLATE(CLASS, COUNT)
#define VECTOR_COMMON(CLASS, COUNT) \
COMMON_OPERATORS(CLASS, COUNT) \
MOP_M_CLASS_TEMPLATE(CLASS, *=, COUNT) \
operator const T* () const { return &x; } \
operator T* () { return &x; }
#define FOP_G_SOURCE_TEMPLATE(OP, CLASS) \
{ CLASS<T> r = lhs; r OP##= rhs; return r; }
#define FOP_G_CLASS_TEMPLATE(OP, CLASS) \
template <typename T> \
inline CLASS<T> operator OP (const CLASS<T> &lhs, const CLASS<T> &rhs) \
FOP_G_SOURCE_TEMPLATE(OP, CLASS)
#define FOP_G_TYPE_TEMPLATE(OP, CLASS) \
template <typename T> \
inline CLASS<T> operator OP (const CLASS<T> &lhs, const T &rhs) \
FOP_G_SOURCE_TEMPLATE(OP, CLASS)
// forward declarations
template <typename T> struct vec2;
template <typename T> struct vec3;
template <typename T> struct vec4;
template <typename T> struct mat2;
template <typename T> struct mat3;
template <typename T> struct mat4;
template <typename T> struct quat;
#define FREE_MODIFYING_OPERATORS(CLASS) \
FOP_G_CLASS_TEMPLATE(+, CLASS) \
FOP_G_CLASS_TEMPLATE(-, CLASS) \
FOP_G_CLASS_TEMPLATE(*, CLASS) \
FOP_G_CLASS_TEMPLATE(/, CLASS) \
FOP_G_TYPE_TEMPLATE(+, CLASS) \
FOP_G_TYPE_TEMPLATE(-, CLASS) \
FOP_G_TYPE_TEMPLATE(*, CLASS) \
FOP_G_TYPE_TEMPLATE(/, CLASS)
FREE_MODIFYING_OPERATORS(vec2)
FREE_MODIFYING_OPERATORS(vec3)
FREE_MODIFYING_OPERATORS(vec4)
FREE_MODIFYING_OPERATORS(mat2)
FREE_MODIFYING_OPERATORS(mat3)
FREE_MODIFYING_OPERATORS(mat4)
FREE_MODIFYING_OPERATORS(quat)
#define FREE_OPERATORS(CLASS) \
template <typename T> \
inline CLASS<T> operator + (const T& a, const CLASS<T>& b) \
{ CLASS<T> r = b; r += a; return r; } \
\
template <typename T> \
inline CLASS<T> operator * (const T& a, const CLASS<T>& b) \
{ CLASS<T> r = b; r *= a; return r; } \
\
template <typename T> \
inline CLASS<T> operator - (const T& a, const CLASS<T>& b) \
{ return -b + a; } \
\
template <typename T> \
inline CLASS<T> operator / (const T& a, const CLASS<T>& b) \
{ CLASS<T> r(a); r /= b; return r; }
FREE_OPERATORS(vec2)
FREE_OPERATORS(vec3)
FREE_OPERATORS(vec4)
FREE_OPERATORS(mat2)
FREE_OPERATORS(mat3)
FREE_OPERATORS(mat4)
FREE_OPERATORS(quat)
template <typename T>
struct vec2 {
T x, y;
vec2() {};
explicit vec2(const T i) : x(i), y(i) {}
explicit vec2(const T ix, const T iy) : x(ix), y(iy) {}
explicit vec2(const vec3<T>& v);
explicit vec2(const vec4<T>& v);
VECTOR_COMMON(vec2, 2)
};
template <typename T>
struct vec3 {
T x, y, z;
vec3() {};
explicit vec3(const T i) : x(i), y(i), z(i) {}
explicit vec3(const T ix, const T iy, const T iz) : x(ix), y(iy), z(iz) {}
explicit vec3(const vec2<T>& xy, const T iz) : x(xy.x), y(xy.y), z(iz) {}
explicit vec3(const T ix, const vec2<T>& yz) : x(ix), y(yz.y), z(yz.z) {}
explicit vec3(const vec4<T>& v);
VECTOR_COMMON(vec3, 3)
};
template <typename T>
struct vec4 {
T x, y, z, w;
vec4() {};
explicit vec4(const T i) : x(i), y(i), z(i), w(i) {}
explicit vec4(const T ix, const T iy, const T iz, const T iw) : x(ix), y(iy), z(iz), w(iw) {}
explicit vec4(const vec3<T>& xyz,const T iw) : x(xyz.x), y(xyz.y), z(xyz.z), w(iw) {}
explicit vec4(const T ix, const vec3<T>& yzw) : x(ix), y(yzw.x), z(yzw.y), w(yzw.z) {}
explicit vec4(const vec2<T>& xy, const vec2<T>& zw) : x(xy.x), y(xy.y), z(zw.x), w(zw.y) {}
VECTOR_COMMON(vec4, 4)
};
// additional constructors that omit the last element
template <typename T> inline vec2<T>::vec2(const vec3<T>& v) : x(v.x), y(v.y) {}
template <typename T> inline vec2<T>::vec2(const vec4<T>& v) : x(v.x), y(v.y) {}
template <typename T> inline vec3<T>::vec3(const vec4<T>& v) : x(v.x), y(v.y), z(v.z) {}
#define VEC_QUAT_FUNC_TEMPLATE(CLASS, COUNT) \
template <typename T> \
inline T dot(const CLASS & u, const CLASS & v) \
{ \
const T *a = u; \
const T *b = v; \
using namespace detail; \
return multiply_accumulate(COUNT, a, b); \
} \
template <typename T> \
inline T length(const CLASS & v) \
{ \
return sqrt(dot(v, v)); \
} \
template <typename T> inline CLASS normalize(const CLASS & v) \
{ \
return v * rsqrt(dot(v, v)); \
} \
template <typename T> inline CLASS lerp(const CLASS & u, const CLASS & v, const T x) \
{ \
return u * (T(1) - x) + v * x; \
}
VEC_QUAT_FUNC_TEMPLATE(vec2<T>, 2)
VEC_QUAT_FUNC_TEMPLATE(vec3<T>, 3)
VEC_QUAT_FUNC_TEMPLATE(vec4<T>, 4)
VEC_QUAT_FUNC_TEMPLATE(quat<T>, 4)
#define VEC_FUNC_TEMPLATE(CLASS) \
template <typename T> inline CLASS reflect(const CLASS & I, const CLASS & N) \
{ \
return I - T(2) * dot(N, I) * N; \
} \
template <typename T> inline CLASS refract(const CLASS & I, const CLASS & N, T eta) \
{ \
const T d = dot(N, I); \
const T k = T(1) - eta * eta * (T(1) - d * d); \
if ( k < T(0) ) \
return CLASS(T(0)); \
else \
return eta * I - (eta * d + static_cast<T>(sqrt(k))) * N; \
}
VEC_FUNC_TEMPLATE(vec2<T>)
VEC_FUNC_TEMPLATE(vec3<T>)
VEC_FUNC_TEMPLATE(vec4<T>)
template <typename T> inline T lerp(const T & u, const T & v, const T x)
{
return dot(vec2<T>(u, v), vec2<T>((T(1) - x), x));
}
template <typename T> inline vec3<T> cross(const vec3<T>& u, const vec3<T>& v)
{
return vec3<T>(
dot(vec2<T>(u.y, -v.y), vec2<T>(v.z, u.z)),
dot(vec2<T>(u.z, -v.z), vec2<T>(v.x, u.x)),
dot(vec2<T>(u.x, -v.x), vec2<T>(v.y, u.y)));
}
#define MATRIX_COL4(SRC, C) \
vec4<T>(SRC.elem[0][C], SRC.elem[1][C], SRC.elem[2][C], SRC.elem[3][C])
#define MATRIX_ROW4(SRC, R) \
vec4<T>(SRC.elem[R][0], SRC.elem[R][1], SRC.elem[R][2], SRC.elem[R][3])
#define MATRIX_COL3(SRC, C) \
vec3<T>(SRC.elem[0][C], SRC.elem[1][C], SRC.elem[2][C])
#define MATRIX_ROW3(SRC, R) \
vec3<T>(SRC.elem[R][0], SRC.elem[R][1], SRC.elem[R][2])
#define MATRIX_COL2(SRC, C) \
vec2<T>(SRC.elem[0][C], SRC.elem[1][C])
#define MATRIX_ROW2(SRC, R) \
vec2<T>(SRC.elem[R][0], SRC.elem[R][1])
#define MOP_M_MATRIX_MULTIPLY(CLASS, SIZE) \
CLASS & operator *= (const CLASS & rhs) \
{ \
CLASS result; \
for (int r = 0; r < SIZE; ++r) \
for (int c = 0; c < SIZE; ++c) \
result.elem[r][c] = dot( \
MATRIX_ROW ## SIZE((*this), r), \
MATRIX_COL ## SIZE(rhs, c)); \
return (*this) = result; \
}
#define MATRIX_CONSTRUCTOR_FROM_T(CLASS, SIZE) \
explicit CLASS(const T v) \
{ \
for (int r = 0; r < SIZE; ++r) \
for (int c = 0; c < SIZE; ++c) \
if (r == c) elem[r][c] = v; \
else elem[r][c] = T(0); \
}
#define MATRIX_CONSTRUCTOR_FROM_LOWER(CLASS1, CLASS2, SIZE1, SIZE2) \
explicit CLASS1(const CLASS2<T>& m) \
{ \
for (int r = 0; r < SIZE1; ++r) \
for (int c = 0; c < SIZE1; ++c) \
if (r < SIZE2 && c < SIZE2) elem[r][c] = m.elem[r][c]; \
else elem[r][c] = r == c ? T(1) : T(0); \
}
#define MATRIX_COMMON(CLASS, SIZE) \
COMMON_OPERATORS(CLASS, SIZE*SIZE) \
MOP_M_MATRIX_MULTIPLY(CLASS, SIZE) \
MATRIX_CONSTRUCTOR_FROM_T(CLASS, SIZE) \
operator const T* () const { return (const T*) elem; } \
operator T* () { return (T*) elem; }
template <typename T> struct mat2;
template <typename T> struct mat3;
template <typename T> struct mat4;
template <typename T>
struct mat2 {
T elem[2][2];
mat2() {}
explicit mat2(
const T m00, const T m01,
const T m10, const T m11)
{
elem[0][0] = m00; elem[0][1] = m01;
elem[1][0] = m10; elem[1][1] = m11;
}
explicit mat2(const vec2<T>& v0, const vec2<T>& v1)
{
elem[0][0] = v0[0];
elem[1][0] = v0[1];
elem[0][1] = v1[0];
elem[1][1] = v1[1];
}
explicit mat2(const mat3<T>& m);
MATRIX_COMMON(mat2, 2)
};
template <typename T>
struct mat3 {
T elem[3][3];
mat3() {}
explicit mat3(
const T m00, const T m01, const T m02,
const T m10, const T m11, const T m12,
const T m20, const T m21, const T m22)
{
elem[0][0] = m00; elem[0][1] = m01; elem[0][2] = m02;
elem[1][0] = m10; elem[1][1] = m11; elem[1][2] = m12;
elem[2][0] = m20; elem[2][1] = m21; elem[2][2] = m22;
}
explicit mat3(const vec3<T>& v0, const vec3<T>& v1, const vec3<T>& v2)
{
elem[0][0] = v0[0];
elem[1][0] = v0[1];
elem[2][0] = v0[2];
elem[0][1] = v1[0];
elem[1][1] = v1[1];
elem[2][1] = v1[2];
elem[0][2] = v2[0];
elem[1][2] = v2[1];
elem[2][2] = v2[2];
}
explicit mat3(const mat4<T>& m);
MATRIX_CONSTRUCTOR_FROM_LOWER(mat3, mat2, 3, 2)
MATRIX_COMMON(mat3, 3)
};
template <typename T>
struct mat4 {
T elem[4][4];
mat4() {}
explicit mat4(
const T m00, const T m01, const T m02, const T m03,
const T m10, const T m11, const T m12, const T m13,
const T m20, const T m21, const T m22, const T m23,
const T m30, const T m31, const T m32, const T m33)
{
elem[0][0] = m00; elem[0][1] = m01; elem[0][2] = m02; elem[0][3] = m03;
elem[1][0] = m10; elem[1][1] = m11; elem[1][2] = m12; elem[1][3] = m13;
elem[2][0] = m20; elem[2][1] = m21; elem[2][2] = m22; elem[2][3] = m23;
elem[3][0] = m30; elem[3][1] = m31; elem[3][2] = m32; elem[3][3] = m33;
}
explicit mat4(const vec4<T>& v0, const vec4<T>& v1, const vec4<T>& v2, const vec4<T>& v3)
{
elem[0][0] = v0[0];
elem[1][0] = v0[1];
elem[2][0] = v0[2];
elem[3][0] = v0[3];
elem[0][1] = v1[0];
elem[1][1] = v1[1];
elem[2][1] = v1[2];
elem[3][1] = v1[3];
elem[0][2] = v2[0];
elem[1][2] = v2[1];
elem[2][2] = v2[2];
elem[3][2] = v2[3];
elem[0][3] = v3[0];
elem[1][3] = v3[1];
elem[2][3] = v3[2];
elem[3][3] = v3[3];
}
MATRIX_CONSTRUCTOR_FROM_LOWER(mat4, mat3, 4, 3)
MATRIX_COMMON(mat4, 4)
};
#define MATRIX_CONSTRUCTOR_FROM_HIGHER(CLASS1, CLASS2, SIZE) \
template <typename T> \
inline CLASS1<T>::CLASS1(const CLASS2<T>& m) \
{ \
for (int r = 0; r < SIZE; ++r) \
for (int c = 0; c < SIZE; ++c) \
elem[r][c] = m.elem[r][c]; \
}
MATRIX_CONSTRUCTOR_FROM_HIGHER(mat2, mat3, 2)
MATRIX_CONSTRUCTOR_FROM_HIGHER(mat3, mat4, 3)
#define MAT_FUNC_TEMPLATE(CLASS, SIZE) \
template <typename T> \
inline CLASS transpose(const CLASS & m) \
{ \
CLASS result; \
for (int r = 0; r < SIZE; ++r) \
for (int c = 0; c < SIZE; ++c) \
result.elem[r][c] = m.elem[c][r]; \
return result; \
} \
template <typename T> \
inline CLASS identity ## SIZE() \
{ \
CLASS result; \
for (int r = 0; r < SIZE; ++r) \
for (int c = 0; c < SIZE; ++c) \
result.elem[r][c] = r == c ? T(1) : T(0); \
return result; \
} \
template <typename T> \
inline T trace(const CLASS & m) \
{ \
T result = T(0); \
for (int i = 0; i < SIZE; ++i) \
result += m.elem[i][i]; \
return result; \
}
MAT_FUNC_TEMPLATE(mat2<T>, 2)
MAT_FUNC_TEMPLATE(mat3<T>, 3)
MAT_FUNC_TEMPLATE(mat4<T>, 4)
#define MAT_FUNC_MINOR_TEMPLATE(CLASS1, CLASS2, SIZE) \
template <typename T> \
inline CLASS2 minor(const CLASS1 & m, int _r = SIZE, int _c = SIZE) { \
CLASS2 result; \
for (int r = 0; r < SIZE - 1; ++r) \
for (int c = 0; c < SIZE - 1; ++c) { \
int rs = r >= _r ? 1 : 0; \
int cs = c >= _c ? 1 : 0; \
result.elem[r][c] = m.elem[r + rs][c + cs]; \
} \
return result; \
}
MAT_FUNC_MINOR_TEMPLATE(mat3<T>, mat2<T>, 3)
MAT_FUNC_MINOR_TEMPLATE(mat4<T>, mat3<T>, 4)
template <typename T>
inline T det(const mat2<T>& m)
{
return dot(
vec2<T>(m.elem[0][0], -m.elem[0][1]),
vec2<T>(m.elem[1][1], m.elem[1][0]));
}
template <typename T>
inline T det(const mat3<T>& m)
{
return dot(cross(MATRIX_COL3(m, 0), MATRIX_COL3(m, 1)), MATRIX_COL3(m, 2));
}
template <typename T>
inline T det(const mat4<T>& m)
{
vec4<T> b;
for (int i = 0; i < 4; ++i)
b[i] = (i & 1 ? -1 : 1) * det(minor(m, 0, i));
return dot(MATRIX_ROW4(m, 0), b);
}
#define MAT_ADJOINT_TEMPLATE(CLASS, SIZE) \
template <typename T> \
inline CLASS adjoint(const CLASS & m) \
{ \
CLASS result; \
for (int r = 0; r < SIZE; ++r) \
for (int c = 0; c < SIZE; ++c) \
result.elem[r][c] = ((r + c) & 1 ? -1 : 1) * det(minor(m, c, r)); \
return result; \
}
MAT_ADJOINT_TEMPLATE(mat3<T>, 3)
MAT_ADJOINT_TEMPLATE(mat4<T>, 4)
template <typename T>
inline mat2<T> adjoint(const mat2<T> & m)
{
return mat2<T>(
m.elem[1][1], -m.elem[0][1],
-m.elem[1][0], m.elem[0][0]
);
}
#define MAT_INVERSE_TEMPLATE(CLASS) \
template <typename T> \
inline CLASS inverse(const CLASS & m) \
{ \
return adjoint(m) * inv(det(m)); \
}
MAT_INVERSE_TEMPLATE(mat2<T>)
MAT_INVERSE_TEMPLATE(mat3<T>)
MAT_INVERSE_TEMPLATE(mat4<T>)
#define MAT_VEC_FUNCS_TEMPLATE(MATCLASS, VECCLASS, SIZE) \
template <typename T> \
inline VECCLASS operator * (const MATCLASS & m, const VECCLASS & v) \
{ \
VECCLASS result; \
for (int i = 0; i < SIZE; ++i) {\
result[i] = dot(MATRIX_ROW ## SIZE(m, i), v); \
} \
return result; \
} \
template <typename T> \
inline VECCLASS operator * (const VECCLASS & v, const MATCLASS & m) \
{ \
VECCLASS result; \
for (int i = 0; i < SIZE; ++i) \
result[i] = dot(v, MATRIX_COL ## SIZE(m, i)); \
return result; \
}
MAT_VEC_FUNCS_TEMPLATE(mat2<T>, vec2<T>, 2)
MAT_VEC_FUNCS_TEMPLATE(mat3<T>, vec3<T>, 3)
MAT_VEC_FUNCS_TEMPLATE(mat4<T>, vec4<T>, 4)
// Returns the inverse of a 4x4 matrix. It is assumed that the matrix passed
// as argument describes a rigid-body transformation.
template <typename T>
inline mat4<T> fast_inverse(const mat4<T>& m)
{
const vec3<T> t = MATRIX_COL3(m, 3);
const T tx = -dot(MATRIX_COL3(m, 0), t);
const T ty = -dot(MATRIX_COL3(m, 1), t);
const T tz = -dot(MATRIX_COL3(m, 2), t);
return mat4<T>(
m.elem[0][0], m.elem[1][0], m.elem[2][0], tx,
m.elem[0][1], m.elem[1][1], m.elem[2][1], ty,
m.elem[0][2], m.elem[1][2], m.elem[2][2], tz,
T(0), T(0), T(0), T(1)
);
}
// Transformations for points and vectors. Potentially faster than a full
// matrix * vector multiplication
#define MAT_TRANFORMS_TEMPLATE(MATCLASS, VECCLASS, VECSIZE) \
/* computes vec3<T>(m * vec4<T>(v, 0.0)) */ \
template <typename T> \
inline VECCLASS transform_vector(const MATCLASS & m, const VECCLASS & v) \
{ \
VECCLASS result; \
for (int i = 0; i < VECSIZE; ++i) \
result[i] = dot(MATRIX_ROW ## VECSIZE(m, i), v); \
return result;\
} \
/* computes vec3(m * vec4(v, 1.0)) */ \
template <typename T> \
inline VECCLASS transform_point(const MATCLASS & m, const VECCLASS & v) \
{ \
/*return transform_vector(m, v) + MATRIX_ROW ## VECSIZE(m, VECSIZE); */\
VECCLASS result; \
for (int i = 0; i < VECSIZE; ++i) \
result[i] = dot(MATRIX_ROW ## VECSIZE(m, i), v) + m.elem[i][VECSIZE]; \
return result; \
} \
/* computes VECCLASS(transpose(m) * vec4<T>(v, 0.0)) */ \
template <typename T> \
inline VECCLASS transform_vector_transpose(const MATCLASS & m, const VECCLASS& v) \
{ \
VECCLASS result; \
for (int i = 0; i < VECSIZE; ++i) \
result[i] = dot(MATRIX_COL ## VECSIZE(m, i), v); \
return result; \
} \
/* computes VECCLASS(transpose(m) * vec4<T>(v, 1.0)) */ \
template <typename T> \
inline VECCLASS transform_point_transpose(const MATCLASS & m, const VECCLASS& v) \
{ \
/*return transform_vector_transpose(m, v) + MATRIX_COL ## VECSIZE(m, VECSIZE); */\
VECCLASS result; \
for (int i = 0; i < VECSIZE; ++i) \
result[i] = dot(MATRIX_COL ## VECSIZE(m, i), v) + m.elem[VECSIZE][i]; \
return result; \
}
MAT_TRANFORMS_TEMPLATE(mat4<T>, vec3<T>, 3)
MAT_TRANFORMS_TEMPLATE(mat3<T>, vec2<T>, 2)
#define MAT_OUTERPRODUCT_TEMPLATE(MATCLASS, VECCLASS, MATSIZE) \
template <typename T> \
inline MATCLASS outer_product(const VECCLASS & v1, const VECCLASS & v2) \
{ \
MATCLASS r; \
for ( int j = 0; j < MATSIZE; ++j ) \
for ( int k = 0; k < MATSIZE; ++k ) \
r.elem[j][k] = v1[j] * v2[k]; \
return r; \
}
MAT_OUTERPRODUCT_TEMPLATE(mat4<T>, vec4<T>, 4)
MAT_OUTERPRODUCT_TEMPLATE(mat3<T>, vec3<T>, 3)
MAT_OUTERPRODUCT_TEMPLATE(mat2<T>, vec2<T>, 2)
template <typename T>
inline mat4<T> translation_matrix(const T x, const T y, const T z)
{
mat4<T> r(T(1));
r.elem[0][3] = x;
r.elem[1][3] = y;
r.elem[2][3] = z;
return r;
}
template <typename T>
inline mat4<T> translation_matrix(const vec3<T>& v)
{
return translation_matrix(v.x, v.y, v.z);
}
template <typename T>
inline mat4<T> scaling_matrix(const T x, const T y, const T z)
{
mat4<T> r(T(0));
r.elem[0][0] = x;
r.elem[1][1] = y;
r.elem[2][2] = z;
r.elem[3][3] = T(1);
return r;
}
template <typename T>
inline mat4<T> scaling_matrix(const vec3<T>& v)
{
return scaling_matrix(v.x, v.y, v.z);
}
template <typename T>
inline mat4<T> rotation_matrix(const T angle, const vec3<T>& v)
{
const T a = angle * T(M_PI/180) ;
const vec3<T> u = normalize(v);
const mat3<T> S(
T(0), -u[2], u[1],
u[2], T(0), -u[0],
-u[1], u[0], T(0)
);
const mat3<T> uut = outer_product(u, u);
const mat3<T> R = uut + T(cos(a)) * (identity3<T>() - uut) + T(sin(a)) * S;
return mat4<T>(R);
}
template <typename T>
inline mat4<T> rotation_matrix(const T angle, const T x, const T y, const T z)
{
return rotation_matrix(angle, vec3<T>(x, y, z));
}
// Constructs a shear-matrix that shears component i by factor with
// Respect to component j.
template <typename T>
inline mat4<T> shear_matrix(const int i, const int j, const T factor)
{
mat4<T> m = identity4<T>();
m.elem[i][j] = factor;
return m;
}
template <typename T>
inline mat4<T> euler(const T head, const T pitch, const T roll)
{
return rotation_matrix(roll, T(0), T(0), T(1)) *
rotation_matrix(pitch, T(1), T(0), T(0)) *
rotation_matrix(head, T(0), T(1), T(0));
}
template <typename T>
inline mat4<T> frustum_matrix(const T l, const T r, const T b, const T t, const T n, const T f)
{
return mat4<T>(
(2 * n)/(r - l), T(0), (r + l)/(r - l), T(0),
T(0), (2 * n)/(t - b), (t + b)/(t - b), T(0),
T(0), T(0), -(f + n)/(f - n), -(2 * f * n)/(f - n),
T(0), T(0), -T(1), T(0)
);
}
template <typename T>
inline mat4<T> perspective_matrix(const T fovy, const T aspect, const T zNear, const T zFar)
{
const T dz = zFar - zNear;
const T rad = fovy / T(2) * T(M_PI/180);
const T s = sin(rad);
if ( ( dz == T(0) ) || ( s == T(0) ) || ( aspect == T(0) ) ) {
return identity4<T>();
}
const T cot = cos(rad) / s;
mat4<T> m = identity4<T>();
m[0] = cot / aspect;
m[5] = cot;
m[10] = -(zFar + zNear) / dz;
m[14] = T(-1);
m[11] = -2 * zNear * zFar / dz;
m[15] = T(0);
return m;
}
template <typename T>
inline mat4<T> ortho_matrix(const T l, const T r, const T b, const T t, const T n, const T f)
{
return mat4<T>(
T(2)/(r - l), T(0), T(0), -(r + l)/(r - l),
T(0), T(2)/(t - b), T(0), -(t + b)/(t - b),
T(0), T(0), -T(2)/(f - n), -(f + n)/(f - n),
T(0), T(0), T(0), T(1)
);
}
template <typename T>
inline mat4<T> lookat_matrix(const vec3<T>& eye, const vec3<T>& center, const vec3<T>& up) {
const vec3<T> forward = normalize(center - eye);
const vec3<T> side = normalize(cross(forward, up));
const vec3<T> up2 = cross(side, forward);
mat4<T> m = identity4<T>();
m.elem[0][0] = side[0];
m.elem[0][1] = side[1];
m.elem[0][2] = side[2];
m.elem[1][0] = up2[0];
m.elem[1][1] = up2[1];
m.elem[1][2] = up2[2];
m.elem[2][0] = -forward[0];
m.elem[2][1] = -forward[1];
m.elem[2][2] = -forward[2];
return m * translation_matrix(-eye);
}
template <typename T>
inline mat4<T> picking_matrix(const T x, const T y, const T dx, const T dy, int viewport[4]) {
if (dx <= 0 || dy <= 0) {
return identity4<T>();
}
mat4<T> r = translation_matrix((viewport[2] - 2 * (x - viewport[0])) / dx,
(viewport[3] - 2 * (y - viewport[1])) / dy, 0);
r *= scaling_matrix(viewport[2] / dx, viewport[2] / dy, 1);
return r;
}
// Constructs a shadow matrix. q is the light source and p is the plane.
template <typename T> inline mat4<T> shadow_matrix(const vec4<T>& q, const vec4<T>& p) {
mat4<T> m;
m.elem[0][0] = p.y * q[1] + p.z * q[2] + p.w * q[3];
m.elem[0][1] = -p.y * q[0];
m.elem[0][2] = -p.z * q[0];
m.elem[0][3] = -p.w * q[0];
m.elem[1][0] = -p.x * q[1];
m.elem[1][1] = p.x * q[0] + p.z * q[2] + p.w * q[3];
m.elem[1][2] = -p.z * q[1];
m.elem[1][3] = -p.w * q[1];
m.elem[2][0] = -p.x * q[2];
m.elem[2][1] = -p.y * q[2];
m.elem[2][2] = p.x * q[0] + p.y * q[1] + p.w * q[3];
m.elem[2][3] = -p.w * q[2];
m.elem[3][1] = -p.x * q[3];
m.elem[3][2] = -p.y * q[3];
m.elem[3][3] = -p.z * q[3];
m.elem[3][0] = p.x * q[0] + p.y * q[1] + p.z * q[2];
return m;
}
// Quaternion class
template <typename T>
struct quat {
vec3<T> v;
T w;
quat() {}
quat(const vec3<T>& iv, const T iw) : v(iv), w(iw) {}
quat(const T vx, const T vy, const T vz, const T iw) : v(vx, vy, vz), w(iw) {}
quat(const vec4<T>& i) : v(i.x, i.y, i.z), w(i.w) {}
operator const T* () const { return &(v[0]); }
operator T* () { return &(v[0]); }
quat& operator += (const quat& q) { v += q.v; w += q.w; return *this; }
quat& operator -= (const quat& q) { v -= q.v; w -= q.w; return *this; }
quat& operator *= (const T& s) { v *= s; w *= s; return *this; }
quat& operator /= (const T& s) { v /= s; w /= s; return *this; }
quat& operator *= (const quat& r)
{
//q1 x q2 = [s1,v1] x [s2,v2] = [(s1*s2 - v1*v2),(s1*v2 + s2*v1 + v1xv2)].
quat q;
q.v = cross(v, r.v) + r.w * v + w * r.v;
q.w = w * r.w - dot(v, r.v);
return *this = q;
}
quat& operator /= (const quat& q) { return (*this) *= inverse(q); }
};
// Quaternion functions
template <typename T>
inline quat<T> identityq()
{
return quat<T>(T(0), T(0), T(0), T(1));
}
template <typename T>
inline quat<T> conjugate(const quat<T>& q)
{
return quat<T>(-q.v, q.w);
}
template <typename T>
inline quat<T> inverse(const quat<T>& q)
{
const T l = dot(q, q);
if ( l > T(0) ) return conjugate(q) * inv(l);
else return identityq<T>();
}
// quaternion utility functions
// the input quaternion is assumed to be normalized
template <typename T>
inline mat3<T> quat_to_mat3(const quat<T>& q)
{
// const quat<T> q = normalize(qq);
const T xx = q[0] * q[0];
const T xy = q[0] * q[1];
const T xz = q[0] * q[2];
const T xw = q[0] * q[3];
const T yy = q[1] * q[1];
const T yz = q[1] * q[2];
const T yw = q[1] * q[3];
const T zz = q[2] * q[2];
const T zw = q[2] * q[3];
return mat3<T>(
1 - 2*(yy + zz), 2*(xy - zw), 2*(xz + yw),
2*(xy + zw), 1 - 2*(xx + zz), 2*(yz - xw),
2*(xz - yw), 2*(yz + xw), 1 - 2*(xx + yy)
);
}
// the input quat<T>ernion is assumed to be normalized
template <typename T>
inline mat4<T> quat_to_mat4(const quat<T>& q)
{
// const quat<T> q = normalize(qq);
return mat4<T>(quat_to_mat3(q));
}
template <typename T>
inline quat<T> mat_to_quat(const mat4<T>& m)
{
const T t = m.elem[0][0] + m.elem[1][1] + m.elem[2][2] + T(1);
quat<T> q;
if ( t > 0 ) {
const T s = T(0.5) / sqrt(t);
q[3] = T(0.25) * inv(s);
q[0] = (m.elem[2][1] - m.elem[1][2]) * s;
q[1] = (m.elem[0][2] - m.elem[2][0]) * s;
q[2] = (m.elem[1][0] - m.elem[0][1]) * s;
} else {
if ( m.elem[0][0] > m.elem[1][1] && m.elem[0][0] > m.elem[2][2] ) {
const T s = T(2) * sqrt( T(1) + m.elem[0][0] - m.elem[1][1] - m.elem[2][2]);
const T invs = inv(s);
q[0] = T(0.25) * s;
q[1] = (m.elem[0][1] + m.elem[1][0] ) * invs;
q[2] = (m.elem[0][2] + m.elem[2][0] ) * invs;
q[3] = (m.elem[1][2] - m.elem[2][1] ) * invs;
} else if (m.elem[1][1] > m.elem[2][2]) {
const T s = T(2) * sqrt( T(1) + m.elem[1][1] - m.elem[0][0] - m.elem[2][2]);
const T invs = inv(s);
q[0] = (m.elem[0][1] + m.elem[1][0] ) * invs;
q[1] = T(0.25) * s;
q[2] = (m.elem[1][2] + m.elem[2][1] ) * invs;
q[3] = (m.elem[0][2] - m.elem[2][0] ) * invs;
} else {
const T s = T(2) * sqrt( T(1) + m.elem[2][2] - m.elem[0][0] - m.elem[1][1] );
const T invs = inv(s);
q[0] = (m.elem[0][2] + m.elem[2][0] ) * invs;
q[1] = (m.elem[1][2] + m.elem[2][1] ) * invs;
q[2] = T(0.25) * s;
q[3] = (m.elem[0][1] - m.elem[1][0] ) * invs;
}
}
return q;
}
template <typename T>
inline quat<T> mat_to_quat(const mat3<T>& m)
{
return mat_to_quat(mat4<T>(m));
}
// the angle is in radians
template <typename T>
inline quat<T> quat_from_axis_angle(const vec3<T>& axis, const T a)
{
quat<T> r;
const T inv2 = inv(T(2));
r.v = sin(a * inv2) * normalize(axis);
r.w = cos(a * inv2);
return r;
}
// the angle is in radians
template <typename T>
inline quat<T> quat_from_axis_angle(const T x, const T y, const T z, const T angle)
{
return quat_from_axis_angle<T>(vec3<T>(x, y, z), angle);
}
// the angle is stored in radians
template <typename T>
inline void quat_to_axis_angle(const quat<T>& qq, vec3<T>* axis, T *angle)
{
quat<T> q = normalize(qq);
*angle = 2 * acos(q.w);
const T s = sin((*angle) * inv(T(2)));
if ( s != T(0) )
*axis = q.v * inv(s);
else
* axis = vec3<T>(T(0), T(0), T(0));
}
// Spherical linear interpolation
template <typename T>
inline quat<T> slerp(const quat<T>& qq1, const quat<T>& qq2, const T t)
{
// slerp(q1,q2) = sin((1-t)*a)/sin(a) * q1 + sin(t*a)/sin(a) * q2
const quat<T> q1 = normalize(qq1);
const quat<T> q2 = normalize(qq2);
const T a = acos(dot(q1, q2));
const T s = sin(a);
#define EPS T(1e-5)
if ( !(-EPS <= s && s <= EPS) ) {
return sin((T(1)-t)*a)/s * q1 + sin(t*a)/s * q2;
} else {
// if the angle is to small use a linear interpolation
return lerp(q1, q2, t);
}
#undef EPS
}
// Sperical quadtratic interpolation using a smooth cubic spline
// The parameters a and b are the control points.
template <typename T>
inline quat<T> squad(
const quat<T>& q0,
const quat<T>& a,
const quat<T>& b,
const quat<T>& q1,
const T t)
{
return slerp(slerp(q0, q1, t),slerp(a, b, t), 2 * t * (1 - t));
}
#undef MOP_M_CLASS_TEMPLATE
#undef MOP_M_TYPE_TEMPLATE
#undef MOP_COMP_TEMPLATE
#undef MOP_G_UMINUS_TEMPLATE
#undef COMMON_OPERATORS
#undef VECTOR_COMMON
#undef FOP_G_SOURCE_TEMPLATE
#undef FOP_G_CLASS_TEMPLATE
#undef FOP_G_TYPE_TEMPLATE
#undef VEC_QUAT_FUNC_TEMPLATE
#undef VEC_FUNC_TEMPLATE
#undef MATRIX_COL4
#undef MATRIX_ROW4
#undef MATRIX_COL3
#undef MATRIX_ROW3
#undef MATRIX_COL2
#undef MATRIX_ROW2
#undef MOP_M_MATRIX_MULTIPLY
#undef MATRIX_CONSTRUCTOR_FROM_T
#undef MATRIX_CONSTRUCTOR_FROM_LOWER
#undef MATRIX_COMMON
#undef MATRIX_CONSTRUCTOR_FROM_HIGHER
#undef MAT_FUNC_TEMPLATE
#undef MAT_FUNC_MINOR_TEMPLATE
#undef MAT_ADJOINT_TEMPLATE
#undef MAT_INVERSE_TEMPLATE
#undef MAT_VEC_FUNCS_TEMPLATE
#undef MAT_TRANFORMS_TEMPLATE
#undef MAT_OUTERPRODUCT_TEMPLATE
#undef FREE_MODIFYING_OPERATORS
#undef FREE_OPERATORS
} // end namespace vmath
#endif
|