1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
|
.. -*-rst-*-
*********************************************
Developer notes on the transition to Python 3
*********************************************
:date: 2010-07-11
:author: Charles R. Harris
:author: Pauli Virtanen
General
=======
NumPy has now been ported to Python 3.
Some glitches may still be present; however, we are not aware of any
significant ones, the test suite passes.
Resources
---------
Information on porting to 3K:
- https://wiki.python.org/moin/cporting
- https://wiki.python.org/moin/PortingExtensionModulesToPy3k
Prerequisites
-------------
The Nose test framework has currently (Nov 2009) no released Python 3
compatible version. Its 3K SVN branch, however, works quite well:
- http://python-nose.googlecode.com/svn/branches/py3k
Known semantic changes on Py2
=============================
As a side effect, the Py3 adaptation has caused the following semantic
changes that are visible on Py2.
* Objects (except bytes and str) that implement the PEP 3118 array interface
will behave as ndarrays in `array(...)` and `asarray(...)`; the same way
as if they had ``__array_interface__`` defined.
* Otherwise, there are no known semantic changes.
Known semantic changes on Py3
=============================
The following semantic changes have been made on Py3:
* Division: integer division is by default true_divide, also for arrays.
* Dtype field names are Unicode.
* Only unicode dtype field titles are included in fields dict.
* :pep:`3118` buffer objects will behave differently from Py2 buffer objects
when used as an argument to `array(...)`, `asarray(...)`.
In Py2, they would cast to an object array.
In Py3, they cast similarly as objects having an
``__array_interface__`` attribute, ie., they behave as if they were
an ndarray view on the data.
Python code
===========
2to3 in setup.py
----------------
Currently, setup.py calls 2to3 automatically to convert Python sources
to Python 3 ones, and stores the results under::
build/py3k
Only changed files will be re-converted when setup.py is called a second
time, making development much faster.
Currently, this seems to handle all of the necessary Python code
conversion.
Not all of the 2to3 transformations are appropriate for all files.
Especially, 2to3 seems to be quite trigger-happy in replacing e.g.
``unicode`` by ``str`` which causes problems in ``defchararray.py``.
For files that need special handling, add entries to
``tools/py3tool.py``.
numpy.compat.py3k
-----------------
There are some utility functions needed for 3K compatibility in
``numpy.compat.py3k`` -- they can be imported from ``numpy.compat``:
- bytes, unicode: bytes and unicode constructors
- asbytes: convert string to bytes (no-op on Py2)
- asbytes_nested: convert strings in lists to Bytes
- asunicode: convert string to unicode
- asunicode_nested: convert strings in lists to Unicode
- asstr: convert item to the str type
- getexception: get current exception (see below)
- isfileobj: detect Python file objects
- strchar: character for Unicode (Py3) or Strings (Py2)
- open_latin1: open file in the latin1 text mode
More can be added as needed.
numpy.f2py
----------
F2py is ported to Py3.
Bytes vs. strings
-----------------
At many points in NumPy, bytes literals are needed. These can be created via
numpy.compat.asbytes and asbytes_nested.
Exception syntax
----------------
Syntax change: "except FooException, bar:" -> "except FooException as bar:"
This is taken care by 2to3, however.
Relative imports
----------------
The new relative import syntax,
from . import foo
is not available on Py2.4, so we can't simply use it.
Using absolute imports everywhere is probably OK, if they just happen
to work.
2to3, however, converts the old syntax to new syntax, so as long as we
use the converter, it takes care of most parts.
Print
-----
The Print statement changed to a builtin function in Py3.
Also this is taken care of by 2to3.
types module
------------
The following items were removed from `types` module in Py3:
- StringType (Py3: `bytes` is equivalent, to some degree)
- InstanceType (Py3: ???)
- IntType (Py3: no equivalent)
- LongType (Py3: equivalent `long`)
- FloatType (Py3: equivalent `float`)
- BooleanType (Py3: equivalent `bool`)
- ComplexType (Py3: equivalent `complex`)
- UnicodeType (Py3: equivalent `str`)
- BufferType (Py3: more-or-less equivalent `memoryview`)
In ``numerictypes.py``, the "common" types were replaced by their
plain equivalents, and `IntType` was dropped.
numpy.core.numerictypes
-----------------------
In numerictypes, types on Python 3 were changed so that:
=========== ============
Scalar type Value
=========== ============
str_ This is the basic Unicode string type on Py3
bytes_ This is the basic Byte-string type on Py3
string_ bytes_ alias
unicode_ str_ alias
=========== ============
numpy.loadtxt et al
-------------------
These routines are difficult to duck-type to read both Unicode and
Bytes input.
I assumed they are meant for reading Bytes streams -- this is probably
the far more common use case with scientific data.
Cyclic imports
--------------
Python 3 is less forgiving about cyclic imports than Python 2. Cycles
need to be broken to have the same code work both on Python 2 and 3.
C Code
======
NPY_PY3K
--------
A #define in config.h, defined when building for Py3.
.. todo::
Currently, this is generated as a part of the config.
Is this sensible (we could also use Py_VERSION_HEX)?
private/npy_3kcompat.h
----------------------
Convenience macros for Python 3 support:
- PyInt -> PyLong on Py3
- PyString -> PyBytes on Py3
- PyUString -> PyUnicode on Py3 and PyString on Py2
- PyBytes on Py2
- PyUnicode_ConcatAndDel, PyUnicode_Concat2
- Py_SIZE et al., for older Python versions
- npy_PyFile_Dup, etc. to get FILE* from Py3 file objects
- PyObject_Cmp, convenience comparison function on Py3
- NpyCapsule_* helpers: PyCObject
Any new ones that need to be added should be added in this file.
.. todo::
Remove PyString_* eventually -- having a call to one of these in NumPy
sources is a sign of an error...
ob_type, ob_size
----------------
These use Py_SIZE, etc. macros now. The macros are also defined in
npy_3kcompat.h for the Python versions that don't have them natively.
Py_TPFLAGS_CHECKTYPES
---------------------
Python 3 no longer supports type coercion in arithmetic.
Py_TPFLAGS_CHECKTYPES is now on by default, and so the C-level
interface, ``nb_*`` methods, still unconditionally receive whatever
types as their two arguments.
However, this will affect Python-level code: previously if you
inherited from a Py_TPFLAGS_CHECKTYPES enabled class that implemented
a ``__mul__`` method, the same ``__mul__`` method would still be
called also as when a ``__rmul__`` was required, but with swapped
arguments (see Python/Objects/typeobject.c:wrap_binaryfunc_r).
However, on Python 3, arguments are swapped only if both are of same
(sub-)type, and otherwise things fail.
This means that ``ndarray``-derived subclasses must now implement all
relevant ``__r*__`` methods, since they cannot any more automatically
fall back to ndarray code.
PyNumberMethods
---------------
The structures have been converted to the new format:
- number.c
- scalartypes.c.src
- scalarmathmodule.c.src
The slots np_divide, np_long, np_oct, np_hex, and np_inplace_divide
have gone away. The slot np_int is what np_long used to be, tp_divide
is now tp_floor_divide, and np_inplace_divide is now
np_inplace_floor_divide.
These have simply been #ifdef'd out on Py3.
The Py2/Py3 compatible structure definition looks like::
static PyNumberMethods @name@_as_number = {
(binaryfunc)0, /*nb_add*/
(binaryfunc)0, /*nb_subtract*/
(binaryfunc)0, /*nb_multiply*/
#if defined(NPY_PY3K)
#else
(binaryfunc)0, /*nb_divide*/
#endif
(binaryfunc)0, /*nb_remainder*/
(binaryfunc)0, /*nb_divmod*/
(ternaryfunc)0, /*nb_power*/
(unaryfunc)0,
(unaryfunc)0, /*nb_pos*/
(unaryfunc)0, /*nb_abs*/
#if defined(NPY_PY3K)
(inquiry)0, /*nb_bool*/
#else
(inquiry)0, /*nb_nonzero*/
#endif
(unaryfunc)0, /*nb_invert*/
(binaryfunc)0, /*nb_lshift*/
(binaryfunc)0, /*nb_rshift*/
(binaryfunc)0, /*nb_and*/
(binaryfunc)0, /*nb_xor*/
(binaryfunc)0, /*nb_or*/
#if defined(NPY_PY3K)
#else
0, /*nb_coerce*/
#endif
(unaryfunc)0, /*nb_int*/
#if defined(NPY_PY3K)
(unaryfunc)0, /*nb_reserved*/
#else
(unaryfunc)0, /*nb_long*/
#endif
(unaryfunc)0, /*nb_float*/
#if defined(NPY_PY3K)
#else
(unaryfunc)0, /*nb_oct*/
(unaryfunc)0, /*nb_hex*/
#endif
0, /*inplace_add*/
0, /*inplace_subtract*/
0, /*inplace_multiply*/
#if defined(NPY_PY3K)
#else
0, /*inplace_divide*/
#endif
0, /*inplace_remainder*/
0, /*inplace_power*/
0, /*inplace_lshift*/
0, /*inplace_rshift*/
0, /*inplace_and*/
0, /*inplace_xor*/
0, /*inplace_or*/
(binaryfunc)0, /*nb_floor_divide*/
(binaryfunc)0, /*nb_true_divide*/
0, /*nb_inplace_floor_divide*/
0, /*nb_inplace_true_divide*/
(unaryfunc)NULL, /*nb_index*/
};
PyBuffer (provider)
-------------------
PyBuffer usage is widely spread in multiarray:
1) The void scalar makes use of buffers
2) Multiarray has methods for creating buffers etc. explicitly
3) Arrays can be created from buffers etc.
4) The .data attribute of an array is a buffer
Py3 introduces the PEP 3118 buffer protocol as the *only* protocol,
so we must implement it.
The exporter parts of the PEP 3118 buffer protocol are currently
implemented in ``buffer.c`` for arrays, and in ``scalartypes.c.src``
for generic array scalars. The generic array scalar exporter, however,
doesn't currently produce format strings, which needs to be fixed.
Also some code also stops working when ``bf_releasebuffer`` is
defined. Most importantly, ``PyArg_ParseTuple("s#", ...)`` refuses to
return a buffer if ``bf_releasebuffer`` is present. For this reason,
the buffer interface for arrays is implemented currently *without*
defining ``bf_releasebuffer`` at all. This forces us to go through
some additional work.
There are a couple of places that need further attention:
- VOID_getitem
In some cases, this returns a buffer object on Python 2. On Python 3,
there is no stand-alone buffer object, so we return a byte array instead.
The Py2/Py3 compatible PyBufferMethods definition looks like::
NPY_NO_EXPORT PyBufferProcs array_as_buffer = {
#if !defined(NPY_PY3K)
#if PY_VERSION_HEX >= 0x02050000
(readbufferproc)array_getreadbuf, /*bf_getreadbuffer*/
(writebufferproc)array_getwritebuf, /*bf_getwritebuffer*/
(segcountproc)array_getsegcount, /*bf_getsegcount*/
(charbufferproc)array_getcharbuf, /*bf_getcharbuffer*/
#else
(getreadbufferproc)array_getreadbuf, /*bf_getreadbuffer*/
(getwritebufferproc)array_getwritebuf, /*bf_getwritebuffer*/
(getsegcountproc)array_getsegcount, /*bf_getsegcount*/
(getcharbufferproc)array_getcharbuf, /*bf_getcharbuffer*/
#endif
#endif
#if PY_VERSION_HEX >= 0x02060000
(getbufferproc)array_getbuffer, /*bf_getbuffer*/
(releasebufferproc)array_releasebuffer, /*bf_releasebuffer*/
#endif
};
.. todo::
Produce PEP 3118 format strings for array scalar objects.
.. todo::
There's stuff to clean up in numarray/_capi.c
PyBuffer (consumer)
-------------------
There are two places in which we may want to be able to consume buffer
objects and cast them to ndarrays:
1) `multiarray.frombuffer`, ie., ``PyArray_FromAny``
The frombuffer returns only arrays of a fixed dtype. It does not
make sense to support PEP 3118 at this location, since not much
would be gained from that -- the backward compatibility functions
using the old array interface still work.
So no changes needed here.
2) `multiarray.array`, ie., ``PyArray_FromAny``
In general, we would like to handle :pep:`3118` buffers in the same way
as ``__array_interface__`` objects. Hence, we want to be able to cast
them to arrays already in ``PyArray_FromAny``.
Hence, ``PyArray_FromAny`` needs additions.
There are a few caveats in allowing :pep:`3118` buffers in
``PyArray_FromAny``:
a) `bytes` (and `str` on Py2) objects offer a buffer interface that
specifies them as 1-D array of bytes.
Previously ``PyArray_FromAny`` has cast these to 'S#' dtypes. We
don't want to change this, since will cause problems in many places.
We do, however, want to allow other objects that provide 1-D byte arrays
to be cast to 1-D ndarrays and not 'S#' arrays -- for instance, 'S#'
arrays tend to strip trailing NUL characters.
So what is done in ``PyArray_FromAny`` currently is that:
- Presence of :pep:`3118` buffer interface is checked before checking
for array interface. If it is present *and* the object is not
`bytes` object, then it is used for creating a view on the buffer.
- We also check in ``discover_depth`` and ``_array_find_type`` for the
3118 buffers, so that::
array([some_3118_object])
will treat the object similarly as it would handle an `ndarray`.
However, again, bytes (and unicode) have priority and will not be
handled as buffer objects.
This amounts to possible semantic changes:
- ``array(buffer)`` will no longer create an object array
``array([buffer], dtype='O')``, but will instead expand to a view
on the buffer.
.. todo::
Take a second look at places that used PyBuffer_FromMemory and
PyBuffer_FromReadWriteMemory -- what can be done with these?
.. todo::
There's some buffer code in numarray/_capi.c that needs to be addressed.
PyBuffer (object)
-----------------
Since there is a native buffer object in Py3, the `memoryview`, the
`newbuffer` and `getbuffer` functions are removed from `multiarray` in
Py3: their functionality is taken over by the new `memoryview` object.
PyString
--------
There is no PyString in Py3, everything is either Bytes or Unicode.
Unicode is also preferred in many places, e.g., in __dict__.
There are two issues related to the str/bytes change:
1) Return values etc. should prefer unicode
2) The 'S' dtype
This entry discusses return values etc. only, the 'S' dtype is a
separate topic.
All uses of PyString in NumPy should be changed to one of
- PyBytes: one-byte character strings in Py2 and Py3
- PyUString (defined in npy_3kconfig.h): PyString in Py2, PyUnicode in Py3
- PyUnicode: UCS in Py2 and Py3
In many cases the conversion only entails replacing PyString with
PyUString.
PyString is currently defined to PyBytes in npy_3kcompat.h, for making
things to build. This definition will be removed when Py3 support is
finished.
Where ``*_AsStringAndSize`` is used, more care needs to be taken, as
encoding Unicode to Bytes may needed. If this cannot be avoided, the
encoding should be ASCII, unless there is a very strong reason to do
otherwise. Especially, I don't believe we should silently fall back to
UTF-8 -- raising an exception may be a better choice.
Exceptions should use PyUnicode_AsUnicodeEscape -- this should result
to an ASCII-clean string that is appropriate for the exception
message.
Some specific decisions that have been made so far:
* descriptor.c: dtype field names are UString
At some places in NumPy code, there are some guards for Unicode field
names. However, the dtype constructor accepts only strings as field names,
so we should assume field names are *always* UString.
* descriptor.c: field titles can be arbitrary objects.
If they are UString (or, on Py2, Bytes or Unicode), insert to fields dict.
* descriptor.c: dtype strings are Unicode.
* descriptor.c: datetime tuple contains Bytes only.
* repr() and str() should return UString
* comparison between Unicode and Bytes is not defined in Py3
* Type codes in numerictypes.typeInfo dict are Unicode
* Func name in errobj is Bytes (should be forced to ASCII)
.. todo::
tp_doc -- it's a char* pointer, but what is the encoding?
Check esp. lib/src/_compiled_base
Currently, UTF-8 is assumed.
.. todo::
ufunc names -- again, what's the encoding?
.. todo::
Cleanup to do later on: Replace all occurrences of PyString by
PyBytes, PyUnicode, or PyUString.
.. todo::
Revise errobj decision?
.. todo::
Check that non-UString field names are not accepted anywhere.
PyUnicode
---------
PyUnicode in Py3 is pretty much as it was in Py2, except that it is
now the only "real" string type.
In Py3, Unicode and Bytes are not comparable, ie., 'a' != b'a'. NumPy
comparison routines were handled to act in the same way, leaving
comparison between Unicode and Bytes undefined.
.. todo::
Check that indeed all comparison routines were changed.
Fate of the 'S' dtype
---------------------
On Python 3, the 'S' dtype will still be Bytes.
However,::
str, str_ == unicode_
PyInt
-----
There is no limited-range integer type any more in Py3. It makes no
sense to inherit NumPy ints from Py3 ints.
Currently, the following is done:
1) NumPy's integer types no longer inherit from Python integer.
2) int is taken dtype-equivalent to NPY_LONG
3) ints are converted to NPY_LONG
PyInt methods are currently replaced by PyLong, via macros in npy_3kcompat.h.
Dtype decision rules were changed accordingly, so that NumPy understands
Py3 int translate to NPY_LONG as far as dtypes are concerned.
array([1]).dtype will be the default NPY_LONG integer.
.. todo::
Not inheriting from `int` on Python 3 makes the following not work:
``np.intp("0xff", 16)`` -- because the NumPy type does not take
the second argument. This could perhaps be fixed...
Divide
------
The Divide operation is no more.
Calls to PyNumber_Divide were replaced by FloorDivide or TrueDivide,
as appropriate.
The PyNumberMethods entry is #ifdef'd out on Py3, see above.
tp_compare, PyObject_Compare
----------------------------
The compare method has vanished, and is replaced with richcompare.
We just #ifdef the compare methods out on Py3.
New richcompare methods were implemented for:
* flagsobject.c
On the consumer side, we have a convenience wrapper in npy_3kcompat.h
providing PyObject_Cmp also on Py3.
Pickling
--------
The ndarray and dtype __setstate__ were modified to be
backward-compatible with Py3: they need to accept a Unicode endian
character, and Unicode data since that's what Py2 str is unpickled to
in Py3.
An encoding assumption is required for backward compatibility: the user
must do
loads(f, encoding='latin1')
to successfully read pickles created by Py2.
.. todo::
Forward compatibility? Is it even possible?
For sure, we are not knowingly going to store data in PyUnicode,
so probably the only way for forward compatibility is to implement
a custom Unpickler for Py2?
.. todo::
If forward compatibility is not possible, aim to store also the endian
character as Bytes...
Module initialization
---------------------
The module initialization API changed in Python 3.1.
Most NumPy modules are now converted.
PyTypeObject
------------
The PyTypeObject of py3k is binary compatible with the py2k version and the
old initializers should work. However, there are several considerations to
keep in mind.
1) Because the first three slots are now part of a struct some compilers issue
warnings if they are initialized in the old way.
2) The compare slot has been made reserved in order to preserve binary
compatibility while the tp_compare function went away. The tp_richcompare
function has replaced it and we need to use that slot instead. This will
likely require modifications in the searchsorted functions and generic sorts
that currently use the compare function.
3) The previous numpy practice of initializing the COUNT_ALLOCS slots was
bogus. They are not supposed to be explicitly initialized and were out of
place in any case because an extra base slot was added in python 2.6.
Because of these facts it is better to use #ifdefs to bring the old
initializers up to py3k snuff rather than just fill the tp_richcompare
slot. They also serve to mark the places where changes have been
made. Note that explicit initialization can stop once none of the
remaining entries are non-zero, because zero is the default value that
variables with non-local linkage receive.
The Py2/Py3 compatible TypeObject definition looks like::
NPY_NO_EXPORT PyTypeObject Foo_Type = {
#if defined(NPY_PY3K)
PyVarObject_HEAD_INIT(0,0)
#else
PyObject_HEAD_INIT(0)
0, /* ob_size */
#endif
"numpy.foo" /* tp_name */
0, /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
#if defined(NPY_PY3K)
(void *)0, /* tp_reserved */
#else
0, /* tp_compare */
#endif
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
0, /* tp_del */
0 /* tp_version_tag (2.6) */
};
PySequenceMethods
-----------------
Types with tp_as_sequence defined
* multiarray/descriptor.c
* multiarray/scalartypes.c.src
* multiarray/arrayobject.c
PySequenceMethods in py3k are binary compatible with py2k, but some of the
slots have gone away. I suspect this means some functions need redefining so
the semantics of the slots needs to be checked::
PySequenceMethods foo_sequence_methods = {
(lenfunc)0, /* sq_length */
(binaryfunc)0, /* sq_concat */
(ssizeargfunc)0, /* sq_repeat */
(ssizeargfunc)0, /* sq_item */
(void *)0, /* nee sq_slice */
(ssizeobjargproc)0, /* sq_ass_item */
(void *)0, /* nee sq_ass_slice */
(objobjproc)0, /* sq_contains */
(binaryfunc)0, /* sq_inplace_concat */
(ssizeargfunc)0 /* sq_inplace_repeat */
};
PyMappingMethods
----------------
Types with tp_as_mapping defined
* multiarray/descriptor.c
* multiarray/iterators.c
* multiarray/scalartypes.c.src
* multiarray/flagsobject.c
* multiarray/arrayobject.c
PyMappingMethods in py3k look to be the same as in py2k. The semantics
of the slots needs to be checked::
PyMappingMethods foo_mapping_methods = {
(lenfunc)0, /* mp_length */
(binaryfunc)0, /* mp_subscript */
(objobjargproc)0 /* mp_ass_subscript */
};
PyFile
------
Many of the PyFile items have disappeared:
1) PyFile_Type
2) PyFile_AsFile
3) PyFile_FromString
Most importantly, in Py3 there is no way to extract a FILE* pointer
from the Python file object. There are, however, new PyFile_* functions
for writing and reading data from the file.
Compatibility wrappers that return a dup-ed `fdopen` file pointer are
in private/npy_3kcompat.h. This causes more flushing to be necessary,
but it appears there is no alternative solution. The FILE pointer so
obtained must be closed with fclose after use.
.. todo::
Should probably be done much later on...
Adapt all NumPy I/O to use the PyFile_* methods or the low-level
IO routines. In any case, it's unlikely that C stdio can be used any more.
Perhaps using PyFile_* makes numpy.tofile e.g. to a gzip to work?
READONLY
--------
The RO alias for READONLY is no more.
These were replaced, as READONLY is present also on Py2.
PyOS
----
Deprecations:
1) PyOS_ascii_strtod -> PyOS_double_from_string;
curiously enough, PyOS_ascii_strtod is not only deprecated but also
causes segfaults
PyInstance
----------
There are some checks for PyInstance in ``common.c`` and ``ctors.c``.
Currently, ``PyInstance_Check`` is just #ifdef'd out for Py3. This is,
possibly, not the correct thing to do.
.. todo::
Do the right thing for PyInstance checks.
PyCObject / PyCapsule
---------------------
The PyCObject API is removed in Python 3.2, so we need to rewrite it
using PyCapsule.
NumPy was changed to use the Capsule API, using NpyCapsule* wrappers.
|