1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
.. _NEP49:
===================================
NEP 49 — Data allocation strategies
===================================
:Author: Matti Picus
:Status: Final
:Type: Standards Track
:Created: 2021-04-18
:Resolution: https://mail.python.org/archives/list/numpy-discussion@python.org/thread/YZ3PNTXZUT27B6ITFAD3WRSM3T3SRVK4/#PKYXCTG4R5Q6LIRZC4SEWLNBM6GLRF26
Abstract
--------
The ``numpy.ndarray`` requires additional memory allocations
to hold ``numpy.ndarray.strides``, ``numpy.ndarray.shape`` and
``numpy.ndarray.data`` attributes. These attributes are specially allocated
after creating the python object in ``__new__`` method.
This NEP proposes a mechanism to override the memory management strategy used
for ``ndarray->data`` with user-provided alternatives. This allocation holds
the data and can be very large. As accessing this data often becomes
a performance bottleneck, custom allocation strategies to guarantee data
alignment or pinning allocations to specialized memory hardware can enable
hardware-specific optimizations. The other allocations remain unchanged.
Motivation and Scope
--------------------
Users may wish to override the internal data memory routines with ones of their
own. Two such use-cases are to ensure data alignment and to pin certain
allocations to certain NUMA cores. This desire for alignment was discussed
multiple times on the mailing list `in 2005`_, and in `issue 5312`_ in 2014,
which led to `PR 5457`_ and more mailing list discussions here_ `and here`_. In
a comment on the issue `from 2017`_, a user described how 64-byte alignment
improved performance by 40x.
Also related is `issue 14177`_ around the use of ``madvise`` and huge pages on
Linux.
Various tracing and profiling libraries like filprofiler_ or `electric fence`_
override ``malloc``.
The long CPython discussion of `BPO 18835`_ began with discussing the need for
``PyMem_Alloc32`` and ``PyMem_Alloc64``. The early conclusion was that the
cost (of wasted padding) vs. the benefit of aligned memory is best left to the
user, but then evolves into a discussion of various proposals to deal with
memory allocations, including `PEP 445`_ `memory interfaces`_ to
``PyTraceMalloc_Track`` which apparently was explicitly added for NumPy.
Allowing users to implement different strategies via the NumPy C-API will
enable exploration of this rich area of possible optimizations. The intention
is to create a flexible enough interface without burdening normative users.
.. _`issue 5312`: https://github.com/numpy/numpy/issues/5312
.. _`from 2017`: https://github.com/numpy/numpy/issues/5312#issuecomment-315234656
.. _`in 2005`: https://numpy-discussion.scipy.narkive.com/MvmMkJcK/numpy-arrays-data-allocation-and-simd-alignement
.. _`here`: https://mail.python.org/archives/list/numpy-discussion@python.org/thread/YPC5BGPUMKT2MLBP6O3FMPC35LFM2CCH/#YPC5BGPUMKT2MLBP6O3FMPC35LFM2CCH
.. _`and here`: https://mail.python.org/archives/list/numpy-discussion@python.org/thread/IQK3EPIIRE3V4BPNAMJ2ZST3NUG2MK2A/#IQK3EPIIRE3V4BPNAMJ2ZST3NUG2MK2A
.. _`issue 14177`: https://github.com/numpy/numpy/issues/14177
.. _`filprofiler`: https://github.com/pythonspeed/filprofiler/blob/master/design/allocator-overrides.md
.. _`electric fence`: https://github.com/boundarydevices/efence
.. _`memory interfaces`: https://docs.python.org/3/c-api/memory.html#customize-memory-allocators
.. _`BPO 18835`: https://bugs.python.org/issue18835
.. _`PEP 445`: https://www.python.org/dev/peps/pep-0445/
Usage and Impact
----------------
The new functions can only be accessed via the NumPy C-API. An example is
included later in this NEP. The added ``struct`` will increase the size of the
``ndarray`` object. It is a necessary price to pay for this approach. We
can be reasonably sure that the change in size will have a minimal impact on
end-user code because NumPy version 1.20 already changed the object size.
The implementation preserves the use of ``PyTraceMalloc_Track`` to track
allocations already present in NumPy.
Backward compatibility
----------------------
The design will not break backward compatibility. Projects that were assigning
to the ``ndarray->data`` pointer were already breaking the current memory
management strategy and should restore
``ndarray->data`` before calling ``Py_DECREF``. As mentioned above, the change
in size should not impact end-users.
Detailed description
--------------------
High level design
=================
Users who wish to change the NumPy data memory management routines will use
:c:func:`PyDataMem_SetHandler`, which uses a :c:type:`PyDataMem_Handler`
structure to hold pointers to functions used to manage the data memory. In
order to allow lifetime management of the ``context``, the structure is wrapped
in a ``PyCapsule``.
Since a call to ``PyDataMem_SetHandler`` will change the default functions, but
that function may be called during the lifetime of an ``ndarray`` object, each
``ndarray`` will carry with it the ``PyDataMem_Handler``-wrapped PyCapsule used
at the time of its instantiation, and these will be used to reallocate or free
the data memory of the instance. Internally NumPy may use ``memcpy`` or
``memset`` on the pointer to the data memory.
The name of the handler will be exposed on the python level via a
``numpy.core.multiarray.get_handler_name(arr)`` function. If called as
``numpy.core.multiarray.get_handler_name()`` it will return the name of the
handler that will be used to allocate data for the next new `ndarrray`.
The version of the handler will be exposed on the python level via a
``numpy.core.multiarray.get_handler_version(arr)`` function. If called as
``numpy.core.multiarray.get_handler_version()`` it will return the version of the
handler that will be used to allocate data for the next new `ndarrray`.
The version, currently 1, allows for future enhancements to the
``PyDataMemAllocator``. If fields are added, they must be added to the end.
NumPy C-API functions
=====================
.. c:type:: PyDataMem_Handler
A struct to hold function pointers used to manipulate memory
.. code-block:: c
typedef struct {
char name[127]; /* multiple of 64 to keep the struct aligned */
uint8_t version; /* currently 1 */
PyDataMemAllocator allocator;
} PyDataMem_Handler;
where the allocator structure is
.. code-block:: c
/* The declaration of free differs from PyMemAllocatorEx */
typedef struct {
void *ctx;
void* (*malloc) (void *ctx, size_t size);
void* (*calloc) (void *ctx, size_t nelem, size_t elsize);
void* (*realloc) (void *ctx, void *ptr, size_t new_size);
void (*free) (void *ctx, void *ptr, size_t size);
} PyDataMemAllocator;
The use of a ``size`` parameter in ``free`` differentiates this struct from
the :c:type:`PyMemAllocatorEx` struct in Python. This call signature is
used internally in NumPy currently, and also in other places for instance
`C++98 <https://en.cppreference.com/w/cpp/memory/allocator/deallocate>`,
`C++11 <https://en.cppreference.com/w/cpp/memory/allocator_traits/deallocate>`, and
`Rust (allocator_api) <https://doc.rust-lang.org/std/alloc/trait.Allocator.html#tymethod.deallocate>`.
The consumer of the `PyDataMemAllocator` interface must keep track of ``size`` and make sure it is
consistent with the parameter passed to the ``(m|c|re)alloc`` functions.
NumPy itself may violate this requirement when the shape of the requested
array contains a ``0``, so authors of PyDataMemAllocators should relate to
the ``size`` parameter as a best-guess. Work to fix this is ongoing in PRs
15780_ and 15788_ but has not yet been resolved. When it is this NEP should
be revisited.
.. c:function:: PyObject * PyDataMem_SetHandler(PyObject *handler)
Sets a new allocation policy. If the input value is ``NULL``, will reset
the policy to the default. Return the previous policy, or
return NULL if an error has occurred. We wrap the user-provided
so they will still call the Python and NumPy memory management callback
hooks. All the function pointers must be filled in, ``NULL`` is not
accepted.
.. c:function:: const PyObject * PyDataMem_GetHandler()
Return the current policy that will be used to allocate data for the
next ``PyArrayObject``. On failure, return ``NULL``.
``PyDataMem_Handler`` thread safety and lifetime
================================================
The active handler is stored in the current :py:class:`~contextvars.Context`
via a :py:class:`~contextvars.ContextVar`. This ensures it can be configured both
per-thread and per-async-coroutine.
There is currently no lifetime management of ``PyDataMem_Handler``.
The user of `PyDataMem_SetHandler` must ensure that the argument remains alive
for as long as any objects allocated with it, and while it is the active handler.
In practice, this means the handler must be immortal.
As an implementation detail, currently this ``ContextVar`` contains a ``PyCapsule``
object storing a pointer to a ``PyDataMem_Handler`` with no destructor,
but this should not be relied upon.
Sample code
===========
This code adds a 64-byte header to each ``data`` pointer and stores information
about the allocation in the header. Before calling ``free``, a check ensures
the ``sz`` argument is correct.
.. code-block:: c
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/arrayobject.h>
NPY_NO_EXPORT void *
typedef struct {
void *(*malloc)(size_t);
void *(*calloc)(size_t, size_t);
void *(*realloc)(void *, size_t);
void (*free)(void *);
} Allocator;
NPY_NO_EXPORT void *
shift_alloc(Allocator *ctx, size_t sz) {
char *real = (char *)ctx->malloc(sz + 64);
if (real == NULL) {
return NULL;
}
snprintf(real, 64, "originally allocated %ld", (unsigned long)sz);
return (void *)(real + 64);
}
NPY_NO_EXPORT void *
shift_zero(Allocator *ctx, size_t sz, size_t cnt) {
char *real = (char *)ctx->calloc(sz + 64, cnt);
if (real == NULL) {
return NULL;
}
snprintf(real, 64, "originally allocated %ld via zero",
(unsigned long)sz);
return (void *)(real + 64);
}
NPY_NO_EXPORT void
shift_free(Allocator *ctx, void * p, npy_uintp sz) {
if (p == NULL) {
return ;
}
char *real = (char *)p - 64;
if (strncmp(real, "originally allocated", 20) != 0) {
fprintf(stdout, "uh-oh, unmatched shift_free, "
"no appropriate prefix\\n");
/* Make C runtime crash by calling free on the wrong address */
ctx->free((char *)p + 10);
/* ctx->free(real); */
}
else {
npy_uintp i = (npy_uintp)atoi(real +20);
if (i != sz) {
fprintf(stderr, "uh-oh, unmatched shift_free"
"(ptr, %ld) but allocated %ld\\n", sz, i);
/* This happens when the shape has a 0, only print */
ctx->free(real);
}
else {
ctx->free(real);
}
}
}
NPY_NO_EXPORT void *
shift_realloc(Allocator *ctx, void * p, npy_uintp sz) {
if (p != NULL) {
char *real = (char *)p - 64;
if (strncmp(real, "originally allocated", 20) != 0) {
fprintf(stdout, "uh-oh, unmatched shift_realloc\\n");
return realloc(p, sz);
}
return (void *)((char *)ctx->realloc(real, sz + 64) + 64);
}
else {
char *real = (char *)ctx->realloc(p, sz + 64);
if (real == NULL) {
return NULL;
}
snprintf(real, 64, "originally allocated "
"%ld via realloc", (unsigned long)sz);
return (void *)(real + 64);
}
}
static Allocator new_handler_ctx = {
malloc,
calloc,
realloc,
free
};
static PyDataMem_Handler new_handler = {
"secret_data_allocator",
1,
{
&new_handler_ctx,
shift_alloc, /* malloc */
shift_zero, /* calloc */
shift_realloc, /* realloc */
shift_free /* free */
}
};
Related Work
------------
This NEP is being tracked by the pnumpy_ project and a `comment in the PR`_
mentions use in orchestrating FPGA DMAs.
Implementation
--------------
This NEP has been implemented in `PR 17582`_.
Alternatives
------------
These were discussed in `issue 17467`_. `PR 5457`_ and `PR 5470`_ proposed a
global interface for specifying aligned allocations.
``PyArray_malloc_aligned`` and friends were added to NumPy with the
`numpy.random` module API refactor. and are used there for performance.
`PR 390`_ had two parts: expose ``PyDataMem_*`` via the NumPy C-API, and a hook
mechanism. The PR was merged with no example code for using these features.
Discussion
----------
The discussion on the mailing list led to the ``PyDataMemAllocator`` struct
with a ``context`` field like :c:type:`PyMemAllocatorEx` but with a different
signature for ``free``.
References and Footnotes
------------------------
.. [1] Each NEP must either be explicitly labeled as placed in the public domain (see
this NEP as an example) or licensed under the `Open Publication License`_.
.. _Open Publication License: https://www.opencontent.org/openpub/
.. _`PR 17582`: https://github.com/numpy/numpy/pull/17582
.. _`PR 5457`: https://github.com/numpy/numpy/pull/5457
.. _`PR 5470`: https://github.com/numpy/numpy/pull/5470
.. _`15780`: https://github.com/numpy/numpy/pull/15780
.. _`15788`: https://github.com/numpy/numpy/pull/15788
.. _`PR 390`: https://github.com/numpy/numpy/pull/390
.. _`issue 17467`: https://github.com/numpy/numpy/issues/17467
.. _`comment in the PR`: https://github.com/numpy/numpy/pull/17582#issuecomment-809145547
.. _pnumpy: https://quansight.github.io/pnumpy/stable/index.html
Copyright
---------
This document has been placed in the public domain. [1]_
|