File: common_session.dat

package info (click to toggle)
numpy 1%3A1.24.2-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,720 kB
  • sloc: ansic: 188,931; python: 156,261; asm: 111,405; javascript: 32,693; cpp: 14,210; f90: 755; sh: 638; fortran: 478; makefile: 292; sed: 140; perl: 34
file content (30 lines) | stat: -rw-r--r-- 833 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
>>> import common
>>> print(common.data.__doc__)
i : 'i'-scalar
x : 'i'-array(4)
a : 'f'-array(2,3)

>>> common.data.i = 5
>>> common.data.x[1] = 2 
>>> common.data.a = [[1,2,3],[4,5,6]]
>>> common.foo()
>>> common.foo()
 I=           5
 X=[           0           2           0           0 ]
 A=[
 [   1.00000000     ,   2.00000000     ,   3.00000000     ]
 [   4.00000000     ,   5.00000000     ,   6.00000000     ]
 ]
>>> common.data.a[1] = 45
>>> common.foo()
 I=           5
 X=[           0           2           0           0 ]
 A=[
 [   1.00000000     ,   2.00000000     ,   3.00000000     ]
 [   45.0000000     ,   45.0000000     ,   45.0000000     ]
 ]
>>> common.data.a                 # a is Fortran-contiguous
array([[  1.,   2.,   3.],
       [ 45.,  45.,  45.]], dtype=float32)
>>> common.data.a.flags.f_contiguous
True