1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
NumPy core libraries
====================
.. sectionauthor:: David Cournapeau
Starting from numpy 1.3.0, we are working on separating the pure C,
"computational" code from the python dependent code. The goal is twofolds:
making the code cleaner, and enabling code reuse by other extensions outside
numpy (scipy, etc...).
NumPy core math library
-----------------------
The numpy core math library ('npymath') is a first step in this direction. This
library contains most math-related C99 functionality, which can be used on
platforms where C99 is not well supported. The core math functions have the
same API as the C99 ones, except for the ``npy_*`` prefix.
The available functions are defined in ``<numpy/npy_math.h>`` - please refer to
this header when in doubt.
.. note::
An effort is underway to make ``npymath`` smaller (since C99 compatibility
of compilers has improved over time) and more easily vendorable or usable as
a header-only dependency. That will avoid problems with shipping a static
library built with a compiler which may not match the compiler used by a
downstream package or end user. See
`gh-20880 <https://github.com/numpy/numpy/issues/20880>`__ for details.
Floating point classification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. c:macro:: NPY_NAN
This macro is defined to a NaN (Not a Number), and is guaranteed to have
the signbit unset ('positive' NaN). The corresponding single and extension
precision macro are available with the suffix F and L.
.. c:macro:: NPY_INFINITY
This macro is defined to a positive inf. The corresponding single and
extension precision macro are available with the suffix F and L.
.. c:macro:: NPY_PZERO
This macro is defined to positive zero. The corresponding single and
extension precision macro are available with the suffix F and L.
.. c:macro:: NPY_NZERO
This macro is defined to negative zero (that is with the sign bit set). The
corresponding single and extension precision macro are available with the
suffix F and L.
.. c:macro:: npy_isnan(x)
This is a macro, and is equivalent to C99 isnan: works for single, double
and extended precision, and return a non 0 value if x is a NaN.
.. c:macro:: npy_isfinite(x)
This is a macro, and is equivalent to C99 isfinite: works for single,
double and extended precision, and return a non 0 value if x is neither a
NaN nor an infinity.
.. c:macro:: npy_isinf(x)
This is a macro, and is equivalent to C99 isinf: works for single, double
and extended precision, and return a non 0 value if x is infinite (positive
and negative).
.. c:macro:: npy_signbit(x)
This is a macro, and is equivalent to C99 signbit: works for single, double
and extended precision, and return a non 0 value if x has the signbit set
(that is the number is negative).
.. c:macro:: npy_copysign(x, y)
This is a function equivalent to C99 copysign: return x with the same sign
as y. Works for any value, including inf and nan. Single and extended
precisions are available with suffix f and l.
Useful math constants
~~~~~~~~~~~~~~~~~~~~~
The following math constants are available in ``npy_math.h``. Single
and extended precision are also available by adding the ``f`` and
``l`` suffixes respectively.
.. c:macro:: NPY_E
Base of natural logarithm (:math:`e`)
.. c:macro:: NPY_LOG2E
Logarithm to base 2 of the Euler constant (:math:`\frac{\ln(e)}{\ln(2)}`)
.. c:macro:: NPY_LOG10E
Logarithm to base 10 of the Euler constant (:math:`\frac{\ln(e)}{\ln(10)}`)
.. c:macro:: NPY_LOGE2
Natural logarithm of 2 (:math:`\ln(2)`)
.. c:macro:: NPY_LOGE10
Natural logarithm of 10 (:math:`\ln(10)`)
.. c:macro:: NPY_PI
Pi (:math:`\pi`)
.. c:macro:: NPY_PI_2
Pi divided by 2 (:math:`\frac{\pi}{2}`)
.. c:macro:: NPY_PI_4
Pi divided by 4 (:math:`\frac{\pi}{4}`)
.. c:macro:: NPY_1_PI
Reciprocal of pi (:math:`\frac{1}{\pi}`)
.. c:macro:: NPY_2_PI
Two times the reciprocal of pi (:math:`\frac{2}{\pi}`)
.. c:macro:: NPY_EULER
The Euler constant
:math:`\lim_{n\rightarrow\infty}({\sum_{k=1}^n{\frac{1}{k}}-\ln n})`
Low-level floating point manipulation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Those can be useful for precise floating point comparison.
.. c:function:: double npy_nextafter(double x, double y)
This is a function equivalent to C99 nextafter: return next representable
floating point value from x in the direction of y. Single and extended
precisions are available with suffix f and l.
.. c:function:: double npy_spacing(double x)
This is a function equivalent to Fortran intrinsic. Return distance between
x and next representable floating point value from x, e.g. spacing(1) ==
eps. spacing of nan and +/- inf return nan. Single and extended precisions
are available with suffix f and l.
.. c:function:: void npy_set_floatstatus_divbyzero()
Set the divide by zero floating point exception
.. c:function:: void npy_set_floatstatus_overflow()
Set the overflow floating point exception
.. c:function:: void npy_set_floatstatus_underflow()
Set the underflow floating point exception
.. c:function:: void npy_set_floatstatus_invalid()
Set the invalid floating point exception
.. c:function:: int npy_get_floatstatus()
Get floating point status. Returns a bitmask with following possible flags:
* NPY_FPE_DIVIDEBYZERO
* NPY_FPE_OVERFLOW
* NPY_FPE_UNDERFLOW
* NPY_FPE_INVALID
Note that :c:func:`npy_get_floatstatus_barrier` is preferable as it prevents
aggressive compiler optimizations reordering the call relative to
the code setting the status, which could lead to incorrect results.
.. c:function:: int npy_get_floatstatus_barrier(char*)
Get floating point status. A pointer to a local variable is passed in to
prevent aggressive compiler optimizations from reordering this function call
relative to the code setting the status, which could lead to incorrect
results.
Returns a bitmask with following possible flags:
* NPY_FPE_DIVIDEBYZERO
* NPY_FPE_OVERFLOW
* NPY_FPE_UNDERFLOW
* NPY_FPE_INVALID
.. versionadded:: 1.15.0
.. c:function:: int npy_clear_floatstatus()
Clears the floating point status. Returns the previous status mask.
Note that :c:func:`npy_clear_floatstatus_barrier` is preferable as it
prevents aggressive compiler optimizations reordering the call relative to
the code setting the status, which could lead to incorrect results.
.. c:function:: int npy_clear_floatstatus_barrier(char*)
Clears the floating point status. A pointer to a local variable is passed in to
prevent aggressive compiler optimizations from reordering this function call.
Returns the previous status mask.
.. versionadded:: 1.15.0
Complex functions
~~~~~~~~~~~~~~~~~
C99-like complex functions have been added. Those can be used if you wish to
implement portable C extensions. Since we still support platforms without C99
complex type (most importantly Windows, where MSVC doesn't support C99 complex
types as of Nov 2022), you need to restrict to C90-compatible syntax, e.g.:
.. code-block:: c
/* a = 1 + 2i \*/
npy_complex a = npy_cpack(1, 2);
npy_complex b;
b = npy_log(a);
.. _linking-npymath:
Linking against the core math library in an extension
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To use the core math library that NumPy ships as a static library in your own
Python extension, you need to add the npymath compile and link options to your
extension. The exact steps to take will depend on the build system you are using.
The generic steps to take are:
1. Add the numpy include directory (= the value of ``np.get_include()``) to
your include directories,
2. The ``npymath`` static library resides in the ``lib`` directory right next
to numpy's include directory (i.e., ``pathlib.Path(np.get_include()) / '..'
/ 'lib'``). Add that to your library search directories,
3. Link with ``libnpymath`` and ``libm``.
.. note::
Keep in mind that when you are cross compiling, you must use the ``numpy``
for the platform you are building for, not the native one for the build
machine. Otherwise you pick up a static library built for the wrong
architecture.
When you build with ``numpy.distutils`` (deprecated), then use this in your ``setup.py``:
.. hidden in a comment so as to be included in refguide but not rendered documentation
>>> import numpy.distutils.misc_util
>>> config = np.distutils.misc_util.Configuration(None, '', '.')
>>> with open('foo.c', 'w') as f: pass
>>> from numpy.distutils.misc_util import get_info
>>> info = get_info('npymath')
>>> _ = config.add_extension('foo', sources=['foo.c'], extra_info=info)
In other words, the usage of ``info`` is exactly the same as when using
``blas_info`` and co.
When you are building with `Meson <https://mesonbuild.com>`__, use::
# Note that this will get easier in the future, when Meson has
# support for numpy built in; most of this can then be replaced
# by `dependency('numpy')`.
incdir_numpy = run_command(py3,
[
'-c',
'import os; os.chdir(".."); import numpy; print(numpy.get_include())'
],
check: true
).stdout().strip()
inc_np = include_directories(incdir_numpy)
cc = meson.get_compiler('c')
npymath_path = incdir_numpy / '..' / 'lib'
npymath_lib = cc.find_library('npymath', dirs: npymath_path)
py3.extension_module('module_name',
...
include_directories: inc_np,
dependencies: [npymath_lib],
Half-precision functions
~~~~~~~~~~~~~~~~~~~~~~~~
The header file ``<numpy/halffloat.h>`` provides functions to work with
IEEE 754-2008 16-bit floating point values. While this format is
not typically used for numerical computations, it is useful for
storing values which require floating point but do not need much precision.
It can also be used as an educational tool to understand the nature
of floating point round-off error.
Like for other types, NumPy includes a typedef npy_half for the 16 bit
float. Unlike for most of the other types, you cannot use this as a
normal type in C, since it is a typedef for npy_uint16. For example,
1.0 looks like 0x3c00 to C, and if you do an equality comparison
between the different signed zeros, you will get -0.0 != 0.0
(0x8000 != 0x0000), which is incorrect.
For these reasons, NumPy provides an API to work with npy_half values
accessible by including ``<numpy/halffloat.h>`` and linking to ``npymath``.
For functions that are not provided directly, such as the arithmetic
operations, the preferred method is to convert to float
or double and back again, as in the following example.
.. code-block:: c
npy_half sum(int n, npy_half *array) {
float ret = 0;
while(n--) {
ret += npy_half_to_float(*array++);
}
return npy_float_to_half(ret);
}
External Links:
* `754-2008 IEEE Standard for Floating-Point Arithmetic`__
* `Half-precision Float Wikipedia Article`__.
* `OpenGL Half Float Pixel Support`__
* `The OpenEXR image format`__.
__ https://ieeexplore.ieee.org/document/4610935/
__ https://en.wikipedia.org/wiki/Half-precision_floating-point_format
__ https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_half_float_pixel.txt
__ https://www.openexr.com/about.html
.. c:macro:: NPY_HALF_ZERO
This macro is defined to positive zero.
.. c:macro:: NPY_HALF_PZERO
This macro is defined to positive zero.
.. c:macro:: NPY_HALF_NZERO
This macro is defined to negative zero.
.. c:macro:: NPY_HALF_ONE
This macro is defined to 1.0.
.. c:macro:: NPY_HALF_NEGONE
This macro is defined to -1.0.
.. c:macro:: NPY_HALF_PINF
This macro is defined to +inf.
.. c:macro:: NPY_HALF_NINF
This macro is defined to -inf.
.. c:macro:: NPY_HALF_NAN
This macro is defined to a NaN value, guaranteed to have its sign bit unset.
.. c:function:: float npy_half_to_float(npy_half h)
Converts a half-precision float to a single-precision float.
.. c:function:: double npy_half_to_double(npy_half h)
Converts a half-precision float to a double-precision float.
.. c:function:: npy_half npy_float_to_half(float f)
Converts a single-precision float to a half-precision float. The
value is rounded to the nearest representable half, with ties going
to the nearest even. If the value is too small or too big, the
system's floating point underflow or overflow bit will be set.
.. c:function:: npy_half npy_double_to_half(double d)
Converts a double-precision float to a half-precision float. The
value is rounded to the nearest representable half, with ties going
to the nearest even. If the value is too small or too big, the
system's floating point underflow or overflow bit will be set.
.. c:function:: int npy_half_eq(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 == h2).
.. c:function:: int npy_half_ne(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 != h2).
.. c:function:: int npy_half_le(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 <= h2).
.. c:function:: int npy_half_lt(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 < h2).
.. c:function:: int npy_half_ge(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 >= h2).
.. c:function:: int npy_half_gt(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 > h2).
.. c:function:: int npy_half_eq_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 == h2). If
a value is NaN, the result is undefined.
.. c:function:: int npy_half_lt_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 < h2). If
a value is NaN, the result is undefined.
.. c:function:: int npy_half_le_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 <= h2). If
a value is NaN, the result is undefined.
.. c:function:: int npy_half_iszero(npy_half h)
Tests whether the half-precision float has a value equal to zero. This may be slightly
faster than calling npy_half_eq(h, NPY_ZERO).
.. c:function:: int npy_half_isnan(npy_half h)
Tests whether the half-precision float is a NaN.
.. c:function:: int npy_half_isinf(npy_half h)
Tests whether the half-precision float is plus or minus Inf.
.. c:function:: int npy_half_isfinite(npy_half h)
Tests whether the half-precision float is finite (not NaN or Inf).
.. c:function:: int npy_half_signbit(npy_half h)
Returns 1 is h is negative, 0 otherwise.
.. c:function:: npy_half npy_half_copysign(npy_half x, npy_half y)
Returns the value of x with the sign bit copied from y. Works for any value,
including Inf and NaN.
.. c:function:: npy_half npy_half_spacing(npy_half h)
This is the same for half-precision float as npy_spacing and npy_spacingf
described in the low-level floating point section.
.. c:function:: npy_half npy_half_nextafter(npy_half x, npy_half y)
This is the same for half-precision float as npy_nextafter and npy_nextafterf
described in the low-level floating point section.
.. c:function:: npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f)
Low-level function which converts a 32-bit single-precision float, stored
as a uint32, into a 16-bit half-precision float.
.. c:function:: npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d)
Low-level function which converts a 64-bit double-precision float, stored
as a uint64, into a 16-bit half-precision float.
.. c:function:: npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h)
Low-level function which converts a 16-bit half-precision float
into a 32-bit single-precision float, stored as a uint32.
.. c:function:: npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h)
Low-level function which converts a 16-bit half-precision float
into a 64-bit double-precision float, stored as a uint64.
|