1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
.. currentmodule:: numpy.random
Random Generator
================
The `~Generator` provides access to
a wide range of distributions, and served as a replacement for
:class:`~numpy.random.RandomState`. The main difference between
the two is that ``Generator`` relies on an additional BitGenerator to
manage state and generate the random bits, which are then transformed into
random values from useful distributions. The default BitGenerator used by
``Generator`` is `~PCG64`. The BitGenerator
can be changed by passing an instantized BitGenerator to ``Generator``.
.. autofunction:: default_rng
.. autoclass:: Generator
:members: __init__
:exclude-members: __init__
Accessing the BitGenerator
--------------------------
.. autosummary::
:toctree: generated/
~numpy.random.Generator.bit_generator
Simple random data
------------------
.. autosummary::
:toctree: generated/
~numpy.random.Generator.integers
~numpy.random.Generator.random
~numpy.random.Generator.choice
~numpy.random.Generator.bytes
Permutations
------------
The methods for randomly permuting a sequence are
.. autosummary::
:toctree: generated/
~numpy.random.Generator.shuffle
~numpy.random.Generator.permutation
~numpy.random.Generator.permuted
The following table summarizes the behaviors of the methods.
+--------------+-------------------+------------------+
| method | copy/in-place | axis handling |
+==============+===================+==================+
| shuffle | in-place | as if 1d |
+--------------+-------------------+------------------+
| permutation | copy | as if 1d |
+--------------+-------------------+------------------+
| permuted | either (use 'out' | axis independent |
| | for in-place) | |
+--------------+-------------------+------------------+
The following subsections provide more details about the differences.
In-place vs. copy
~~~~~~~~~~~~~~~~~
The main difference between `Generator.shuffle` and `Generator.permutation`
is that `Generator.shuffle` operates in-place, while `Generator.permutation`
returns a copy.
By default, `Generator.permuted` returns a copy. To operate in-place with
`Generator.permuted`, pass the same array as the first argument *and* as
the value of the ``out`` parameter. For example,
>>> rng = np.random.default_rng()
>>> x = np.arange(0, 15).reshape(3, 5)
>>> x #doctest: +SKIP
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> y = rng.permuted(x, axis=1, out=x)
>>> x #doctest: +SKIP
array([[ 1, 0, 2, 4, 3], # random
[ 6, 7, 8, 9, 5],
[10, 14, 11, 13, 12]])
Note that when ``out`` is given, the return value is ``out``:
>>> y is x
True
.. _generator-handling-axis-parameter:
Handling the ``axis`` parameter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An important distinction for these methods is how they handle the ``axis``
parameter. Both `Generator.shuffle` and `Generator.permutation` treat the
input as a one-dimensional sequence, and the ``axis`` parameter determines
which dimension of the input array to use as the sequence. In the case of a
two-dimensional array, ``axis=0`` will, in effect, rearrange the rows of the
array, and ``axis=1`` will rearrange the columns. For example
>>> rng = np.random.default_rng()
>>> x = np.arange(0, 15).reshape(3, 5)
>>> x
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> rng.permutation(x, axis=1) #doctest: +SKIP
array([[ 1, 3, 2, 0, 4], # random
[ 6, 8, 7, 5, 9],
[11, 13, 12, 10, 14]])
Note that the columns have been rearranged "in bulk": the values within
each column have not changed.
The method `Generator.permuted` treats the ``axis`` parameter similar to
how `numpy.sort` treats it. Each slice along the given axis is shuffled
independently of the others. Compare the following example of the use of
`Generator.permuted` to the above example of `Generator.permutation`:
>>> rng.permuted(x, axis=1) #doctest: +SKIP
array([[ 1, 0, 2, 4, 3], # random
[ 5, 7, 6, 9, 8],
[10, 14, 12, 13, 11]])
In this example, the values within each row (i.e. the values along
``axis=1``) have been shuffled independently. This is not a "bulk"
shuffle of the columns.
Shuffling non-NumPy sequences
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`Generator.shuffle` works on non-NumPy sequences. That is, if it is given
a sequence that is not a NumPy array, it shuffles that sequence in-place.
For example,
>>> rng = np.random.default_rng()
>>> a = ['A', 'B', 'C', 'D', 'E']
>>> rng.shuffle(a) # shuffle the list in-place
>>> a #doctest: +SKIP
['B', 'D', 'A', 'E', 'C'] # random
Distributions
-------------
.. autosummary::
:toctree: generated/
~numpy.random.Generator.beta
~numpy.random.Generator.binomial
~numpy.random.Generator.chisquare
~numpy.random.Generator.dirichlet
~numpy.random.Generator.exponential
~numpy.random.Generator.f
~numpy.random.Generator.gamma
~numpy.random.Generator.geometric
~numpy.random.Generator.gumbel
~numpy.random.Generator.hypergeometric
~numpy.random.Generator.laplace
~numpy.random.Generator.logistic
~numpy.random.Generator.lognormal
~numpy.random.Generator.logseries
~numpy.random.Generator.multinomial
~numpy.random.Generator.multivariate_hypergeometric
~numpy.random.Generator.multivariate_normal
~numpy.random.Generator.negative_binomial
~numpy.random.Generator.noncentral_chisquare
~numpy.random.Generator.noncentral_f
~numpy.random.Generator.normal
~numpy.random.Generator.pareto
~numpy.random.Generator.poisson
~numpy.random.Generator.power
~numpy.random.Generator.rayleigh
~numpy.random.Generator.standard_cauchy
~numpy.random.Generator.standard_exponential
~numpy.random.Generator.standard_gamma
~numpy.random.Generator.standard_normal
~numpy.random.Generator.standard_t
~numpy.random.Generator.triangular
~numpy.random.Generator.uniform
~numpy.random.Generator.vonmises
~numpy.random.Generator.wald
~numpy.random.Generator.weibull
~numpy.random.Generator.zipf
|