1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
.. _arrays.creation:
**************
Array creation
**************
.. seealso:: :ref:`Array creation routines <routines.array-creation>`
Introduction
============
There are 6 general mechanisms for creating arrays:
1) Conversion from other Python structures (i.e. lists and tuples)
2) Intrinsic NumPy array creation functions (e.g. arange, ones, zeros,
etc.)
3) Replicating, joining, or mutating existing arrays
4) Reading arrays from disk, either from standard or custom formats
5) Creating arrays from raw bytes through the use of strings or buffers
6) Use of special library functions (e.g., random)
You can use these methods to create ndarrays or :ref:`structured_arrays`.
This document will cover general methods for ndarray creation.
1) Converting Python sequences to NumPy Arrays
==============================================
NumPy arrays can be defined using Python sequences such as lists and
tuples. Lists and tuples are defined using ``[...]`` and ``(...)``,
respectively. Lists and tuples can define ndarray creation:
* a list of numbers will create a 1D array,
* a list of lists will create a 2D array,
* further nested lists will create higher-dimensional arrays. In general, any array object is called an **ndarray** in NumPy.
::
>>> a1D = np.array([1, 2, 3, 4])
>>> a2D = np.array([[1, 2], [3, 4]])
>>> a3D = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
When you use :func:`numpy.array` to define a new array, you should
consider the :doc:`dtype <basics.types>` of the elements in the array,
which can be specified explicitly. This feature gives you
more control over the underlying data structures and how the elements
are handled in C/C++ functions. If you are not careful with ``dtype``
assignments, you can get unwanted overflow, as such
::
>>> a = np.array([127, 128, 129], dtype=np.int8)
>>> a
array([ 127, -128, -127], dtype=int8)
An 8-bit signed integer represents integers from -128 to 127.
Assigning the ``int8`` array to integers outside of this range results
in overflow. This feature can often be misunderstood. If you
perform calculations with mismatching ``dtypes``, you can get unwanted
results, for example::
>>> a = np.array([2, 3, 4], dtype=np.uint32)
>>> b = np.array([5, 6, 7], dtype=np.uint32)
>>> c_unsigned32 = a - b
>>> print('unsigned c:', c_unsigned32, c_unsigned32.dtype)
unsigned c: [4294967293 4294967293 4294967293] uint32
>>> c_signed32 = a - b.astype(np.int32)
>>> print('signed c:', c_signed32, c_signed32.dtype)
signed c: [-3 -3 -3] int64
Notice when you perform operations with two arrays of the same
``dtype``: ``uint32``, the resulting array is the same type. When you
perform operations with different ``dtype``, NumPy will
assign a new type that satisfies all of the array elements involved in
the computation, here ``uint32`` and ``int32`` can both be represented in
as ``int64``.
The default NumPy behavior is to create arrays in either 32 or 64-bit signed
integers (platform dependent and matches C int size) or double precision
floating point numbers, int32/int64 and float, respectively. If you expect your
integer arrays to be a specific type, then you need to specify the dtype while
you create the array.
2) Intrinsic NumPy array creation functions
===========================================
..
40 functions seems like a small number, but the routies.array-creation
has ~47. I'm sure there are more.
NumPy has over 40 built-in functions for creating arrays as laid
out in the :ref:`Array creation routines <routines.array-creation>`.
These functions can be split into roughly three categories, based on the
dimension of the array they create:
1) 1D arrays
2) 2D arrays
3) ndarrays
1 - 1D array creation functions
-------------------------------
The 1D array creation functions e.g. :func:`numpy.linspace` and
:func:`numpy.arange` generally need at least two inputs, ``start`` and
``stop``.
:func:`numpy.arange` creates arrays with regularly incrementing values.
Check the documentation for complete information and examples. A few
examples are shown::
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=float)
array([2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.1)
array([2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])
Note: best practice for :func:`numpy.arange` is to use integer start, end, and
step values. There are some subtleties regarding ``dtype``. In the second
example, the ``dtype`` is defined. In the third example, the array is
``dtype=float`` to accommodate the step size of ``0.1``. Due to roundoff error,
the ``stop`` value is sometimes included.
:func:`numpy.linspace` will create arrays with a specified number of elements, and
spaced equally between the specified beginning and end values. For
example: ::
>>> np.linspace(1., 4., 6)
array([1. , 1.6, 2.2, 2.8, 3.4, 4. ])
The advantage of this creation function is that you guarantee the
number of elements and the starting and end point. The previous
``arange(start, stop, step)`` will not include the value ``stop``.
2 - 2D array creation functions
-------------------------------
The 2D array creation functions e.g. :func:`numpy.eye`, :func:`numpy.diag`, and :func:`numpy.vander`
define properties of special matrices represented as 2D arrays.
``np.eye(n, m)`` defines a 2D identity matrix. The elements where i=j (row index and column index are equal) are 1
and the rest are 0, as such::
>>> np.eye(3)
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
>>> np.eye(3, 5)
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.]])
:func:`numpy.diag` can define either a square 2D array with given values along
the diagonal *or* if given a 2D array returns a 1D array that is
only the diagonal elements. The two array creation functions can be helpful while
doing linear algebra, as such::
>>> np.diag([1, 2, 3])
array([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> np.diag([1, 2, 3], 1)
array([[0, 1, 0, 0],
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]])
>>> a = np.array([[1, 2], [3, 4]])
>>> np.diag(a)
array([1, 4])
``vander(x, n)`` defines a Vandermonde matrix as a 2D NumPy array. Each column
of the Vandermonde matrix is a decreasing power of the input 1D array or
list or tuple,
``x`` where the highest polynomial order is ``n-1``. This array creation
routine is helpful in generating linear least squares models, as such::
>>> np.vander(np.linspace(0, 2, 5), 2)
array([[0. , 1. ],
[0.5, 1. ],
[1. , 1. ],
[1.5, 1. ],
[2. , 1. ]])
>>> np.vander([1, 2, 3, 4], 2)
array([[1, 1],
[2, 1],
[3, 1],
[4, 1]])
>>> np.vander((1, 2, 3, 4), 4)
array([[ 1, 1, 1, 1],
[ 8, 4, 2, 1],
[27, 9, 3, 1],
[64, 16, 4, 1]])
3 - general ndarray creation functions
--------------------------------------
The ndarray creation functions e.g. :func:`numpy.ones`,
:func:`numpy.zeros`, and :meth:`~numpy.random.Generator.random` define
arrays based upon the desired shape. The ndarray creation functions
can create arrays with any dimension by specifying how many dimensions
and length along that dimension in a tuple or list.
:func:`numpy.zeros` will create an array filled with 0 values with the
specified shape. The default dtype is ``float64``::
>>> np.zeros((2, 3))
array([[0., 0., 0.],
[0., 0., 0.]])
>>> np.zeros((2, 3, 2))
array([[[0., 0.],
[0., 0.],
[0., 0.]],
<BLANKLINE>
[[0., 0.],
[0., 0.],
[0., 0.]]])
:func:`numpy.ones` will create an array filled with 1 values. It is identical to
``zeros`` in all other respects as such::
>>> np.ones((2, 3))
array([[1., 1., 1.],
[1., 1., 1.]])
>>> np.ones((2, 3, 2))
array([[[1., 1.],
[1., 1.],
[1., 1.]],
<BLANKLINE>
[[1., 1.],
[1., 1.],
[1., 1.]]])
The :meth:`~numpy.random.Generator.random` method of the result of
``default_rng`` will create an array filled with random
values between 0 and 1. It is included with the :func:`numpy.random`
library. Below, two arrays are created with shapes (2,3) and (2,3,2),
respectively. The seed is set to 42 so you can reproduce these
pseudorandom numbers::
>>> from numpy.random import default_rng
>>> default_rng(42).random((2,3))
array([[0.77395605, 0.43887844, 0.85859792],
[0.69736803, 0.09417735, 0.97562235]])
>>> default_rng(42).random((2,3,2))
array([[[0.77395605, 0.43887844],
[0.85859792, 0.69736803],
[0.09417735, 0.97562235]],
[[0.7611397 , 0.78606431],
[0.12811363, 0.45038594],
[0.37079802, 0.92676499]]])
:func:`numpy.indices` will create a set of arrays (stacked as a one-higher
dimensioned array), one per dimension with each representing variation in that
dimension: ::
>>> np.indices((3,3))
array([[[0, 0, 0],
[1, 1, 1],
[2, 2, 2]],
[[0, 1, 2],
[0, 1, 2],
[0, 1, 2]]])
This is particularly useful for evaluating functions of multiple dimensions on
a regular grid.
3) Replicating, joining, or mutating existing arrays
====================================================
Once you have created arrays, you can replicate, join, or mutate those
existing arrays to create new arrays. When you assign an array or its
elements to a new variable, you have to explicitly :func:`numpy.copy` the array,
otherwise the variable is a view into the original array. Consider the
following example::
>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> b = a[:2]
>>> b += 1
>>> print('a =', a, '; b =', b)
a = [2 3 3 4 5 6] ; b = [2 3]
In this example, you did not create a new array. You created a variable,
``b`` that viewed the first 2 elements of ``a``. When you added 1 to ``b`` you
would get the same result by adding 1 to ``a[:2]``. If you want to create a
*new* array, use the :func:`numpy.copy` array creation routine as such::
>>> a = np.array([1, 2, 3, 4])
>>> b = a[:2].copy()
>>> b += 1
>>> print('a = ', a, 'b = ', b)
a = [1 2 3 4] b = [2 3]
For more information and examples look at :ref:`Copies and Views
<quickstart.copies-and-views>`.
There are a number of routines to join existing arrays e.g. :func:`numpy.vstack`,
:func:`numpy.hstack`, and :func:`numpy.block`. Here is an example of joining four 2-by-2
arrays into a 4-by-4 array using ``block``::
>>> A = np.ones((2, 2))
>>> B = np.eye(2, 2)
>>> C = np.zeros((2, 2))
>>> D = np.diag((-3, -4))
>>> np.block([[A, B], [C, D]])
array([[ 1., 1., 1., 0.],
[ 1., 1., 0., 1.],
[ 0., 0., -3., 0.],
[ 0., 0., 0., -4.]])
Other routines use similar syntax to join ndarrays. Check the
routine's documentation for further examples and syntax.
4) Reading arrays from disk, either from standard or custom formats
===================================================================
This is the most common case of large array creation. The details depend
greatly on the format of data on disk. This section gives general pointers on
how to handle various formats. For more detailed examples of IO look at
:ref:`How to Read and Write files <how-to-io>`.
Standard Binary Formats
-----------------------
Various fields have standard formats for array data. The following lists the
ones with known Python libraries to read them and return NumPy arrays (there
may be others for which it is possible to read and convert to NumPy arrays so
check the last section as well)
::
HDF5: h5py
FITS: Astropy
Examples of formats that cannot be read directly but for which it is not hard to
convert are those formats supported by libraries like PIL (able to read and
write many image formats such as jpg, png, etc).
Common ASCII Formats
--------------------
Delimited files such as comma separated value (csv) and tab separated
value (tsv) files are used for programs like Excel and LabView. Python
functions can read and parse these files line-by-line. NumPy has two
standard routines for importing a file with delimited data :func:`numpy.loadtxt`
and :func:`numpy.genfromtxt`. These functions have more involved use cases in
:doc:`how-to-io`. A simple example given a ``simple.csv``:
.. code-block:: bash
$ cat simple.csv
x, y
0, 0
1, 1
2, 4
3, 9
Importing ``simple.csv`` is accomplished using :func:`loadtxt`::
>>> np.loadtxt('simple.csv', delimiter = ',', skiprows = 1) # doctest: +SKIP
array([[0., 0.],
[1., 1.],
[2., 4.],
[3., 9.]])
More generic ASCII files can be read using `scipy.io` and `Pandas
<https://pandas.pydata.org/>`_.
5) Creating arrays from raw bytes through the use of strings or buffers
=======================================================================
There are a variety of approaches one can use. If the file has a relatively
simple format then one can write a simple I/O library and use the NumPy
``fromfile()`` function and ``.tofile()`` method to read and write NumPy arrays
directly (mind your byteorder though!) If a good C or C++ library exists that
read the data, one can wrap that library with a variety of techniques though
that certainly is much more work and requires significantly more advanced
knowledge to interface with C or C++.
6) Use of special library functions (e.g., SciPy, Pandas, and OpenCV)
=====================================================================
NumPy is the fundamental library for array containers in the Python Scientific Computing
stack. Many Python libraries, including SciPy, Pandas, and OpenCV, use NumPy ndarrays
as the common format for data exchange, These libraries can create,
operate on, and work with NumPy arrays.
|