1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
.. _basics.dispatch:
*******************************
Writing custom array containers
*******************************
Numpy's dispatch mechanism, introduced in numpy version v1.16 is the
recommended approach for writing custom N-dimensional array containers that are
compatible with the numpy API and provide custom implementations of numpy
functionality. Applications include `dask <http://dask.pydata.org>`_ arrays, an
N-dimensional array distributed across multiple nodes, and `cupy
<https://docs-cupy.chainer.org/en/stable/>`_ arrays, an N-dimensional array on
a GPU.
To get a feel for writing custom array containers, we'll begin with a simple
example that has rather narrow utility but illustrates the concepts involved.
>>> import numpy as np
>>> class DiagonalArray:
... def __init__(self, N, value):
... self._N = N
... self._i = value
... def __repr__(self):
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
... def __array__(self, dtype=None):
... return self._i * np.eye(self._N, dtype=dtype)
Our custom array can be instantiated like:
>>> arr = DiagonalArray(5, 1)
>>> arr
DiagonalArray(N=5, value=1)
We can convert to a numpy array using :func:`numpy.array` or
:func:`numpy.asarray`, which will call its ``__array__`` method to obtain a
standard ``numpy.ndarray``.
>>> np.asarray(arr)
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])
If we operate on ``arr`` with a numpy function, numpy will again use the
``__array__`` interface to convert it to an array and then apply the function
in the usual way.
>>> np.multiply(arr, 2)
array([[2., 0., 0., 0., 0.],
[0., 2., 0., 0., 0.],
[0., 0., 2., 0., 0.],
[0., 0., 0., 2., 0.],
[0., 0., 0., 0., 2.]])
Notice that the return type is a standard ``numpy.ndarray``.
>>> type(np.multiply(arr, 2))
<class 'numpy.ndarray'>
How can we pass our custom array type through this function? Numpy allows a
class to indicate that it would like to handle computations in a custom-defined
way through the interfaces ``__array_ufunc__`` and ``__array_function__``. Let's
take one at a time, starting with ``__array_ufunc__``. This method covers
:ref:`ufuncs`, a class of functions that includes, for example,
:func:`numpy.multiply` and :func:`numpy.sin`.
The ``__array_ufunc__`` receives:
- ``ufunc``, a function like ``numpy.multiply``
- ``method``, a string, differentiating between ``numpy.multiply(...)`` and
variants like ``numpy.multiply.outer``, ``numpy.multiply.accumulate``, and so
on. For the common case, ``numpy.multiply(...)``, ``method == '__call__'``.
- ``inputs``, which could be a mixture of different types
- ``kwargs``, keyword arguments passed to the function
For this example we will only handle the method ``__call__``
>>> from numbers import Number
>>> class DiagonalArray:
... def __init__(self, N, value):
... self._N = N
... self._i = value
... def __repr__(self):
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
... def __array__(self, dtype=None):
... return self._i * np.eye(self._N, dtype=dtype)
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
... if method == '__call__':
... N = None
... scalars = []
... for input in inputs:
... if isinstance(input, Number):
... scalars.append(input)
... elif isinstance(input, self.__class__):
... scalars.append(input._i)
... if N is not None:
... if N != self._N:
... raise TypeError("inconsistent sizes")
... else:
... N = self._N
... else:
... return NotImplemented
... return self.__class__(N, ufunc(*scalars, **kwargs))
... else:
... return NotImplemented
Now our custom array type passes through numpy functions.
>>> arr = DiagonalArray(5, 1)
>>> np.multiply(arr, 3)
DiagonalArray(N=5, value=3)
>>> np.add(arr, 3)
DiagonalArray(N=5, value=4)
>>> np.sin(arr)
DiagonalArray(N=5, value=0.8414709848078965)
At this point ``arr + 3`` does not work.
>>> arr + 3
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for +: 'DiagonalArray' and 'int'
To support it, we need to define the Python interfaces ``__add__``, ``__lt__``,
and so on to dispatch to the corresponding ufunc. We can achieve this
conveniently by inheriting from the mixin
:class:`~numpy.lib.mixins.NDArrayOperatorsMixin`.
>>> import numpy.lib.mixins
>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin):
... def __init__(self, N, value):
... self._N = N
... self._i = value
... def __repr__(self):
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
... def __array__(self, dtype=None):
... return self._i * np.eye(self._N, dtype=dtype)
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
... if method == '__call__':
... N = None
... scalars = []
... for input in inputs:
... if isinstance(input, Number):
... scalars.append(input)
... elif isinstance(input, self.__class__):
... scalars.append(input._i)
... if N is not None:
... if N != self._N:
... raise TypeError("inconsistent sizes")
... else:
... N = self._N
... else:
... return NotImplemented
... return self.__class__(N, ufunc(*scalars, **kwargs))
... else:
... return NotImplemented
>>> arr = DiagonalArray(5, 1)
>>> arr + 3
DiagonalArray(N=5, value=4)
>>> arr > 0
DiagonalArray(N=5, value=True)
Now let's tackle ``__array_function__``. We'll create dict that maps numpy
functions to our custom variants.
>>> HANDLED_FUNCTIONS = {}
>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin):
... def __init__(self, N, value):
... self._N = N
... self._i = value
... def __repr__(self):
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
... def __array__(self, dtype=None):
... return self._i * np.eye(self._N, dtype=dtype)
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
... if method == '__call__':
... N = None
... scalars = []
... for input in inputs:
... # In this case we accept only scalar numbers or DiagonalArrays.
... if isinstance(input, Number):
... scalars.append(input)
... elif isinstance(input, self.__class__):
... scalars.append(input._i)
... if N is not None:
... if N != self._N:
... raise TypeError("inconsistent sizes")
... else:
... N = self._N
... else:
... return NotImplemented
... return self.__class__(N, ufunc(*scalars, **kwargs))
... else:
... return NotImplemented
... def __array_function__(self, func, types, args, kwargs):
... if func not in HANDLED_FUNCTIONS:
... return NotImplemented
... # Note: this allows subclasses that don't override
... # __array_function__ to handle DiagonalArray objects.
... if not all(issubclass(t, self.__class__) for t in types):
... return NotImplemented
... return HANDLED_FUNCTIONS[func](*args, **kwargs)
...
A convenient pattern is to define a decorator ``implements`` that can be used
to add functions to ``HANDLED_FUNCTIONS``.
>>> def implements(np_function):
... "Register an __array_function__ implementation for DiagonalArray objects."
... def decorator(func):
... HANDLED_FUNCTIONS[np_function] = func
... return func
... return decorator
...
Now we write implementations of numpy functions for ``DiagonalArray``.
For completeness, to support the usage ``arr.sum()`` add a method ``sum`` that
calls ``numpy.sum(self)``, and the same for ``mean``.
>>> @implements(np.sum)
... def sum(arr):
... "Implementation of np.sum for DiagonalArray objects"
... return arr._i * arr._N
...
>>> @implements(np.mean)
... def mean(arr):
... "Implementation of np.mean for DiagonalArray objects"
... return arr._i / arr._N
...
>>> arr = DiagonalArray(5, 1)
>>> np.sum(arr)
5
>>> np.mean(arr)
0.2
If the user tries to use any numpy functions not included in
``HANDLED_FUNCTIONS``, a ``TypeError`` will be raised by numpy, indicating that
this operation is not supported. For example, concatenating two
``DiagonalArrays`` does not produce another diagonal array, so it is not
supported.
>>> np.concatenate([arr, arr])
Traceback (most recent call last):
...
TypeError: no implementation found for 'numpy.concatenate' on types that implement __array_function__: [<class '__main__.DiagonalArray'>]
Additionally, our implementations of ``sum`` and ``mean`` do not accept the
optional arguments that numpy's implementation does.
>>> np.sum(arr, axis=0)
Traceback (most recent call last):
...
TypeError: sum() got an unexpected keyword argument 'axis'
The user always has the option of converting to a normal ``numpy.ndarray`` with
:func:`numpy.asarray` and using standard numpy from there.
>>> np.concatenate([np.asarray(arr), np.asarray(arr)])
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])
Refer to the `dask source code <https://github.com/dask/dask>`_ and
`cupy source code <https://github.com/cupy/cupy>`_ for more fully-worked
examples of custom array containers.
See also :doc:`NEP 18<neps:nep-0018-array-function-protocol>`.
|