1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
**********************
Writing your own ufunc
**********************
| I have the Power!
| --- *He-Man*
.. _`sec:Creating-a-new`:
Creating a new universal function
=================================
.. index::
pair: ufunc; adding new
Before reading this, it may help to familiarize yourself with the basics
of C extensions for Python by reading/skimming the tutorials in Section 1
of `Extending and Embedding the Python Interpreter
<https://docs.python.org/extending/index.html>`_ and in :doc:`How to extend
NumPy <c-info.how-to-extend>`
The umath module is a computer-generated C-module that creates many
ufuncs. It provides a great many examples of how to create a universal
function. Creating your own ufunc that will make use of the ufunc
machinery is not difficult either. Suppose you have a function that
you want to operate element-by-element over its inputs. By creating a
new ufunc you will obtain a function that handles
- broadcasting
- N-dimensional looping
- automatic type-conversions with minimal memory usage
- optional output arrays
It is not difficult to create your own ufunc. All that is required is
a 1-d loop for each data-type you want to support. Each 1-d loop must
have a specific signature, and only ufuncs for fixed-size data-types
can be used. The function call used to create a new ufunc to work on
built-in data-types is given below. A different mechanism is used to
register ufuncs for user-defined data-types.
In the next several sections we give example code that can be
easily modified to create your own ufuncs. The examples are
successively more complete or complicated versions of the logit
function, a common function in statistical modeling. Logit is also
interesting because, due to the magic of IEEE standards (specifically
IEEE 754), all of the logit functions created below
automatically have the following behavior.
>>> logit(0)
-inf
>>> logit(1)
inf
>>> logit(2)
nan
>>> logit(-2)
nan
This is wonderful because the function writer doesn't have to
manually propagate infs or nans.
.. _`sec:Non-numpy-example`:
Example Non-ufunc extension
===========================
.. index::
pair: ufunc; adding new
For comparison and general edification of the reader we provide
a simple implementation of a C extension of ``logit`` that uses no
numpy.
To do this we need two files. The first is the C file which contains
the actual code, and the second is the ``setup.py`` file used to create
the module.
.. code-block:: c
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <math.h>
/*
* spammodule.c
* This is the C code for a non-numpy Python extension to
* define the logit function, where logit(p) = log(p/(1-p)).
* This function will not work on numpy arrays automatically.
* numpy.vectorize must be called in python to generate
* a numpy-friendly function.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org .
*/
/* This declares the logit function */
static PyObject *spam_logit(PyObject *self, PyObject *args);
/*
* This tells Python what methods this module has.
* See the Python-C API for more information.
*/
static PyMethodDef SpamMethods[] = {
{"logit",
spam_logit,
METH_VARARGS, "compute logit"},
{NULL, NULL, 0, NULL}
};
/*
* This actually defines the logit function for
* input args from Python.
*/
static PyObject *spam_logit(PyObject *self, PyObject *args)
{
double p;
/* This parses the Python argument into a double */
if(!PyArg_ParseTuple(args, "d", &p)) {
return NULL;
}
/* THE ACTUAL LOGIT FUNCTION */
p = p/(1-p);
p = log(p);
/*This builds the answer back into a python object */
return Py_BuildValue("d", p);
}
/* This initiates the module using the above definitions. */
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"spam",
NULL,
-1,
SpamMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_spam(void)
{
PyObject *m;
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
return m;
}
To use the ``setup.py file``, place ``setup.py`` and ``spammodule.c``
in the same folder. Then ``python setup.py build`` will build the module to
import, or ``python setup.py install`` will install the module to your
site-packages directory.
.. code-block:: python
'''
setup.py file for spammodule.c
Calling
$python setup.py build_ext --inplace
will build the extension library in the current file.
Calling
$python setup.py build
will build a file that looks like ./build/lib*, where
lib* is a file that begins with lib. The library will
be in this file and end with a C library extension,
such as .so
Calling
$python setup.py install
will install the module in your site-packages file.
See the distutils section of
'Extending and Embedding the Python Interpreter'
at docs.python.org for more information.
'''
from distutils.core import setup, Extension
module1 = Extension('spam', sources=['spammodule.c'],
include_dirs=['/usr/local/lib'])
setup(name = 'spam',
version='1.0',
description='This is my spam package',
ext_modules = [module1])
Once the spam module is imported into python, you can call logit
via ``spam.logit``. Note that the function used above cannot be applied
as-is to numpy arrays. To do so we must call :py:func:`numpy.vectorize`
on it. For example, if a python interpreter is opened in the file containing
the spam library or spam has been installed, one can perform the
following commands:
>>> import numpy as np
>>> import spam
>>> spam.logit(0)
-inf
>>> spam.logit(1)
inf
>>> spam.logit(0.5)
0.0
>>> x = np.linspace(0,1,10)
>>> spam.logit(x)
TypeError: only length-1 arrays can be converted to Python scalars
>>> f = np.vectorize(spam.logit)
>>> f(x)
array([ -inf, -2.07944154, -1.25276297, -0.69314718, -0.22314355,
0.22314355, 0.69314718, 1.25276297, 2.07944154, inf])
THE RESULTING LOGIT FUNCTION IS NOT FAST! ``numpy.vectorize`` simply
loops over ``spam.logit``. The loop is done at the C level, but the numpy
array is constantly being parsed and build back up. This is expensive.
When the author compared ``numpy.vectorize(spam.logit)`` against the
logit ufuncs constructed below, the logit ufuncs were almost exactly
4 times faster. Larger or smaller speedups are, of course, possible
depending on the nature of the function.
.. _`sec:NumPy-one-loop`:
Example NumPy ufunc for one dtype
=================================
.. index::
pair: ufunc; adding new
For simplicity we give a ufunc for a single dtype, the ``'f8'``
``double``. As in the previous section, we first give the ``.c`` file
and then the ``setup.py`` file used to create the module containing the
ufunc.
The place in the code corresponding to the actual computations for
the ufunc are marked with ``/\* BEGIN main ufunc computation \*/`` and
``/\* END main ufunc computation \*/``. The code in between those lines is
the primary thing that must be changed to create your own ufunc.
.. code-block:: c
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/npy_3kcompat.h"
#include <math.h>
/*
* single_type_logit.c
* This is the C code for creating your own
* NumPy ufunc for a logit function.
*
* In this code we only define the ufunc for
* a single dtype. The computations that must
* be replaced to create a ufunc for
* a different function are marked with BEGIN
* and END.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org .
*/
static PyMethodDef LogitMethods[] = {
{NULL, NULL, 0, NULL}
};
/* The loop definition must precede the PyMODINIT_FUNC. */
static void double_logit(char **args, const npy_intp *dimensions,
const npy_intp *steps, void *data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in = args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];
double tmp;
for (i = 0; i < n; i++) {
/* BEGIN main ufunc computation */
tmp = *(double *)in;
tmp /= 1 - tmp;
*((double *)out) = log(tmp);
/* END main ufunc computation */
in += in_step;
out += out_step;
}
}
/* This a pointer to the above function */
PyUFuncGenericFunction funcs[1] = {&double_logit};
/* These are the input and return dtypes of logit.*/
static char types[2] = {NPY_DOUBLE, NPY_DOUBLE};
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"npufunc",
NULL,
-1,
LogitMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_npufunc(void)
{
PyObject *m, *logit, *d;
import_array();
import_umath();
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
logit = PyUFunc_FromFuncAndData(funcs, NULL, types, 1, 1, 1,
PyUFunc_None, "logit",
"logit_docstring", 0);
d = PyModule_GetDict(m);
PyDict_SetItemString(d, "logit", logit);
Py_DECREF(logit);
return m;
}
This is a ``setup.py file`` for the above code. As before, the module
can be build via calling ``python setup.py build`` at the command prompt,
or installed to site-packages via ``python setup.py install``. The module
can also be placed into a local folder e.g. ``npufunc_directory`` below
using ``python setup.py build_ext --inplace``.
.. code-block:: python
'''
setup.py file for single_type_logit.c
Note that since this is a numpy extension
we use numpy.distutils instead of
distutils from the python standard library.
Calling
$python setup.py build_ext --inplace
will build the extension library in the npufunc_directory.
Calling
$python setup.py build
will build a file that looks like ./build/lib*, where
lib* is a file that begins with lib. The library will
be in this file and end with a C library extension,
such as .so
Calling
$python setup.py install
will install the module in your site-packages file.
See the distutils section of
'Extending and Embedding the Python Interpreter'
at docs.python.org and the documentation
on numpy.distutils for more information.
'''
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('npufunc_directory',
parent_package,
top_path)
config.add_extension('npufunc', ['single_type_logit.c'])
return config
if __name__ == "__main__":
from numpy.distutils.core import setup
setup(configuration=configuration)
After the above has been installed, it can be imported and used as follows.
>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([ -inf, -1.09861229, 0. , 1.09861229, inf])
.. _`sec:NumPy-many-loop`:
Example NumPy ufunc with multiple dtypes
========================================
.. index::
pair: ufunc; adding new
We finally give an example of a full ufunc, with inner loops for
half-floats, floats, doubles, and long doubles. As in the previous
sections we first give the ``.c`` file and then the corresponding
``setup.py`` file.
The places in the code corresponding to the actual computations for
the ufunc are marked with ``/\* BEGIN main ufunc computation \*/`` and
``/\* END main ufunc computation \*/``. The code in between those lines
is the primary thing that must be changed to create your own ufunc.
.. code-block:: c
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include <math.h>
/*
* multi_type_logit.c
* This is the C code for creating your own
* NumPy ufunc for a logit function.
*
* Each function of the form type_logit defines the
* logit function for a different numpy dtype. Each
* of these functions must be modified when you
* create your own ufunc. The computations that must
* be replaced to create a ufunc for
* a different function are marked with BEGIN
* and END.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org .
*
*/
static PyMethodDef LogitMethods[] = {
{NULL, NULL, 0, NULL}
};
/* The loop definitions must precede the PyMODINIT_FUNC. */
static void long_double_logit(char **args, const npy_intp *dimensions,
const npy_intp *steps, void *data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in = args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];
long double tmp;
for (i = 0; i < n; i++) {
/* BEGIN main ufunc computation */
tmp = *(long double *)in;
tmp /= 1 - tmp;
*((long double *)out) = logl(tmp);
/* END main ufunc computation */
in += in_step;
out += out_step;
}
}
static void double_logit(char **args, const npy_intp *dimensions,
const npy_intp *steps, void *data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in = args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];
double tmp;
for (i = 0; i < n; i++) {
/* BEGIN main ufunc computation */
tmp = *(double *)in;
tmp /= 1 - tmp;
*((double *)out) = log(tmp);
/* END main ufunc computation */
in += in_step;
out += out_step;
}
}
static void float_logit(char **args, const npy_intp *dimensions,
const npy_intp *steps, void *data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in = args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];
float tmp;
for (i = 0; i < n; i++) {
/* BEGIN main ufunc computation */
tmp = *(float *)in;
tmp /= 1 - tmp;
*((float *)out) = logf(tmp);
/* END main ufunc computation */
in += in_step;
out += out_step;
}
}
static void half_float_logit(char **args, const npy_intp *dimensions,
const npy_intp *steps, void *data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in = args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];
float tmp;
for (i = 0; i < n; i++) {
/* BEGIN main ufunc computation */
tmp = npy_half_to_float(*(npy_half *)in);
tmp /= 1 - tmp;
tmp = logf(tmp);
*((npy_half *)out) = npy_float_to_half(tmp);
/* END main ufunc computation */
in += in_step;
out += out_step;
}
}
/*This gives pointers to the above functions*/
PyUFuncGenericFunction funcs[4] = {&half_float_logit,
&float_logit,
&double_logit,
&long_double_logit};
static char types[8] = {NPY_HALF, NPY_HALF,
NPY_FLOAT, NPY_FLOAT,
NPY_DOUBLE, NPY_DOUBLE,
NPY_LONGDOUBLE, NPY_LONGDOUBLE};
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"npufunc",
NULL,
-1,
LogitMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_npufunc(void)
{
PyObject *m, *logit, *d;
import_array();
import_umath();
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
logit = PyUFunc_FromFuncAndData(funcs, NULL, types, 4, 1, 1,
PyUFunc_None, "logit",
"logit_docstring", 0);
d = PyModule_GetDict(m);
PyDict_SetItemString(d, "logit", logit);
Py_DECREF(logit);
return m;
}
This is a ``setup.py`` file for the above code. As before, the module
can be build via calling ``python setup.py build`` at the command prompt,
or installed to site-packages via ``python setup.py install``.
.. code-block:: python
'''
setup.py file for multi_type_logit.c
Note that since this is a numpy extension
we use numpy.distutils instead of
distutils from the python standard library.
Calling
$python setup.py build_ext --inplace
will build the extension library in the current file.
Calling
$python setup.py build
will build a file that looks like ./build/lib*, where
lib* is a file that begins with lib. The library will
be in this file and end with a C library extension,
such as .so
Calling
$python setup.py install
will install the module in your site-packages file.
See the distutils section of
'Extending and Embedding the Python Interpreter'
at docs.python.org and the documentation
on numpy.distutils for more information.
'''
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration, get_info
#Necessary for the half-float d-type.
info = get_info('npymath')
config = Configuration('npufunc_directory',
parent_package,
top_path)
config.add_extension('npufunc',
['multi_type_logit.c'],
extra_info=info)
return config
if __name__ == "__main__":
from numpy.distutils.core import setup
setup(configuration=configuration)
After the above has been installed, it can be imported and used as follows.
>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([ -inf, -1.09861229, 0. , 1.09861229, inf])
.. _`sec:NumPy-many-arg`:
Example NumPy ufunc with multiple arguments/return values
=========================================================
Our final example is a ufunc with multiple arguments. It is a modification
of the code for a logit ufunc for data with a single dtype. We
compute ``(A * B, logit(A * B))``.
We only give the C code as the setup.py file is exactly the same as
the ``setup.py`` file in `Example NumPy ufunc for one dtype`_, except that
the line
.. code-block:: python
config.add_extension('npufunc', ['single_type_logit.c'])
is replaced with
.. code-block:: python
config.add_extension('npufunc', ['multi_arg_logit.c'])
The C file is given below. The ufunc generated takes two arguments ``A``
and ``B``. It returns a tuple whose first element is ``A * B`` and whose second
element is ``logit(A * B)``. Note that it automatically supports broadcasting,
as well as all other properties of a ufunc.
.. code-block:: c
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include <math.h>
/*
* multi_arg_logit.c
* This is the C code for creating your own
* NumPy ufunc for a multiple argument, multiple
* return value ufunc. The places where the
* ufunc computation is carried out are marked
* with comments.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org.
*/
static PyMethodDef LogitMethods[] = {
{NULL, NULL, 0, NULL}
};
/* The loop definition must precede the PyMODINIT_FUNC. */
static void double_logitprod(char **args, const npy_intp *dimensions,
const npy_intp *steps, void *data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in1 = args[0], *in2 = args[1];
char *out1 = args[2], *out2 = args[3];
npy_intp in1_step = steps[0], in2_step = steps[1];
npy_intp out1_step = steps[2], out2_step = steps[3];
double tmp;
for (i = 0; i < n; i++) {
/* BEGIN main ufunc computation */
tmp = *(double *)in1;
tmp *= *(double *)in2;
*((double *)out1) = tmp;
*((double *)out2) = log(tmp / (1 - tmp));
/* END main ufunc computation */
in1 += in1_step;
in2 += in2_step;
out1 += out1_step;
out2 += out2_step;
}
}
/*This a pointer to the above function*/
PyUFuncGenericFunction funcs[1] = {&double_logitprod};
/* These are the input and return dtypes of logit.*/
static char types[4] = {NPY_DOUBLE, NPY_DOUBLE,
NPY_DOUBLE, NPY_DOUBLE};
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"npufunc",
NULL,
-1,
LogitMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_npufunc(void)
{
PyObject *m, *logit, *d;
import_array();
import_umath();
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
logit = PyUFunc_FromFuncAndData(funcs, NULL, types, 1, 2, 2,
PyUFunc_None, "logit",
"logit_docstring", 0);
d = PyModule_GetDict(m);
PyDict_SetItemString(d, "logit", logit);
Py_DECREF(logit);
return m;
}
.. _`sec:NumPy-struct-dtype`:
Example NumPy ufunc with structured array dtype arguments
=========================================================
This example shows how to create a ufunc for a structured array dtype.
For the example we show a trivial ufunc for adding two arrays with dtype
``'u8,u8,u8'``. The process is a bit different from the other examples since
a call to :c:func:`PyUFunc_FromFuncAndData` doesn't fully register ufuncs for
custom dtypes and structured array dtypes. We need to also call
:c:func:`PyUFunc_RegisterLoopForDescr` to finish setting up the ufunc.
We only give the C code as the ``setup.py`` file is exactly the same as
the ``setup.py`` file in `Example NumPy ufunc for one dtype`_, except that
the line
.. code-block:: python
config.add_extension('npufunc', ['single_type_logit.c'])
is replaced with
.. code-block:: python
config.add_extension('npufunc', ['add_triplet.c'])
The C file is given below.
.. code-block:: c
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/npy_3kcompat.h"
#include <math.h>
/*
* add_triplet.c
* This is the C code for creating your own
* NumPy ufunc for a structured array dtype.
*
* Details explaining the Python-C API can be found under
* 'Extending and Embedding' and 'Python/C API' at
* docs.python.org.
*/
static PyMethodDef StructUfuncTestMethods[] = {
{NULL, NULL, 0, NULL}
};
/* The loop definition must precede the PyMODINIT_FUNC. */
static void add_uint64_triplet(char **args, const npy_intp *dimensions,
const npy_intp *steps, void *data)
{
npy_intp i;
npy_intp is1 = steps[0];
npy_intp is2 = steps[1];
npy_intp os = steps[2];
npy_intp n = dimensions[0];
uint64_t *x, *y, *z;
char *i1 = args[0];
char *i2 = args[1];
char *op = args[2];
for (i = 0; i < n; i++) {
x = (uint64_t *)i1;
y = (uint64_t *)i2;
z = (uint64_t *)op;
z[0] = x[0] + y[0];
z[1] = x[1] + y[1];
z[2] = x[2] + y[2];
i1 += is1;
i2 += is2;
op += os;
}
}
/* This a pointer to the above function */
PyUFuncGenericFunction funcs[1] = {&add_uint64_triplet};
/* These are the input and return dtypes of add_uint64_triplet. */
static char types[3] = {NPY_UINT64, NPY_UINT64, NPY_UINT64};
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"struct_ufunc_test",
NULL,
-1,
StructUfuncTestMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_struct_ufunc_test(void)
{
PyObject *m, *add_triplet, *d;
PyObject *dtype_dict;
PyArray_Descr *dtype;
PyArray_Descr *dtypes[3];
import_array();
import_umath();
m = PyModule_Create(&moduledef);
if (m == NULL) {
return NULL;
}
/* Create a new ufunc object */
add_triplet = PyUFunc_FromFuncAndData(NULL, NULL, NULL, 0, 2, 1,
PyUFunc_None, "add_triplet",
"add_triplet_docstring", 0);
dtype_dict = Py_BuildValue("[(s, s), (s, s), (s, s)]",
"f0", "u8", "f1", "u8", "f2", "u8");
PyArray_DescrConverter(dtype_dict, &dtype);
Py_DECREF(dtype_dict);
dtypes[0] = dtype;
dtypes[1] = dtype;
dtypes[2] = dtype;
/* Register ufunc for structured dtype */
PyUFunc_RegisterLoopForDescr(add_triplet,
dtype,
&add_uint64_triplet,
dtypes,
NULL);
d = PyModule_GetDict(m);
PyDict_SetItemString(d, "add_triplet", add_triplet);
Py_DECREF(add_triplet);
return m;
}
.. index::
pair: ufunc; adding new
The returned ufunc object is a callable Python object. It should be
placed in a (module) dictionary under the same name as was used in the
name argument to the ufunc-creation routine. The following example is
adapted from the umath module
.. code-block:: c
static PyUFuncGenericFunction atan2_functions[] = {
PyUFunc_ff_f, PyUFunc_dd_d,
PyUFunc_gg_g, PyUFunc_OO_O_method};
static void *atan2_data[] = {
(void *)atan2f, (void *)atan2,
(void *)atan2l, (void *)"arctan2"};
static char atan2_signatures[] = {
NPY_FLOAT, NPY_FLOAT, NPY_FLOAT,
NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE,
NPY_LONGDOUBLE, NPY_LONGDOUBLE, NPY_LONGDOUBLE
NPY_OBJECT, NPY_OBJECT, NPY_OBJECT};
...
/* in the module initialization code */
PyObject *f, *dict, *module;
...
dict = PyModule_GetDict(module);
...
f = PyUFunc_FromFuncAndData(atan2_functions,
atan2_data, atan2_signatures, 4, 2, 1,
PyUFunc_None, "arctan2",
"a safe and correct arctan(x1/x2)", 0);
PyDict_SetItemString(dict, "arctan2", f);
Py_DECREF(f);
...
|