1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
.. _how-to-io:
.. Setting up files temporarily to be used in the examples below. Clear-up
has to be done at the end of the document.
.. testsetup::
>>> from numpy.testing import temppath
>>> with open("csv.txt", "wt") as f:
... _ = f.write("1, 2, 3\n4,, 6\n7, 8, 9")
>>> with open("fixedwidth.txt", "wt") as f:
... _ = f.write("1 2 3\n44 6\n7 88889")
>>> with open("nan.txt", "wt") as f:
... _ = f.write("1 2 3\n44 x 6\n7 8888 9")
>>> with open("skip.txt", "wt") as f:
... _ = f.write("1 2 3\n44 6\n7 888 9")
>>> with open("tabs.txt", "wt") as f:
... _ = f.write("1\t2\t3\n44\t \t6\n7\t888\t9")
===========================
Reading and writing files
===========================
This page tackles common applications; for the full collection of I/O
routines, see :ref:`routines.io`.
Reading text and CSV_ files
===========================
.. _CSV: https://en.wikipedia.org/wiki/Comma-separated_values
With no missing values
----------------------
Use :func:`numpy.loadtxt`.
With missing values
-------------------
Use :func:`numpy.genfromtxt`.
:func:`numpy.genfromtxt` will either
- return a :ref:`masked array<maskedarray.generic>`
**masking out missing values** (if ``usemask=True``), or
- **fill in the missing value** with the value specified in
``filling_values`` (default is ``np.nan`` for float, -1 for int).
With non-whitespace delimiters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>>> with open("csv.txt", "r") as f:
... print(f.read())
1, 2, 3
4,, 6
7, 8, 9
Masked-array output
+++++++++++++++++++
>>> np.genfromtxt("csv.txt", delimiter=",", usemask=True)
masked_array(
data=[[1.0, 2.0, 3.0],
[4.0, --, 6.0],
[7.0, 8.0, 9.0]],
mask=[[False, False, False],
[False, True, False],
[False, False, False]],
fill_value=1e+20)
Array output
++++++++++++
>>> np.genfromtxt("csv.txt", delimiter=",")
array([[ 1., 2., 3.],
[ 4., nan, 6.],
[ 7., 8., 9.]])
Array output, specified fill-in value
+++++++++++++++++++++++++++++++++++++
>>> np.genfromtxt("csv.txt", delimiter=",", dtype=np.int8, filling_values=99)
array([[ 1, 2, 3],
[ 4, 99, 6],
[ 7, 8, 9]], dtype=int8)
Whitespace-delimited
~~~~~~~~~~~~~~~~~~~~
:func:`numpy.genfromtxt` can also parse whitespace-delimited data files
that have missing values if
* **Each field has a fixed width**: Use the width as the `delimiter` argument.
# File with width=4. The data does not have to be justified (for example,
# the 2 in row 1), the last column can be less than width (for example, the 6
# in row 2), and no delimiting character is required (for instance 8888 and 9
# in row 3)
>>> with open("fixedwidth.txt", "r") as f:
... data = (f.read())
>>> print(data)
1 2 3
44 6
7 88889
# Showing spaces as ^
>>> print(data.replace(" ","^"))
1^^^2^^^^^^3
44^^^^^^6
7^^^88889
>>> np.genfromtxt("fixedwidth.txt", delimiter=4)
array([[1.000e+00, 2.000e+00, 3.000e+00],
[4.400e+01, nan, 6.000e+00],
[7.000e+00, 8.888e+03, 9.000e+00]])
* **A special value (e.g. "x") indicates a missing field**: Use it as the
`missing_values` argument.
>>> with open("nan.txt", "r") as f:
... print(f.read())
1 2 3
44 x 6
7 8888 9
>>> np.genfromtxt("nan.txt", missing_values="x")
array([[1.000e+00, 2.000e+00, 3.000e+00],
[4.400e+01, nan, 6.000e+00],
[7.000e+00, 8.888e+03, 9.000e+00]])
* **You want to skip the rows with missing values**: Set
`invalid_raise=False`.
>>> with open("skip.txt", "r") as f:
... print(f.read())
1 2 3
44 6
7 888 9
>>> np.genfromtxt("skip.txt", invalid_raise=False) # doctest: +SKIP
__main__:1: ConversionWarning: Some errors were detected !
Line #2 (got 2 columns instead of 3)
array([[ 1., 2., 3.],
[ 7., 888., 9.]])
* **The delimiter whitespace character is different from the whitespace that
indicates missing data**. For instance, if columns are delimited by ``\t``,
then missing data will be recognized if it consists of one
or more spaces.
>>> with open("tabs.txt", "r") as f:
... data = (f.read())
>>> print(data)
1 2 3
44 6
7 888 9
# Tabs vs. spaces
>>> print(data.replace("\t","^"))
1^2^3
44^ ^6
7^888^9
>>> np.genfromtxt("tabs.txt", delimiter="\t", missing_values=" +")
array([[ 1., 2., 3.],
[ 44., nan, 6.],
[ 7., 888., 9.]])
Read a file in .npy or .npz format
==================================
Choices:
- Use :func:`numpy.load`. It can read files generated by any of
:func:`numpy.save`, :func:`numpy.savez`, or :func:`numpy.savez_compressed`.
- Use memory mapping. See `numpy.lib.format.open_memmap`.
Write to a file to be read back by NumPy
========================================
Binary
------
Use
:func:`numpy.save`, or to store multiple arrays :func:`numpy.savez`
or :func:`numpy.savez_compressed`.
For :ref:`security and portability <how-to-io-pickle-file>`, set
``allow_pickle=False`` unless the dtype contains Python objects, which
requires pickling.
Masked arrays :any:`can't currently be saved <MaskedArray.tofile>`,
nor can other arbitrary array subclasses.
Human-readable
--------------
:func:`numpy.save` and :func:`numpy.savez` create binary files. To **write a
human-readable file**, use :func:`numpy.savetxt`. The array can only be 1- or
2-dimensional, and there's no ` savetxtz` for multiple files.
Large arrays
------------
See :ref:`how-to-io-large-arrays`.
Read an arbitrarily formatted binary file ("binary blob")
=========================================================
Use a :doc:`structured array <basics.rec>`.
**Example:**
The ``.wav`` file header is a 44-byte block preceding ``data_size`` bytes of the
actual sound data::
chunk_id "RIFF"
chunk_size 4-byte unsigned little-endian integer
format "WAVE"
fmt_id "fmt "
fmt_size 4-byte unsigned little-endian integer
audio_fmt 2-byte unsigned little-endian integer
num_channels 2-byte unsigned little-endian integer
sample_rate 4-byte unsigned little-endian integer
byte_rate 4-byte unsigned little-endian integer
block_align 2-byte unsigned little-endian integer
bits_per_sample 2-byte unsigned little-endian integer
data_id "data"
data_size 4-byte unsigned little-endian integer
The ``.wav`` file header as a NumPy structured dtype::
wav_header_dtype = np.dtype([
("chunk_id", (bytes, 4)), # flexible-sized scalar type, item size 4
("chunk_size", "<u4"), # little-endian unsigned 32-bit integer
("format", "S4"), # 4-byte string, alternate spelling of (bytes, 4)
("fmt_id", "S4"),
("fmt_size", "<u4"),
("audio_fmt", "<u2"), #
("num_channels", "<u2"), # .. more of the same ...
("sample_rate", "<u4"), #
("byte_rate", "<u4"),
("block_align", "<u2"),
("bits_per_sample", "<u2"),
("data_id", "S4"),
("data_size", "<u4"),
#
# the sound data itself cannot be represented here:
# it does not have a fixed size
])
header = np.fromfile(f, dtype=wave_header_dtype, count=1)[0]
This ``.wav`` example is for illustration; to read a ``.wav`` file in real
life, use Python's built-in module :mod:`wave`.
(Adapted from Pauli Virtanen, :ref:`advanced_numpy`, licensed
under `CC BY 4.0 <https://creativecommons.org/licenses/by/4.0/>`_.)
.. _how-to-io-large-arrays:
Write or read large arrays
==========================
**Arrays too large to fit in memory** can be treated like ordinary in-memory
arrays using memory mapping.
- Raw array data written with :func:`numpy.ndarray.tofile` or
:func:`numpy.ndarray.tobytes` can be read with :func:`numpy.memmap`::
array = numpy.memmap("mydata/myarray.arr", mode="r", dtype=np.int16, shape=(1024, 1024))
- Files output by :func:`numpy.save` (that is, using the numpy format) can be read
using :func:`numpy.load` with the ``mmap_mode`` keyword argument::
large_array[some_slice] = np.load("path/to/small_array", mmap_mode="r")
Memory mapping lacks features like data chunking and compression; more
full-featured formats and libraries usable with NumPy include:
* **HDF5**: `h5py <https://www.h5py.org/>`_ or `PyTables <https://www.pytables.org/>`_.
* **Zarr**: `here <https://zarr.readthedocs.io/en/stable/tutorial.html#reading-and-writing-data>`_.
* **NetCDF**: :class:`scipy.io.netcdf_file`.
For tradeoffs among memmap, Zarr, and HDF5, see
`pythonspeed.com <https://pythonspeed.com/articles/mmap-vs-zarr-hdf5/>`_.
Write files for reading by other (non-NumPy) tools
==================================================
Formats for **exchanging data** with other tools include HDF5, Zarr, and
NetCDF (see :ref:`how-to-io-large-arrays`).
Write or read a JSON file
=========================
NumPy arrays are **not** directly
`JSON serializable <https://github.com/numpy/numpy/issues/12481>`_.
.. _how-to-io-pickle-file:
Save/restore using a pickle file
================================
Avoid when possible; :doc:`pickles <python:library/pickle>` are not secure
against erroneous or maliciously constructed data.
Use :func:`numpy.save` and :func:`numpy.load`. Set ``allow_pickle=False``,
unless the array dtype includes Python objects, in which case pickling is
required.
Convert from a pandas DataFrame to a NumPy array
================================================
See :meth:`pandas.DataFrame.to_numpy`.
Save/restore using `~numpy.ndarray.tofile` and `~numpy.fromfile`
================================================================
In general, prefer :func:`numpy.save` and :func:`numpy.load`.
:func:`numpy.ndarray.tofile` and :func:`numpy.fromfile` lose information on
endianness and precision and so are unsuitable for anything but scratch
storage.
.. testcleanup::
>>> import os
>>> # list all files created in testsetup. If needed there are
>>> # convenienes in e.g. astroquery to do this more automatically
>>> for filename in ['csv.txt', 'fixedwidth.txt', 'nan.txt', 'skip.txt', 'tabs.txt']:
... os.remove(filename)
|