1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
|
===================
NumPy quickstart
===================
.. currentmodule:: numpy
.. testsetup::
>>> import numpy as np
>>> import sys
Prerequisites
=============
You'll need to know a bit of Python. For a refresher, see the `Python
tutorial <https://docs.python.org/tutorial/>`__.
To work the examples, you'll need ``matplotlib`` installed
in addition to NumPy.
**Learner profile**
This is a quick overview of arrays in NumPy. It demonstrates how n-dimensional
(:math:`n>=2`) arrays are represented and can be manipulated. In particular, if
you don't know how to apply common functions to n-dimensional arrays (without
using for-loops), or if you want to understand axis and shape properties for
n-dimensional arrays, this article might be of help.
**Learning Objectives**
After reading, you should be able to:
- Understand the difference between one-, two- and n-dimensional arrays in
NumPy;
- Understand how to apply some linear algebra operations to n-dimensional
arrays without using for-loops;
- Understand axis and shape properties for n-dimensional arrays.
.. _quickstart.the-basics:
The Basics
==========
NumPy's main object is the homogeneous multidimensional array. It is a
table of elements (usually numbers), all of the same type, indexed by a
tuple of non-negative integers. In NumPy dimensions are called *axes*.
For example, the array for the coordinates of a point in 3D space,
``[1, 2, 1]``, has one axis. That axis has 3 elements in it, so we say
it has a length of 3. In the example pictured below, the array has 2
axes. The first axis has a length of 2, the second axis has a length of
3.
::
[[1., 0., 0.],
[0., 1., 2.]]
NumPy's array class is called ``ndarray``. It is also known by the alias
``array``. Note that ``numpy.array`` is not the same as the Standard
Python Library class ``array.array``, which only handles one-dimensional
arrays and offers less functionality. The more important attributes of
an ``ndarray`` object are:
ndarray.ndim
the number of axes (dimensions) of the array.
ndarray.shape
the dimensions of the array. This is a tuple of integers indicating
the size of the array in each dimension. For a matrix with *n* rows
and *m* columns, ``shape`` will be ``(n,m)``. The length of the
``shape`` tuple is therefore the number of axes, ``ndim``.
ndarray.size
the total number of elements of the array. This is equal to the
product of the elements of ``shape``.
ndarray.dtype
an object describing the type of the elements in the array. One can
create or specify dtype's using standard Python types. Additionally
NumPy provides types of its own. numpy.int32, numpy.int16, and
numpy.float64 are some examples.
ndarray.itemsize
the size in bytes of each element of the array. For example, an
array of elements of type ``float64`` has ``itemsize`` 8 (=64/8),
while one of type ``complex32`` has ``itemsize`` 4 (=32/8). It is
equivalent to ``ndarray.dtype.itemsize``.
ndarray.data
the buffer containing the actual elements of the array. Normally, we
won't need to use this attribute because we will access the elements
in an array using indexing facilities.
An example
----------
>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<class 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<class 'numpy.ndarray'>
.. _quickstart.array-creation:
Array Creation
--------------
There are several ways to create arrays.
For example, you can create an array from a regular Python list or tuple
using the ``array`` function. The type of the resulting array is deduced
from the type of the elements in the sequences.
::
>>> import numpy as np
>>> a = np.array([2, 3, 4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
A frequent error consists in calling ``array`` with multiple arguments,
rather than providing a single sequence as an argument.
::
>>> a = np.array(1, 2, 3, 4) # WRONG
Traceback (most recent call last):
...
TypeError: array() takes from 1 to 2 positional arguments but 4 were given
>>> a = np.array([1, 2, 3, 4]) # RIGHT
``array`` transforms sequences of sequences into two-dimensional arrays,
sequences of sequences of sequences into three-dimensional arrays, and
so on.
::
>>> b = np.array([(1.5, 2, 3), (4, 5, 6)])
>>> b
array([[1.5, 2. , 3. ],
[4. , 5. , 6. ]])
The type of the array can also be explicitly specified at creation time:
::
>>> c = np.array([[1, 2], [3, 4]], dtype=complex)
>>> c
array([[1.+0.j, 2.+0.j],
[3.+0.j, 4.+0.j]])
Often, the elements of an array are originally unknown, but its size is
known. Hence, NumPy offers several functions to create
arrays with initial placeholder content. These minimize the necessity of
growing arrays, an expensive operation.
The function ``zeros`` creates an array full of zeros, the function
``ones`` creates an array full of ones, and the function ``empty``
creates an array whose initial content is random and depends on the
state of the memory. By default, the dtype of the created array is
``float64``, but it can be specified via the key word argument ``dtype``.
::
>>> np.zeros((3, 4))
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
>>> np.ones((2, 3, 4), dtype=np.int16)
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
<BLANKLINE>
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int16)
>>> np.empty((2, 3)) #doctest: +SKIP
array([[3.73603959e-262, 6.02658058e-154, 6.55490914e-260], # may vary
[5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
To create sequences of numbers, NumPy provides the ``arange`` function
which is analogous to the Python built-in ``range``, but returns an
array.
::
>>> np.arange(10, 30, 5)
array([10, 15, 20, 25])
>>> np.arange(0, 2, 0.3) # it accepts float arguments
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
When ``arange`` is used with floating point arguments, it is generally
not possible to predict the number of elements obtained, due to the
finite floating point precision. For this reason, it is usually better
to use the function ``linspace`` that receives as an argument the number
of elements that we want, instead of the step::
>>> from numpy import pi
>>> np.linspace(0, 2, 9) # 9 numbers from 0 to 2
array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
>>> x = np.linspace(0, 2 * pi, 100) # useful to evaluate function at lots of points
>>> f = np.sin(x)
.. seealso::
`array`,
`zeros`,
`zeros_like`,
`ones`,
`ones_like`,
`empty`,
`empty_like`,
`arange`,
`linspace`,
`numpy.random.Generator.rand`,
`numpy.random.Generator.randn`,
`fromfunction`,
`fromfile`
Printing Arrays
---------------
When you print an array, NumPy displays it in a similar way to nested
lists, but with the following layout:
- the last axis is printed from left to right,
- the second-to-last is printed from top to bottom,
- the rest are also printed from top to bottom, with each slice
separated from the next by an empty line.
One-dimensional arrays are then printed as rows, bidimensionals as
matrices and tridimensionals as lists of matrices.
::
>>> a = np.arange(6) # 1d array
>>> print(a)
[0 1 2 3 4 5]
>>>
>>> b = np.arange(12).reshape(4, 3) # 2d array
>>> print(b)
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
>>>
>>> c = np.arange(24).reshape(2, 3, 4) # 3d array
>>> print(c)
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
<BLANKLINE>
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
See :ref:`below <quickstart.shape-manipulation>` to get
more details on ``reshape``.
If an array is too large to be printed, NumPy automatically skips the
central part of the array and only prints the corners::
>>> print(np.arange(10000))
[ 0 1 2 ... 9997 9998 9999]
>>>
>>> print(np.arange(10000).reshape(100, 100))
[[ 0 1 2 ... 97 98 99]
[ 100 101 102 ... 197 198 199]
[ 200 201 202 ... 297 298 299]
...
[9700 9701 9702 ... 9797 9798 9799]
[9800 9801 9802 ... 9897 9898 9899]
[9900 9901 9902 ... 9997 9998 9999]]
To disable this behaviour and force NumPy to print the entire array, you
can change the printing options using ``set_printoptions``.
::
>>> np.set_printoptions(threshold=sys.maxsize) # sys module should be imported
.. _quickstart.basic-operations:
Basic Operations
----------------
Arithmetic operators on arrays apply *elementwise*. A new array is
created and filled with the result.
::
>>> a = np.array([20, 30, 40, 50])
>>> b = np.arange(4)
>>> b
array([0, 1, 2, 3])
>>> c = a - b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10 * np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a < 35
array([ True, True, False, False])
Unlike in many matrix languages, the product operator ``*`` operates
elementwise in NumPy arrays. The matrix product can be performed using
the ``@`` operator (in python >=3.5) or the ``dot`` function or method::
>>> A = np.array([[1, 1],
... [0, 1]])
>>> B = np.array([[2, 0],
... [3, 4]])
>>> A * B # elementwise product
array([[2, 0],
[0, 4]])
>>> A @ B # matrix product
array([[5, 4],
[3, 4]])
>>> A.dot(B) # another matrix product
array([[5, 4],
[3, 4]])
Some operations, such as ``+=`` and ``*=``, act in place to modify an
existing array rather than create a new one.
::
>>> rg = np.random.default_rng(1) # create instance of default random number generator
>>> a = np.ones((2, 3), dtype=int)
>>> b = rg.random((2, 3))
>>> a *= 3
>>> a
array([[3, 3, 3],
[3, 3, 3]])
>>> b += a
>>> b
array([[3.51182162, 3.9504637 , 3.14415961],
[3.94864945, 3.31183145, 3.42332645]])
>>> a += b # b is not automatically converted to integer type
Traceback (most recent call last):
...
numpy.core._exceptions._UFuncOutputCastingError: Cannot cast ufunc 'add' output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
When operating with arrays of different types, the type of the resulting
array corresponds to the more general or precise one (a behavior known
as upcasting).
::
>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0, pi, 3)
>>> b.dtype.name
'float64'
>>> c = a + b
>>> c
array([1. , 2.57079633, 4.14159265])
>>> c.dtype.name
'float64'
>>> d = np.exp(c * 1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
-0.54030231-0.84147098j])
>>> d.dtype.name
'complex128'
Many unary operations, such as computing the sum of all the elements in
the array, are implemented as methods of the ``ndarray`` class.
::
>>> a = rg.random((2, 3))
>>> a
array([[0.82770259, 0.40919914, 0.54959369],
[0.02755911, 0.75351311, 0.53814331]])
>>> a.sum()
3.1057109529998157
>>> a.min()
0.027559113243068367
>>> a.max()
0.8277025938204418
By default, these operations apply to the array as though it were a list
of numbers, regardless of its shape. However, by specifying the ``axis``
parameter you can apply an operation along the specified axis of an
array::
>>> b = np.arange(12).reshape(3, 4)
>>> b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>>
>>> b.sum(axis=0) # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1) # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1) # cumulative sum along each row
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
Universal Functions
-------------------
NumPy provides familiar mathematical functions such as sin, cos, and
exp. In NumPy, these are called "universal
functions" (\ ``ufunc``). Within NumPy, these functions
operate elementwise on an array, producing an array as output.
::
>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([1. , 2.71828183, 7.3890561 ])
>>> np.sqrt(B)
array([0. , 1. , 1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([2., 0., 6.])
.. seealso::
`all`,
`any`,
`apply_along_axis`,
`argmax`,
`argmin`,
`argsort`,
`average`,
`bincount`,
`ceil`,
`clip`,
`conj`,
`corrcoef`,
`cov`,
`cross`,
`cumprod`,
`cumsum`,
`diff`,
`dot`,
`floor`,
`inner`,
`invert`,
`lexsort`,
`max`,
`maximum`,
`mean`,
`median`,
`min`,
`minimum`,
`nonzero`,
`outer`,
`prod`,
`re`,
`round`,
`sort`,
`std`,
`sum`,
`trace`,
`transpose`,
`var`,
`vdot`,
`vectorize`,
`where`
.. _quickstart.indexing-slicing-and-iterating:
Indexing, Slicing and Iterating
-------------------------------
**One-dimensional** arrays can be indexed, sliced and iterated over,
much like
`lists <https://docs.python.org/tutorial/introduction.html#lists>`__
and other Python sequences.
::
>>> a = np.arange(10)**3
>>> a
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> # equivalent to a[0:6:2] = 1000;
>>> # from start to position 6, exclusive, set every 2nd element to 1000
>>> a[:6:2] = 1000
>>> a
array([1000, 1, 1000, 27, 1000, 125, 216, 343, 512, 729])
>>> a[::-1] # reversed a
array([ 729, 512, 343, 216, 125, 1000, 27, 1000, 1, 1000])
>>> for i in a:
... print(i**(1 / 3.))
...
9.999999999999998
1.0
9.999999999999998
3.0
9.999999999999998
4.999999999999999
5.999999999999999
6.999999999999999
7.999999999999999
8.999999999999998
**Multidimensional** arrays can have one index per axis. These indices
are given in a tuple separated by commas::
>>> def f(x, y):
... return 10 * x + y
...
>>> b = np.fromfunction(f, (5, 4), dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2, 3]
23
>>> b[0:5, 1] # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[:, 1] # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, :] # each column in the second and third row of b
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
When fewer indices are provided than the number of axes, the missing
indices are considered complete slices\ ``:``
::
>>> b[-1] # the last row. Equivalent to b[-1, :]
array([40, 41, 42, 43])
The expression within brackets in ``b[i]`` is treated as an ``i``
followed by as many instances of ``:`` as needed to represent the
remaining axes. NumPy also allows you to write this using dots as
``b[i, ...]``.
The **dots** (``...``) represent as many colons as needed to produce a
complete indexing tuple. For example, if ``x`` is an array with 5
axes, then
- ``x[1, 2, ...]`` is equivalent to ``x[1, 2, :, :, :]``,
- ``x[..., 3]`` to ``x[:, :, :, :, 3]`` and
- ``x[4, ..., 5, :]`` to ``x[4, :, :, 5, :]``.
::
>>> c = np.array([[[ 0, 1, 2], # a 3D array (two stacked 2D arrays)
... [ 10, 12, 13]],
... [[100, 101, 102],
... [110, 112, 113]]])
>>> c.shape
(2, 2, 3)
>>> c[1, ...] # same as c[1, :, :] or c[1]
array([[100, 101, 102],
[110, 112, 113]])
>>> c[..., 2] # same as c[:, :, 2]
array([[ 2, 13],
[102, 113]])
**Iterating** over multidimensional arrays is done with respect to the
first axis::
>>> for row in b:
... print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]
However, if one wants to perform an operation on each element in the
array, one can use the ``flat`` attribute which is an
`iterator <https://docs.python.org/tutorial/classes.html#iterators>`__
over all the elements of the array::
>>> for element in b.flat:
... print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
43
.. seealso::
:ref:`basics.indexing`,
:ref:`arrays.indexing` (reference),
`newaxis`,
`ndenumerate`,
`indices`
.. _quickstart.shape-manipulation:
Shape Manipulation
==================
Changing the shape of an array
------------------------------
An array has a shape given by the number of elements along each axis::
>>> a = np.floor(10 * rg.random((3, 4)))
>>> a
array([[3., 7., 3., 4.],
[1., 4., 2., 2.],
[7., 2., 4., 9.]])
>>> a.shape
(3, 4)
The shape of an array can be changed with various commands. Note that the
following three commands all return a modified array, but do not change
the original array::
>>> a.ravel() # returns the array, flattened
array([3., 7., 3., 4., 1., 4., 2., 2., 7., 2., 4., 9.])
>>> a.reshape(6, 2) # returns the array with a modified shape
array([[3., 7.],
[3., 4.],
[1., 4.],
[2., 2.],
[7., 2.],
[4., 9.]])
>>> a.T # returns the array, transposed
array([[3., 1., 7.],
[7., 4., 2.],
[3., 2., 4.],
[4., 2., 9.]])
>>> a.T.shape
(4, 3)
>>> a.shape
(3, 4)
The order of the elements in the array resulting from ``ravel`` is
normally "C-style", that is, the rightmost index "changes the fastest",
so the element after ``a[0, 0]`` is ``a[0, 1]``. If the array is reshaped to some
other shape, again the array is treated as "C-style". NumPy normally
creates arrays stored in this order, so ``ravel`` will usually not need to
copy its argument, but if the array was made by taking slices of another
array or created with unusual options, it may need to be copied. The
functions ``ravel`` and ``reshape`` can also be instructed, using an
optional argument, to use FORTRAN-style arrays, in which the leftmost
index changes the fastest.
The `reshape` function returns its
argument with a modified shape, whereas the
`ndarray.resize` method modifies the array
itself::
>>> a
array([[3., 7., 3., 4.],
[1., 4., 2., 2.],
[7., 2., 4., 9.]])
>>> a.resize((2, 6))
>>> a
array([[3., 7., 3., 4., 1., 4.],
[2., 2., 7., 2., 4., 9.]])
If a dimension is given as ``-1`` in a reshaping operation, the other
dimensions are automatically calculated::
>>> a.reshape(3, -1)
array([[3., 7., 3., 4.],
[1., 4., 2., 2.],
[7., 2., 4., 9.]])
.. seealso::
`ndarray.shape`,
`reshape`,
`resize`,
`ravel`
.. _quickstart.stacking-arrays:
Stacking together different arrays
----------------------------------
Several arrays can be stacked together along different axes::
>>> a = np.floor(10 * rg.random((2, 2)))
>>> a
array([[9., 7.],
[5., 2.]])
>>> b = np.floor(10 * rg.random((2, 2)))
>>> b
array([[1., 9.],
[5., 1.]])
>>> np.vstack((a, b))
array([[9., 7.],
[5., 2.],
[1., 9.],
[5., 1.]])
>>> np.hstack((a, b))
array([[9., 7., 1., 9.],
[5., 2., 5., 1.]])
The function `column_stack` stacks 1D arrays as columns into a 2D array.
It is equivalent to `hstack` only for 2D arrays::
>>> from numpy import newaxis
>>> np.column_stack((a, b)) # with 2D arrays
array([[9., 7., 1., 9.],
[5., 2., 5., 1.]])
>>> a = np.array([4., 2.])
>>> b = np.array([3., 8.])
>>> np.column_stack((a, b)) # returns a 2D array
array([[4., 3.],
[2., 8.]])
>>> np.hstack((a, b)) # the result is different
array([4., 2., 3., 8.])
>>> a[:, newaxis] # view `a` as a 2D column vector
array([[4.],
[2.]])
>>> np.column_stack((a[:, newaxis], b[:, newaxis]))
array([[4., 3.],
[2., 8.]])
>>> np.hstack((a[:, newaxis], b[:, newaxis])) # the result is the same
array([[4., 3.],
[2., 8.]])
On the other hand, the function `row_stack` is equivalent to `vstack`
for any input arrays. In fact, `row_stack` is an alias for `vstack`::
>>> np.column_stack is np.hstack
False
>>> np.row_stack is np.vstack
True
In general, for arrays with more than two dimensions,
`hstack` stacks along their second
axes, `vstack` stacks along their
first axes, and `concatenate`
allows for an optional arguments giving the number of the axis along
which the concatenation should happen.
**Note**
In complex cases, `r_` and `c_` are useful for creating arrays by stacking
numbers along one axis. They allow the use of range literals ``:``. ::
>>> np.r_[1:4, 0, 4]
array([1, 2, 3, 0, 4])
When used with arrays as arguments,
`r_` and
`c_` are similar to
`vstack` and
`hstack` in their default behavior,
but allow for an optional argument giving the number of the axis along
which to concatenate.
.. seealso::
`hstack`,
`vstack`,
`column_stack`,
`concatenate`,
`c_`,
`r_`
Splitting one array into several smaller ones
---------------------------------------------
Using `hsplit`, you can split an
array along its horizontal axis, either by specifying the number of
equally shaped arrays to return, or by specifying the columns after
which the division should occur::
>>> a = np.floor(10 * rg.random((2, 12)))
>>> a
array([[6., 7., 6., 9., 0., 5., 4., 0., 6., 8., 5., 2.],
[8., 5., 5., 7., 1., 8., 6., 7., 1., 8., 1., 0.]])
>>> # Split `a` into 3
>>> np.hsplit(a, 3)
[array([[6., 7., 6., 9.],
[8., 5., 5., 7.]]), array([[0., 5., 4., 0.],
[1., 8., 6., 7.]]), array([[6., 8., 5., 2.],
[1., 8., 1., 0.]])]
>>> # Split `a` after the third and the fourth column
>>> np.hsplit(a, (3, 4))
[array([[6., 7., 6.],
[8., 5., 5.]]), array([[9.],
[7.]]), array([[0., 5., 4., 0., 6., 8., 5., 2.],
[1., 8., 6., 7., 1., 8., 1., 0.]])]
`vsplit` splits along the vertical
axis, and `array_split` allows
one to specify along which axis to split.
.. _quickstart.copies-and-views:
Copies and Views
================
When operating and manipulating arrays, their data is sometimes copied
into a new array and sometimes not. This is often a source of confusion
for beginners. There are three cases:
No Copy at All
--------------
Simple assignments make no copy of objects or their data.
::
>>> a = np.array([[ 0, 1, 2, 3],
... [ 4, 5, 6, 7],
... [ 8, 9, 10, 11]])
>>> b = a # no new object is created
>>> b is a # a and b are two names for the same ndarray object
True
Python passes mutable objects as references, so function calls make no
copy.
::
>>> def f(x):
... print(id(x))
...
>>> id(a) # id is a unique identifier of an object #doctest: +SKIP
148293216 # may vary
>>> f(a) #doctest: +SKIP
148293216 # may vary
View or Shallow Copy
--------------------
Different array objects can share the same data. The ``view`` method
creates a new array object that looks at the same data.
::
>>> c = a.view()
>>> c is a
False
>>> c.base is a # c is a view of the data owned by a
True
>>> c.flags.owndata
False
>>>
>>> c = c.reshape((2, 6)) # a's shape doesn't change
>>> a.shape
(3, 4)
>>> c[0, 4] = 1234 # a's data changes
>>> a
array([[ 0, 1, 2, 3],
[1234, 5, 6, 7],
[ 8, 9, 10, 11]])
Slicing an array returns a view of it::
>>> s = a[:, 1:3]
>>> s[:] = 10 # s[:] is a view of s. Note the difference between s = 10 and s[:] = 10
>>> a
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
Deep Copy
---------
The ``copy`` method makes a complete copy of the array and its data.
::
>>> d = a.copy() # a new array object with new data is created
>>> d is a
False
>>> d.base is a # d doesn't share anything with a
False
>>> d[0, 0] = 9999
>>> a
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
Sometimes ``copy`` should be called after slicing if the original array is not required anymore.
For example, suppose ``a`` is a huge intermediate result and the final result ``b`` only contains
a small fraction of ``a``, a deep copy should be made when constructing ``b`` with slicing::
>>> a = np.arange(int(1e8))
>>> b = a[:100].copy()
>>> del a # the memory of ``a`` can be released.
If ``b = a[:100]`` is used instead, ``a`` is referenced by ``b`` and will persist in memory
even if ``del a`` is executed.
Functions and Methods Overview
------------------------------
Here is a list of some useful NumPy functions and methods names
ordered in categories. See :ref:`routines` for the full list.
Array Creation
`arange`,
`array`,
`copy`,
`empty`,
`empty_like`,
`eye`,
`fromfile`,
`fromfunction`,
`identity`,
`linspace`,
`logspace`,
`mgrid`,
`ogrid`,
`ones`,
`ones_like`,
`r_`,
`zeros`,
`zeros_like`
Conversions
`ndarray.astype`,
`atleast_1d`,
`atleast_2d`,
`atleast_3d`,
`mat`
Manipulations
`array_split`,
`column_stack`,
`concatenate`,
`diagonal`,
`dsplit`,
`dstack`,
`hsplit`,
`hstack`,
`ndarray.item`,
`newaxis`,
`ravel`,
`repeat`,
`reshape`,
`resize`,
`squeeze`,
`swapaxes`,
`take`,
`transpose`,
`vsplit`,
`vstack`
Questions
`all`,
`any`,
`nonzero`,
`where`
Ordering
`argmax`,
`argmin`,
`argsort`,
`max`,
`min`,
`ptp`,
`searchsorted`,
`sort`
Operations
`choose`,
`compress`,
`cumprod`,
`cumsum`,
`inner`,
`ndarray.fill`,
`imag`,
`prod`,
`put`,
`putmask`,
`real`,
`sum`
Basic Statistics
`cov`,
`mean`,
`std`,
`var`
Basic Linear Algebra
`cross`,
`dot`,
`outer`,
`linalg.svd`,
`vdot`
Less Basic
==========
.. _broadcasting-rules:
Broadcasting rules
------------------
Broadcasting allows universal functions to deal in a meaningful way with
inputs that do not have exactly the same shape.
The first rule of broadcasting is that if all input arrays do not have
the same number of dimensions, a "1" will be repeatedly prepended to the
shapes of the smaller arrays until all the arrays have the same number
of dimensions.
The second rule of broadcasting ensures that arrays with a size of 1
along a particular dimension act as if they had the size of the array
with the largest shape along that dimension. The value of the array
element is assumed to be the same along that dimension for the
"broadcast" array.
After application of the broadcasting rules, the sizes of all arrays
must match. More details can be found in :ref:`basics.broadcasting`.
Advanced indexing and index tricks
==================================
NumPy offers more indexing facilities than regular Python sequences. In
addition to indexing by integers and slices, as we saw before, arrays
can be indexed by arrays of integers and arrays of booleans.
Indexing with Arrays of Indices
-------------------------------
::
>>> a = np.arange(12)**2 # the first 12 square numbers
>>> i = np.array([1, 1, 3, 8, 5]) # an array of indices
>>> a[i] # the elements of `a` at the positions `i`
array([ 1, 1, 9, 64, 25])
>>>
>>> j = np.array([[3, 4], [9, 7]]) # a bidimensional array of indices
>>> a[j] # the same shape as `j`
array([[ 9, 16],
[81, 49]])
When the indexed array ``a`` is multidimensional, a single array of
indices refers to the first dimension of ``a``. The following example
shows this behavior by converting an image of labels into a color image
using a palette.
::
>>> palette = np.array([[0, 0, 0], # black
... [255, 0, 0], # red
... [0, 255, 0], # green
... [0, 0, 255], # blue
... [255, 255, 255]]) # white
>>> image = np.array([[0, 1, 2, 0], # each value corresponds to a color in the palette
... [0, 3, 4, 0]])
>>> palette[image] # the (2, 4, 3) color image
array([[[ 0, 0, 0],
[255, 0, 0],
[ 0, 255, 0],
[ 0, 0, 0]],
<BLANKLINE>
[[ 0, 0, 0],
[ 0, 0, 255],
[255, 255, 255],
[ 0, 0, 0]]])
We can also give indexes for more than one dimension. The arrays of
indices for each dimension must have the same shape.
::
>>> a = np.arange(12).reshape(3, 4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> i = np.array([[0, 1], # indices for the first dim of `a`
... [1, 2]])
>>> j = np.array([[2, 1], # indices for the second dim
... [3, 3]])
>>>
>>> a[i, j] # i and j must have equal shape
array([[ 2, 5],
[ 7, 11]])
>>>
>>> a[i, 2]
array([[ 2, 6],
[ 6, 10]])
>>>
>>> a[:, j]
array([[[ 2, 1],
[ 3, 3]],
<BLANKLINE>
[[ 6, 5],
[ 7, 7]],
<BLANKLINE>
[[10, 9],
[11, 11]]])
In Python, ``arr[i, j]`` is exactly the same as ``arr[(i, j)]``---so we can
put ``i`` and ``j`` in a ``tuple`` and then do the indexing with that.
::
>>> l = (i, j)
>>> # equivalent to a[i, j]
>>> a[l]
array([[ 2, 5],
[ 7, 11]])
However, we can not do this by putting ``i`` and ``j`` into an array,
because this array will be interpreted as indexing the first dimension
of ``a``.
::
>>> s = np.array([i, j])
>>> # not what we want
>>> a[s]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: index 3 is out of bounds for axis 0 with size 3
>>> # same as `a[i, j]`
>>> a[tuple(s)]
array([[ 2, 5],
[ 7, 11]])
Another common use of indexing with arrays is the search of the maximum
value of time-dependent series::
>>> time = np.linspace(20, 145, 5) # time scale
>>> data = np.sin(np.arange(20)).reshape(5, 4) # 4 time-dependent series
>>> time
array([ 20. , 51.25, 82.5 , 113.75, 145. ])
>>> data
array([[ 0. , 0.84147098, 0.90929743, 0.14112001],
[-0.7568025 , -0.95892427, -0.2794155 , 0.6569866 ],
[ 0.98935825, 0.41211849, -0.54402111, -0.99999021],
[-0.53657292, 0.42016704, 0.99060736, 0.65028784],
[-0.28790332, -0.96139749, -0.75098725, 0.14987721]])
>>> # index of the maxima for each series
>>> ind = data.argmax(axis=0)
>>> ind
array([2, 0, 3, 1])
>>> # times corresponding to the maxima
>>> time_max = time[ind]
>>>
>>> data_max = data[ind, range(data.shape[1])] # => data[ind[0], 0], data[ind[1], 1]...
>>> time_max
array([ 82.5 , 20. , 113.75, 51.25])
>>> data_max
array([0.98935825, 0.84147098, 0.99060736, 0.6569866 ])
>>> np.all(data_max == data.max(axis=0))
True
You can also use indexing with arrays as a target to assign to::
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a[[1, 3, 4]] = 0
>>> a
array([0, 0, 2, 0, 0])
However, when the list of indices contains repetitions, the assignment
is done several times, leaving behind the last value::
>>> a = np.arange(5)
>>> a[[0, 0, 2]] = [1, 2, 3]
>>> a
array([2, 1, 3, 3, 4])
This is reasonable enough, but watch out if you want to use Python's
``+=`` construct, as it may not do what you expect::
>>> a = np.arange(5)
>>> a[[0, 0, 2]] += 1
>>> a
array([1, 1, 3, 3, 4])
Even though 0 occurs twice in the list of indices, the 0th element is
only incremented once. This is because Python requires ``a += 1`` to be
equivalent to ``a = a + 1``.
Indexing with Boolean Arrays
----------------------------
When we index arrays with arrays of (integer) indices we are providing
the list of indices to pick. With boolean indices the approach is
different; we explicitly choose which items in the array we want and
which ones we don't.
The most natural way one can think of for boolean indexing is to use
boolean arrays that have *the same shape* as the original array::
>>> a = np.arange(12).reshape(3, 4)
>>> b = a > 4
>>> b # `b` is a boolean with `a`'s shape
array([[False, False, False, False],
[False, True, True, True],
[ True, True, True, True]])
>>> a[b] # 1d array with the selected elements
array([ 5, 6, 7, 8, 9, 10, 11])
This property can be very useful in assignments::
>>> a[b] = 0 # All elements of `a` higher than 4 become 0
>>> a
array([[0, 1, 2, 3],
[4, 0, 0, 0],
[0, 0, 0, 0]])
You can look at the following
example to see
how to use boolean indexing to generate an image of the `Mandelbrot
set <https://en.wikipedia.org/wiki/Mandelbrot_set>`__:
.. plot::
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> def mandelbrot(h, w, maxit=20, r=2):
... """Returns an image of the Mandelbrot fractal of size (h,w)."""
... x = np.linspace(-2.5, 1.5, 4*h+1)
... y = np.linspace(-1.5, 1.5, 3*w+1)
... A, B = np.meshgrid(x, y)
... C = A + B*1j
... z = np.zeros_like(C)
... divtime = maxit + np.zeros(z.shape, dtype=int)
...
... for i in range(maxit):
... z = z**2 + C
... diverge = abs(z) > r # who is diverging
... div_now = diverge & (divtime == maxit) # who is diverging now
... divtime[div_now] = i # note when
... z[diverge] = r # avoid diverging too much
...
... return divtime
>>> plt.clf()
>>> plt.imshow(mandelbrot(400, 400))
The second way of indexing with booleans is more similar to integer
indexing; for each dimension of the array we give a 1D boolean array
selecting the slices we want::
>>> a = np.arange(12).reshape(3, 4)
>>> b1 = np.array([False, True, True]) # first dim selection
>>> b2 = np.array([True, False, True, False]) # second dim selection
>>>
>>> a[b1, :] # selecting rows
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>>
>>> a[b1] # same thing
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>>
>>> a[:, b2] # selecting columns
array([[ 0, 2],
[ 4, 6],
[ 8, 10]])
>>>
>>> a[b1, b2] # a weird thing to do
array([ 4, 10])
Note that the length of the 1D boolean array must coincide with the
length of the dimension (or axis) you want to slice. In the previous
example, ``b1`` has length 3 (the number of *rows* in ``a``), and
``b2`` (of length 4) is suitable to index the 2nd axis (columns) of
``a``.
The ix_() function
-------------------
The `ix_` function can be used to combine different vectors so as to
obtain the result for each n-uplet. For example, if you want to compute
all the a+b\*c for all the triplets taken from each of the vectors a, b
and c::
>>> a = np.array([2, 3, 4, 5])
>>> b = np.array([8, 5, 4])
>>> c = np.array([5, 4, 6, 8, 3])
>>> ax, bx, cx = np.ix_(a, b, c)
>>> ax
array([[[2]],
<BLANKLINE>
[[3]],
<BLANKLINE>
[[4]],
<BLANKLINE>
[[5]]])
>>> bx
array([[[8],
[5],
[4]]])
>>> cx
array([[[5, 4, 6, 8, 3]]])
>>> ax.shape, bx.shape, cx.shape
((4, 1, 1), (1, 3, 1), (1, 1, 5))
>>> result = ax + bx * cx
>>> result
array([[[42, 34, 50, 66, 26],
[27, 22, 32, 42, 17],
[22, 18, 26, 34, 14]],
<BLANKLINE>
[[43, 35, 51, 67, 27],
[28, 23, 33, 43, 18],
[23, 19, 27, 35, 15]],
<BLANKLINE>
[[44, 36, 52, 68, 28],
[29, 24, 34, 44, 19],
[24, 20, 28, 36, 16]],
<BLANKLINE>
[[45, 37, 53, 69, 29],
[30, 25, 35, 45, 20],
[25, 21, 29, 37, 17]]])
>>> result[3, 2, 4]
17
>>> a[3] + b[2] * c[4]
17
You could also implement the reduce as follows::
>>> def ufunc_reduce(ufct, *vectors):
... vs = np.ix_(*vectors)
... r = ufct.identity
... for v in vs:
... r = ufct(r, v)
... return r
and then use it as::
>>> ufunc_reduce(np.add, a, b, c)
array([[[15, 14, 16, 18, 13],
[12, 11, 13, 15, 10],
[11, 10, 12, 14, 9]],
<BLANKLINE>
[[16, 15, 17, 19, 14],
[13, 12, 14, 16, 11],
[12, 11, 13, 15, 10]],
<BLANKLINE>
[[17, 16, 18, 20, 15],
[14, 13, 15, 17, 12],
[13, 12, 14, 16, 11]],
<BLANKLINE>
[[18, 17, 19, 21, 16],
[15, 14, 16, 18, 13],
[14, 13, 15, 17, 12]]])
The advantage of this version of reduce compared to the normal
ufunc.reduce is that it makes use of the
:ref:`broadcasting rules <broadcasting-rules>`
in order to avoid creating an argument array the size of the output
times the number of vectors.
Indexing with strings
---------------------
See :ref:`structured_arrays`.
Tricks and Tips
===============
Here we give a list of short and useful tips.
"Automatic" Reshaping
---------------------
To change the dimensions of an array, you can omit one of the sizes
which will then be deduced automatically::
>>> a = np.arange(30)
>>> b = a.reshape((2, -1, 3)) # -1 means "whatever is needed"
>>> b.shape
(2, 5, 3)
>>> b
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]],
<BLANKLINE>
[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]]])
Vector Stacking
---------------
How do we construct a 2D array from a list of equally-sized row vectors?
In MATLAB this is quite easy: if ``x`` and ``y`` are two vectors of the
same length you only need do ``m=[x;y]``. In NumPy this works via the
functions ``column_stack``, ``dstack``, ``hstack`` and ``vstack``,
depending on the dimension in which the stacking is to be done. For
example::
>>> x = np.arange(0, 10, 2)
>>> y = np.arange(5)
>>> m = np.vstack([x, y])
>>> m
array([[0, 2, 4, 6, 8],
[0, 1, 2, 3, 4]])
>>> xy = np.hstack([x, y])
>>> xy
array([0, 2, 4, 6, 8, 0, 1, 2, 3, 4])
The logic behind those functions in more than two dimensions can be
strange.
.. seealso::
:doc:`numpy-for-matlab-users`
Histograms
----------
The NumPy ``histogram`` function applied to an array returns a pair of
vectors: the histogram of the array and a vector of the bin edges. Beware:
``matplotlib`` also has a function to build histograms (called ``hist``,
as in Matlab) that differs from the one in NumPy. The main difference is
that ``pylab.hist`` plots the histogram automatically, while
``numpy.histogram`` only generates the data.
.. plot::
>>> import numpy as np
>>> rg = np.random.default_rng(1)
>>> import matplotlib.pyplot as plt
>>> # Build a vector of 10000 normal deviates with variance 0.5^2 and mean 2
>>> mu, sigma = 2, 0.5
>>> v = rg.normal(mu, sigma, 10000)
>>> # Plot a normalized histogram with 50 bins
>>> plt.hist(v, bins=50, density=True) # matplotlib version (plot)
(array...)
>>> # Compute the histogram with numpy and then plot it
>>> (n, bins) = np.histogram(v, bins=50, density=True) # NumPy version (no plot)
>>> plt.plot(.5 * (bins[1:] + bins[:-1]), n) #doctest: +SKIP
With Matplotlib >=3.4 you can also use ``plt.stairs(n, bins)``.
Further reading
===============
- The `Python tutorial <https://docs.python.org/tutorial/>`__
- :ref:`reference`
- `SciPy Tutorial <https://docs.scipy.org/doc/scipy/reference/tutorial/index.html>`__
- `SciPy Lecture Notes <https://scipy-lectures.org>`__
- A `matlab, R, IDL, NumPy/SciPy dictionary <http://mathesaurus.sf.net/>`__
- :doc:`tutorial-svd <numpy-tutorials:content/tutorial-svd>`
|