1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
.. currentmodule:: numpy
*********
Constants
*********
NumPy includes several constants:
.. data:: e
Euler's constant, base of natural logarithms, Napier's constant.
``e = 2.71828182845904523536028747135266249775724709369995...``
.. rubric:: See Also
exp : Exponential function
log : Natural logarithm
.. rubric:: References
https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
.. data:: euler_gamma
``γ = 0.5772156649015328606065120900824024310421...``
.. rubric:: References
https://en.wikipedia.org/wiki/Euler%27s_constant
.. data:: inf
IEEE 754 floating point representation of (positive) infinity.
.. rubric:: Returns
y : float
A floating point representation of positive infinity.
.. rubric:: See Also
isinf : Shows which elements are positive or negative infinity
isposinf : Shows which elements are positive infinity
isneginf : Shows which elements are negative infinity
isnan : Shows which elements are Not a Number
isfinite : Shows which elements are finite (not one of Not a Number,
positive infinity and negative infinity)
.. rubric:: Notes
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.
.. rubric:: Examples
.. try_examples::
>>> import numpy as np
>>> np.inf
inf
>>> np.array([1]) / 0.
array([inf])
.. data:: nan
IEEE 754 floating point representation of Not a Number (NaN).
.. rubric:: Returns
y : A floating point representation of Not a Number.
.. rubric:: See Also
isnan : Shows which elements are Not a Number.
isfinite : Shows which elements are finite (not one of
Not a Number, positive infinity and negative infinity)
.. rubric:: Notes
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
.. rubric:: Examples
.. try_examples::
>>> import numpy as np
>>> np.nan
nan
>>> np.log(-1)
np.float64(nan)
>>> np.log([-1, 1, 2])
array([ nan, 0. , 0.69314718])
.. data:: newaxis
A convenient alias for None, useful for indexing arrays.
.. rubric:: Examples
.. try_examples::
>>> import numpy as np
>>> np.newaxis is None
True
>>> x = np.arange(3)
>>> x
array([0, 1, 2])
>>> x[:, np.newaxis]
array([[0],
[1],
[2]])
>>> x[:, np.newaxis, np.newaxis]
array([[[0]],
[[1]],
[[2]]])
>>> x[:, np.newaxis] * x
array([[0, 0, 0],
[0, 1, 2],
[0, 2, 4]])
Outer product, same as ``outer(x, y)``:
>>> y = np.arange(3, 6)
>>> x[:, np.newaxis] * y
array([[ 0, 0, 0],
[ 3, 4, 5],
[ 6, 8, 10]])
``x[np.newaxis, :]`` is equivalent to ``x[np.newaxis]`` and ``x[None]``:
>>> x[np.newaxis, :].shape
(1, 3)
>>> x[np.newaxis].shape
(1, 3)
>>> x[None].shape
(1, 3)
>>> x[:, np.newaxis].shape
(3, 1)
.. data:: pi
``pi = 3.1415926535897932384626433...``
.. rubric:: References
https://en.wikipedia.org/wiki/Pi
|