File: constants.rst

package info (click to toggle)
numpy 1%3A2.3.3%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 85,940 kB
  • sloc: python: 255,476; asm: 232,483; ansic: 212,559; cpp: 157,437; f90: 1,575; sh: 845; fortran: 567; makefile: 423; sed: 139; xml: 109; java: 97; perl: 82; cs: 62; javascript: 53; objc: 33; lex: 13; yacc: 9
file content (160 lines) | stat: -rw-r--r-- 3,351 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
.. currentmodule:: numpy

*********
Constants
*********

NumPy includes several constants:

.. data:: e

    Euler's constant, base of natural logarithms, Napier's constant.

    ``e = 2.71828182845904523536028747135266249775724709369995...``

    .. rubric:: See Also

    exp : Exponential function
    log : Natural logarithm

    .. rubric:: References

    https://en.wikipedia.org/wiki/E_%28mathematical_constant%29


.. data:: euler_gamma

    ``γ = 0.5772156649015328606065120900824024310421...``

    .. rubric:: References

    https://en.wikipedia.org/wiki/Euler%27s_constant


.. data:: inf

    IEEE 754 floating point representation of (positive) infinity.

    .. rubric:: Returns

    y : float
        A floating point representation of positive infinity.

    .. rubric:: See Also

    isinf : Shows which elements are positive or negative infinity

    isposinf : Shows which elements are positive infinity

    isneginf : Shows which elements are negative infinity

    isnan : Shows which elements are Not a Number

    isfinite : Shows which elements are finite (not one of Not a Number,
    positive infinity and negative infinity)

    .. rubric:: Notes

    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754). This means that Not a Number is not equivalent to infinity.
    Also that positive infinity is not equivalent to negative infinity. But
    infinity is equivalent to positive infinity.

    .. rubric:: Examples

.. try_examples::

    >>> import numpy as np
    >>> np.inf
    inf
    >>> np.array([1]) / 0.
    array([inf])


.. data:: nan

    IEEE 754 floating point representation of Not a Number (NaN).

    .. rubric:: Returns

    y : A floating point representation of Not a Number.

    .. rubric:: See Also

    isnan : Shows which elements are Not a Number.

    isfinite : Shows which elements are finite (not one of
    Not a Number, positive infinity and negative infinity)

    .. rubric:: Notes

    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754). This means that Not a Number is not equivalent to infinity.

    .. rubric:: Examples

.. try_examples::

    >>> import numpy as np
    >>> np.nan
    nan
    >>> np.log(-1)
    np.float64(nan)
    >>> np.log([-1, 1, 2])
    array([       nan, 0.        , 0.69314718])


.. data:: newaxis

    A convenient alias for None, useful for indexing arrays.

    .. rubric:: Examples

.. try_examples::

    >>> import numpy as np
    >>> np.newaxis is None
    True
    >>> x = np.arange(3)
    >>> x
    array([0, 1, 2])
    >>> x[:, np.newaxis]
    array([[0],
    [1],
    [2]])
    >>> x[:, np.newaxis, np.newaxis]
    array([[[0]],
    [[1]],
    [[2]]])
    >>> x[:, np.newaxis] * x
    array([[0, 0, 0],
        [0, 1, 2],
        [0, 2, 4]])

    Outer product, same as ``outer(x, y)``:

    >>> y = np.arange(3, 6)
    >>> x[:, np.newaxis] * y
    array([[ 0,  0,  0],
        [ 3,  4,  5],
        [ 6,  8, 10]])

    ``x[np.newaxis, :]`` is equivalent to ``x[np.newaxis]`` and ``x[None]``:

    >>> x[np.newaxis, :].shape
    (1, 3)
    >>> x[np.newaxis].shape
    (1, 3)
    >>> x[None].shape
    (1, 3)
    >>> x[:, np.newaxis].shape
    (3, 1)


.. data:: pi

    ``pi = 3.1415926535897932384626433...``

    .. rubric:: References

    https://en.wikipedia.org/wiki/Pi