File: bench_app.py

package info (click to toggle)
numpy 1%3A2.3.4%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 86,072 kB
  • sloc: python: 255,800; asm: 232,483; ansic: 212,593; cpp: 157,465; f90: 1,575; sh: 845; fortran: 567; makefile: 431; sed: 139; xml: 109; java: 97; perl: 82; cs: 62; javascript: 53; objc: 33; lex: 13; yacc: 9
file content (85 lines) | stat: -rw-r--r-- 2,669 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np

from .common import Benchmark


class LaplaceInplace(Benchmark):
    params = ['inplace', 'normal']
    param_names = ['update']

    def setup(self, update):
        N = 150
        Niter = 1000
        dx = 0.1
        dy = 0.1
        dx2 = (dx * dx)
        dy2 = (dy * dy)

        def num_update(u, dx2, dy2):
            u[1:(-1), 1:(-1)] = ((((u[2:, 1:(-1)] + u[:(-2), 1:(-1)]) * dy2) +
                                  ((u[1:(-1), 2:] + u[1:(-1), :(-2)]) * dx2))
                                 / (2 * (dx2 + dy2)))

        def num_inplace(u, dx2, dy2):
            tmp = u[:(-2), 1:(-1)].copy()
            np.add(tmp, u[2:, 1:(-1)], out=tmp)
            np.multiply(tmp, dy2, out=tmp)
            tmp2 = u[1:(-1), 2:].copy()
            np.add(tmp2, u[1:(-1), :(-2)], out=tmp2)
            np.multiply(tmp2, dx2, out=tmp2)
            np.add(tmp, tmp2, out=tmp)
            np.multiply(tmp, (1.0 / (2.0 * (dx2 + dy2))),
                        out=u[1:(-1), 1:(-1)])

        def laplace(N, Niter=100, func=num_update, args=()):
            u = np.zeros([N, N], order='C')
            u[0] = 1
            for i in range(Niter):
                func(u, *args)
            return u

        func = {'inplace': num_inplace, 'normal': num_update}[update]

        def run():
            laplace(N, Niter, func, args=(dx2, dy2))

        self.run = run

    def time_it(self, update):
        self.run()


class MaxesOfDots(Benchmark):
    def setup(self):
        np.random.seed(1)
        nsubj = 5
        nfeat = 100
        ntime = 200

        self.arrays = [np.random.normal(size=(ntime, nfeat))
                       for i in range(nsubj)]

    def maxes_of_dots(self, arrays):
        """
        A magical feature score for each feature in each dataset
        :ref:`Haxby et al., Neuron (2011) <HGC+11>`.
        If arrays are column-wise zscore-d before computation it
        results in characterizing each column in each array with
        sum of maximal correlations of that column with columns
        in other arrays.

        Arrays must agree only on the first dimension.

        Numpy uses this as a simultaneous benchmark of 1) dot products
        and 2) max(<array>, axis=<int>).
        """
        feature_scores = ([0] * len(arrays))
        for (i, sd) in enumerate(arrays):
            for (j, sd2) in enumerate(arrays[(i + 1):]):
                corr_temp = np.dot(sd.T, sd2)
                feature_scores[i] += np.max(corr_temp, axis=1)
                feature_scores[((j + i) + 1)] += np.max(corr_temp, axis=0)
        return feature_scores

    def time_it(self):
        self.maxes_of_dots(self.arrays)