1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
|
.. _new-or-different:
.. currentmodule:: numpy.random
What's new or different
-----------------------
NumPy 1.17.0 introduced `Generator` as an improved replacement for
the :ref:`legacy <legacy>` `RandomState`. Here is a quick comparison of the two
implementations.
======================= ================== =============
Feature Older Equivalent Notes
----------------------- ------------------ -------------
`Generator` `RandomState` `Generator` requires a stream
source, called a `BitGenerator`
A number of these are provided.
`RandomState` uses the Mersenne
Twister `MT19937` by default,
but can also be instantiated
with any BitGenerator.
----------------------- ------------------ -------------
`~.Generator.random` `random_sample`, Access the values in a
`rand` BitGenerator, convert them to
``float64`` in the interval
``[0.0., 1.0)``. In addition
to the ``size`` kwarg, now
supports ``dtype='d'`` or
``dtype='f'``, and an ``out``
kwarg to fill a user-supplied
array.
Many other distributions are also
supported.
----------------------- ------------------ -------------
`~.Generator.integers` `randint`, Use the ``endpoint`` kwarg to
`random_integers` adjust the inclusion or exclusion
of the ``high`` interval endpoint.
======================= ================== =============
* The normal, exponential and gamma generators use 256-step Ziggurat
methods which are 2-10 times faster than NumPy's default implementation in
`~.Generator.standard_normal`, `~.Generator.standard_exponential` or
`~.Generator.standard_gamma`. Because of the change in algorithms, it is not
possible to reproduce the exact random values using `Generator` for these
distributions or any distribution method that relies on them.
* `~.Generator.integers` is now the canonical way to generate integer
random numbers from a discrete uniform distribution. This replaces both
`randint` and the deprecated `random_integers`.
* The `rand` and `randn` methods are only available through the legacy
`~.RandomState`.
* `Generator.random` is now the canonical way to generate floating-point
random numbers, which replaces `RandomState.random_sample`,
`sample`, and `ranf`, all of which were aliases. This is consistent with
Python's `random.random`.
* All bit generators can produce doubles, uint64s and
uint32s via CTypes (`~PCG64.ctypes`) and CFFI (`~PCG64.cffi`).
This allows these bit generators to be used in numba.
* The bit generators can be used in downstream projects via
Cython.
* All bit generators use `SeedSequence` to :ref:`convert seed integers to
initialized states <seeding_and_entropy>`.
* Optional ``dtype`` argument that accepts ``np.float32`` or ``np.float64``
to produce either single or double precision uniform random variables for
select distributions. `~.Generator.integers` accepts a ``dtype`` argument
with any signed or unsigned integer dtype.
* Uniforms (`~.Generator.random` and `~.Generator.integers`)
* Normals (`~.Generator.standard_normal`)
* Standard Gammas (`~.Generator.standard_gamma`)
* Standard Exponentials (`~.Generator.standard_exponential`)
.. ipython:: python
rng = np.random.default_rng()
rng.random(3, dtype=np.float64)
rng.random(3, dtype=np.float32)
rng.integers(0, 256, size=3, dtype=np.uint8)
* Optional ``out`` argument that allows existing arrays to be filled for
select distributions
* Uniforms (`~.Generator.random`)
* Normals (`~.Generator.standard_normal`)
* Standard Gammas (`~.Generator.standard_gamma`)
* Standard Exponentials (`~.Generator.standard_exponential`)
This allows multithreading to fill large arrays in chunks using suitable
BitGenerators in parallel.
.. ipython:: python
rng = np.random.default_rng()
existing = np.zeros(4)
rng.random(out=existing[:2])
print(existing)
* Optional ``axis`` argument for methods like `~.Generator.choice`,
`~.Generator.permutation` and `~.Generator.shuffle` that controls which
axis an operation is performed over for multi-dimensional arrays.
.. ipython:: python
rng = np.random.default_rng()
a = np.arange(12).reshape((3, 4))
a
rng.choice(a, axis=1, size=5)
rng.shuffle(a, axis=1) # Shuffle in-place
a
* Added a method to sample from the complex normal distribution
(`~.Generator.complex_normal`)
|