File: setup_common.py

package info (click to toggle)
numpy 1:1.19.5-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 27,552 kB
  • sloc: ansic: 164,908; python: 128,463; cpp: 1,117; makefile: 594; javascript: 387; f90: 298; sh: 294; fortran: 200; sed: 140; perl: 34
file content (435 lines) | stat: -rw-r--r-- 18,470 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Code common to build tools
import sys
import warnings
import copy
import textwrap

try:
    from numpy.distutils.misc_util import mingw32
except:
    mingw32 = lambda *args, **kwargs: None


#-------------------
# Versioning support
#-------------------
# How to change C_API_VERSION ?
#   - increase C_API_VERSION value
#   - record the hash for the new C API with the cversions.py script
#   and add the hash to cversions.txt
# The hash values are used to remind developers when the C API number was not
# updated - generates a MismatchCAPIWarning warning which is turned into an
# exception for released version.

# Binary compatibility version number. This number is increased whenever the
# C-API is changed such that binary compatibility is broken, i.e. whenever a
# recompile of extension modules is needed.
C_ABI_VERSION = 0x01000009

# Minor API version.  This number is increased whenever a change is made to the
# C-API -- whether it breaks binary compatibility or not.  Some changes, such
# as adding a function pointer to the end of the function table, can be made
# without breaking binary compatibility.  In this case, only the C_API_VERSION
# (*not* C_ABI_VERSION) would be increased.  Whenever binary compatibility is
# broken, both C_API_VERSION and C_ABI_VERSION should be increased.
#
# 0x00000008 - 1.7.x
# 0x00000009 - 1.8.x
# 0x00000009 - 1.9.x
# 0x0000000a - 1.10.x
# 0x0000000a - 1.11.x
# 0x0000000a - 1.12.x
# 0x0000000b - 1.13.x
# 0x0000000c - 1.14.x
# 0x0000000c - 1.15.x
# 0x0000000d - 1.16.x
C_API_VERSION = 0x0000000d

class MismatchCAPIWarning(Warning):
    pass

def is_released(config):
    """Return True if a released version of numpy is detected."""
    from distutils.version import LooseVersion

    v = config.get_version('../version.py')
    if v is None:
        raise ValueError("Could not get version")
    pv = LooseVersion(vstring=v).version
    if len(pv) > 3:
        return False
    return True

def get_api_versions(apiversion, codegen_dir):
    """
    Return current C API checksum and the recorded checksum.

    Return current C API checksum and the recorded checksum for the given
    version of the C API version.

    """
    # Compute the hash of the current API as defined in the .txt files in
    # code_generators
    sys.path.insert(0, codegen_dir)
    try:
        m = __import__('genapi')
        numpy_api = __import__('numpy_api')
        curapi_hash = m.fullapi_hash(numpy_api.full_api)
        apis_hash = m.get_versions_hash()
    finally:
        del sys.path[0]

    return curapi_hash, apis_hash[apiversion]

def check_api_version(apiversion, codegen_dir):
    """Emits a MismatchCAPIWarning if the C API version needs updating."""
    curapi_hash, api_hash = get_api_versions(apiversion, codegen_dir)

    # If different hash, it means that the api .txt files in
    # codegen_dir have been updated without the API version being
    # updated. Any modification in those .txt files should be reflected
    # in the api and eventually abi versions.
    # To compute the checksum of the current API, use numpy/core/cversions.py
    if not curapi_hash == api_hash:
        msg = ("API mismatch detected, the C API version "
               "numbers have to be updated. Current C api version is %d, "
               "with checksum %s, but recorded checksum for C API version %d "
               "in core/codegen_dir/cversions.txt is %s. If functions were "
               "added in the C API, you have to update C_API_VERSION in %s."
               )
        warnings.warn(msg % (apiversion, curapi_hash, apiversion, api_hash,
                             __file__),
                      MismatchCAPIWarning, stacklevel=2)
# Mandatory functions: if not found, fail the build
MANDATORY_FUNCS = ["sin", "cos", "tan", "sinh", "cosh", "tanh", "fabs",
        "floor", "ceil", "sqrt", "log10", "log", "exp", "asin",
        "acos", "atan", "fmod", 'modf', 'frexp', 'ldexp']

# Standard functions which may not be available and for which we have a
# replacement implementation. Note that some of these are C99 functions.
OPTIONAL_STDFUNCS = ["expm1", "log1p", "acosh", "asinh", "atanh",
        "rint", "trunc", "exp2", "log2", "hypot", "atan2", "pow",
        "copysign", "nextafter", "ftello", "fseeko",
        "strtoll", "strtoull", "cbrt", "strtold_l", "fallocate",
        "backtrace", "madvise"]


OPTIONAL_HEADERS = [
# sse headers only enabled automatically on amd64/x32 builds
                "xmmintrin.h",  # SSE
                "emmintrin.h",  # SSE2
                "immintrin.h",  # AVX
                "features.h",  # for glibc version linux
                "xlocale.h",  # see GH#8367
                "dlfcn.h", # dladdr
                "sys/mman.h", #madvise
]

# optional gcc compiler builtins and their call arguments and optional a
# required header and definition name (HAVE_ prepended)
# call arguments are required as the compiler will do strict signature checking
OPTIONAL_INTRINSICS = [("__builtin_isnan", '5.'),
                       ("__builtin_isinf", '5.'),
                       ("__builtin_isfinite", '5.'),
                       ("__builtin_bswap32", '5u'),
                       ("__builtin_bswap64", '5u'),
                       ("__builtin_expect", '5, 0'),
                       ("__builtin_mul_overflow", '5, 5, (int*)5'),
                       # MMX only needed for icc, but some clangs don't have it
                       ("_m_from_int64", '0', "emmintrin.h"),
                       ("_mm_load_ps", '(float*)0', "xmmintrin.h"),  # SSE
                       ("_mm_prefetch", '(float*)0, _MM_HINT_NTA',
                        "xmmintrin.h"),  # SSE
                       ("_mm_load_pd", '(double*)0', "emmintrin.h"),  # SSE2
                       ("__builtin_prefetch", "(float*)0, 0, 3"),
                       # check that the linker can handle avx
                       ("__asm__ volatile", '"vpand %xmm1, %xmm2, %xmm3"',
                        "stdio.h", "LINK_AVX"),
                       ("__asm__ volatile", '"vpand %ymm1, %ymm2, %ymm3"',
                        "stdio.h", "LINK_AVX2"),
                       ("__asm__ volatile", '"vpaddd %zmm1, %zmm2, %zmm3"',
                        "stdio.h", "LINK_AVX512F"),
                       ("__asm__ volatile", '"xgetbv"', "stdio.h", "XGETBV"),
                       ]

# function attributes
# tested via "int %s %s(void *);" % (attribute, name)
# function name will be converted to HAVE_<upper-case-name> preprocessor macro
OPTIONAL_FUNCTION_ATTRIBUTES = [('__attribute__((optimize("unroll-loops")))',
                                'attribute_optimize_unroll_loops'),
                                ('__attribute__((optimize("O3")))',
                                 'attribute_optimize_opt_3'),
                                ('__attribute__((nonnull (1)))',
                                 'attribute_nonnull'),
                                ('__attribute__((target ("avx")))',
                                 'attribute_target_avx'),
                                ('__attribute__((target ("avx2")))',
                                 'attribute_target_avx2'),
                                ('__attribute__((target ("avx512f")))',
                                 'attribute_target_avx512f'),
                                ]

# function attributes with intrinsics
# To ensure your compiler can compile avx intrinsics with just the attributes
# gcc 4.8.4 support attributes but not with intrisics
# tested via "#include<%s> int %s %s(void *){code; return 0;};" % (header, attribute, name, code)
# function name will be converted to HAVE_<upper-case-name> preprocessor macro
OPTIONAL_FUNCTION_ATTRIBUTES_WITH_INTRINSICS = [('__attribute__((target("avx2,fma")))',
                                'attribute_target_avx2_with_intrinsics',
                                '__m256 temp = _mm256_set1_ps(1.0); temp = \
                                _mm256_fmadd_ps(temp, temp, temp)',
                                'immintrin.h'),
                                ('__attribute__((target("avx512f")))',
                                'attribute_target_avx512f_with_intrinsics',
                                '__m512 temp = _mm512_set1_ps(1.0)',
                                'immintrin.h'),
                                ]

# variable attributes tested via "int %s a" % attribute
OPTIONAL_VARIABLE_ATTRIBUTES = ["__thread", "__declspec(thread)"]

# Subset of OPTIONAL_STDFUNCS which may already have HAVE_* defined by Python.h
OPTIONAL_STDFUNCS_MAYBE = [
    "expm1", "log1p", "acosh", "atanh", "asinh", "hypot", "copysign",
    "ftello", "fseeko"
    ]

# C99 functions: float and long double versions
C99_FUNCS = [
    "sin", "cos", "tan", "sinh", "cosh", "tanh", "fabs", "floor", "ceil",
    "rint", "trunc", "sqrt", "log10", "log", "log1p", "exp", "expm1",
    "asin", "acos", "atan", "asinh", "acosh", "atanh", "hypot", "atan2",
    "pow", "fmod", "modf", 'frexp', 'ldexp', "exp2", "log2", "copysign",
    "nextafter", "cbrt"
    ]
C99_FUNCS_SINGLE = [f + 'f' for f in C99_FUNCS]
C99_FUNCS_EXTENDED = [f + 'l' for f in C99_FUNCS]
C99_COMPLEX_TYPES = [
    'complex double', 'complex float', 'complex long double'
    ]
C99_COMPLEX_FUNCS = [
    "cabs", "cacos", "cacosh", "carg", "casin", "casinh", "catan",
    "catanh", "ccos", "ccosh", "cexp", "cimag", "clog", "conj", "cpow",
    "cproj", "creal", "csin", "csinh", "csqrt", "ctan", "ctanh"
    ]

def fname2def(name):
    return "HAVE_%s" % name.upper()

def sym2def(symbol):
    define = symbol.replace(' ', '')
    return define.upper()

def type2def(symbol):
    define = symbol.replace(' ', '_')
    return define.upper()

# Code to detect long double representation taken from MPFR m4 macro
def check_long_double_representation(cmd):
    cmd._check_compiler()
    body = LONG_DOUBLE_REPRESENTATION_SRC % {'type': 'long double'}

    # Disable whole program optimization (the default on vs2015, with python 3.5+)
    # which generates intermediary object files and prevents checking the
    # float representation.
    if sys.platform == "win32" and not mingw32():
        try:
            cmd.compiler.compile_options.remove("/GL")
        except (AttributeError, ValueError):
            pass

    # Disable multi-file interprocedural optimization in the Intel compiler on Linux
    # which generates intermediary object files and prevents checking the
    # float representation.
    elif (sys.platform != "win32"
            and cmd.compiler.compiler_type.startswith('intel')
            and '-ipo' in cmd.compiler.cc_exe):
        newcompiler = cmd.compiler.cc_exe.replace(' -ipo', '')
        cmd.compiler.set_executables(
            compiler=newcompiler,
            compiler_so=newcompiler,
            compiler_cxx=newcompiler,
            linker_exe=newcompiler,
            linker_so=newcompiler + ' -shared'
        )

    # We need to use _compile because we need the object filename
    src, obj = cmd._compile(body, None, None, 'c')
    try:
        ltype = long_double_representation(pyod(obj))
        return ltype
    except ValueError:
        # try linking to support CC="gcc -flto" or icc -ipo
        # struct needs to be volatile so it isn't optimized away
        # additionally "clang -flto" requires the foo struct to be used
        body = body.replace('struct', 'volatile struct')
        body += "int main(void) { return foo.before[0]; }\n"
        src, obj = cmd._compile(body, None, None, 'c')
        cmd.temp_files.append("_configtest")
        cmd.compiler.link_executable([obj], "_configtest")
        ltype = long_double_representation(pyod("_configtest"))
        return ltype
    finally:
        cmd._clean()

LONG_DOUBLE_REPRESENTATION_SRC = r"""
/* "before" is 16 bytes to ensure there's no padding between it and "x".
 *    We're not expecting any "long double" bigger than 16 bytes or with
 *       alignment requirements stricter than 16 bytes.  */
typedef %(type)s test_type;

struct {
        char         before[16];
        test_type    x;
        char         after[8];
} foo = {
        { '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0',
          '\001', '\043', '\105', '\147', '\211', '\253', '\315', '\357' },
        -123456789.0,
        { '\376', '\334', '\272', '\230', '\166', '\124', '\062', '\020' }
};
"""

def pyod(filename):
    """Python implementation of the od UNIX utility (od -b, more exactly).

    Parameters
    ----------
    filename : str
        name of the file to get the dump from.

    Returns
    -------
    out : seq
        list of lines of od output

    Note
    ----
    We only implement enough to get the necessary information for long double
    representation, this is not intended as a compatible replacement for od.
    """
    out = []
    with open(filename, 'rb') as fid:
        yo2 = [oct(o)[2:] for o in fid.read()]
    for i in range(0, len(yo2), 16):
        line = ['%07d' % int(oct(i)[2:])]
        line.extend(['%03d' % int(c) for c in yo2[i:i+16]])
        out.append(" ".join(line))
    return out


_BEFORE_SEQ = ['000', '000', '000', '000', '000', '000', '000', '000',
              '001', '043', '105', '147', '211', '253', '315', '357']
_AFTER_SEQ = ['376', '334', '272', '230', '166', '124', '062', '020']

_IEEE_DOUBLE_BE = ['301', '235', '157', '064', '124', '000', '000', '000']
_IEEE_DOUBLE_LE = _IEEE_DOUBLE_BE[::-1]
_INTEL_EXTENDED_12B = ['000', '000', '000', '000', '240', '242', '171', '353',
                       '031', '300', '000', '000']
_INTEL_EXTENDED_16B = ['000', '000', '000', '000', '240', '242', '171', '353',
                       '031', '300', '000', '000', '000', '000', '000', '000']
_MOTOROLA_EXTENDED_12B = ['300', '031', '000', '000', '353', '171',
                          '242', '240', '000', '000', '000', '000']
_IEEE_QUAD_PREC_BE = ['300', '031', '326', '363', '105', '100', '000', '000',
                      '000', '000', '000', '000', '000', '000', '000', '000']
_IEEE_QUAD_PREC_LE = _IEEE_QUAD_PREC_BE[::-1]
_IBM_DOUBLE_DOUBLE_BE = (['301', '235', '157', '064', '124', '000', '000', '000'] +
                     ['000'] * 8)
_IBM_DOUBLE_DOUBLE_LE = (['000', '000', '000', '124', '064', '157', '235', '301'] +
                     ['000'] * 8)

def long_double_representation(lines):
    """Given a binary dump as given by GNU od -b, look for long double
    representation."""

    # Read contains a list of 32 items, each item is a byte (in octal
    # representation, as a string). We 'slide' over the output until read is of
    # the form before_seq + content + after_sequence, where content is the long double
    # representation:
    #  - content is 12 bytes: 80 bits Intel representation
    #  - content is 16 bytes: 80 bits Intel representation (64 bits) or quad precision
    #  - content is 8 bytes: same as double (not implemented yet)
    read = [''] * 32
    saw = None
    for line in lines:
        # we skip the first word, as od -b output an index at the beginning of
        # each line
        for w in line.split()[1:]:
            read.pop(0)
            read.append(w)

            # If the end of read is equal to the after_sequence, read contains
            # the long double
            if read[-8:] == _AFTER_SEQ:
                saw = copy.copy(read)
                # if the content was 12 bytes, we only have 32 - 8 - 12 = 12
                # "before" bytes. In other words the first 4 "before" bytes went
                # past the sliding window.
                if read[:12] == _BEFORE_SEQ[4:]:
                    if read[12:-8] == _INTEL_EXTENDED_12B:
                        return 'INTEL_EXTENDED_12_BYTES_LE'
                    if read[12:-8] == _MOTOROLA_EXTENDED_12B:
                        return 'MOTOROLA_EXTENDED_12_BYTES_BE'
                # if the content was 16 bytes, we are left with 32-8-16 = 16
                # "before" bytes, so 8 went past the sliding window.
                elif read[:8] == _BEFORE_SEQ[8:]:
                    if read[8:-8] == _INTEL_EXTENDED_16B:
                        return 'INTEL_EXTENDED_16_BYTES_LE'
                    elif read[8:-8] == _IEEE_QUAD_PREC_BE:
                        return 'IEEE_QUAD_BE'
                    elif read[8:-8] == _IEEE_QUAD_PREC_LE:
                        return 'IEEE_QUAD_LE'
                    elif read[8:-8] == _IBM_DOUBLE_DOUBLE_LE:
                        return 'IBM_DOUBLE_DOUBLE_LE'
                    elif read[8:-8] == _IBM_DOUBLE_DOUBLE_BE:
                        return 'IBM_DOUBLE_DOUBLE_BE'
                # if the content was 8 bytes, left with 32-8-8 = 16 bytes
                elif read[:16] == _BEFORE_SEQ:
                    if read[16:-8] == _IEEE_DOUBLE_LE:
                        return 'IEEE_DOUBLE_LE'
                    elif read[16:-8] == _IEEE_DOUBLE_BE:
                        return 'IEEE_DOUBLE_BE'

    if saw is not None:
        raise ValueError("Unrecognized format (%s)" % saw)
    else:
        # We never detected the after_sequence
        raise ValueError("Could not lock sequences (%s)" % saw)


def check_for_right_shift_internal_compiler_error(cmd):
    """
    On our arm CI, this fails with an internal compilation error

    The failure looks like the following, and can be reproduced on ARM64 GCC 5.4:

        <source>: In function 'right_shift':
        <source>:4:20: internal compiler error: in expand_shift_1, at expmed.c:2349
               ip1[i] = ip1[i] >> in2;
                      ^
        Please submit a full bug report,
        with preprocessed source if appropriate.
        See <http://gcc.gnu.org/bugs.html> for instructions.
        Compiler returned: 1

    This function returns True if this compiler bug is present, and we need to
    turn off optimization for the function
    """
    cmd._check_compiler()
    has_optimize = cmd.try_compile(textwrap.dedent("""\
        __attribute__((optimize("O3"))) void right_shift() {}
        """), None, None)
    if not has_optimize:
        return False

    no_err = cmd.try_compile(textwrap.dedent("""\
        typedef long the_type;  /* fails also for unsigned and long long */
        __attribute__((optimize("O3"))) void right_shift(the_type in2, the_type *ip1, int n) {
            for (int i = 0; i < n; i++) {
                if (in2 < (the_type)sizeof(the_type) * 8) {
                    ip1[i] = ip1[i] >> in2;
                }
            }
        }
        """), None, None)
    return not no_err