File: ctypeslib.py

package info (click to toggle)
numpy 1:1.19.5-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 27,552 kB
  • sloc: ansic: 164,908; python: 128,463; cpp: 1,117; makefile: 594; javascript: 387; f90: 298; sh: 294; fortran: 200; sed: 140; perl: 34
file content (550 lines) | stat: -rw-r--r-- 17,706 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
"""
============================
``ctypes`` Utility Functions
============================

See Also
---------
load_library : Load a C library.
ndpointer : Array restype/argtype with verification.
as_ctypes : Create a ctypes array from an ndarray.
as_array : Create an ndarray from a ctypes array.

References
----------
.. [1] "SciPy Cookbook: ctypes", https://scipy-cookbook.readthedocs.io/items/Ctypes.html

Examples
--------
Load the C library:

>>> _lib = np.ctypeslib.load_library('libmystuff', '.')     #doctest: +SKIP

Our result type, an ndarray that must be of type double, be 1-dimensional
and is C-contiguous in memory:

>>> array_1d_double = np.ctypeslib.ndpointer(
...                          dtype=np.double,
...                          ndim=1, flags='CONTIGUOUS')    #doctest: +SKIP

Our C-function typically takes an array and updates its values
in-place.  For example::

    void foo_func(double* x, int length)
    {
        int i;
        for (i = 0; i < length; i++) {
            x[i] = i*i;
        }
    }

We wrap it using:

>>> _lib.foo_func.restype = None                      #doctest: +SKIP
>>> _lib.foo_func.argtypes = [array_1d_double, c_int] #doctest: +SKIP

Then, we're ready to call ``foo_func``:

>>> out = np.empty(15, dtype=np.double)
>>> _lib.foo_func(out, len(out))                #doctest: +SKIP

"""
__all__ = ['load_library', 'ndpointer', 'ctypes_load_library',
           'c_intp', 'as_ctypes', 'as_array']

import os
from numpy import (
    integer, ndarray, dtype as _dtype, deprecate, array, frombuffer
)
from numpy.core.multiarray import _flagdict, flagsobj

try:
    import ctypes
except ImportError:
    ctypes = None

if ctypes is None:
    def _dummy(*args, **kwds):
        """
        Dummy object that raises an ImportError if ctypes is not available.

        Raises
        ------
        ImportError
            If ctypes is not available.

        """
        raise ImportError("ctypes is not available.")
    ctypes_load_library = _dummy
    load_library = _dummy
    as_ctypes = _dummy
    as_array = _dummy
    from numpy import intp as c_intp
    _ndptr_base = object
else:
    import numpy.core._internal as nic
    c_intp = nic._getintp_ctype()
    del nic
    _ndptr_base = ctypes.c_void_p

    # Adapted from Albert Strasheim
    def load_library(libname, loader_path):
        """
        It is possible to load a library using
        >>> lib = ctypes.cdll[<full_path_name>] # doctest: +SKIP

        But there are cross-platform considerations, such as library file extensions,
        plus the fact Windows will just load the first library it finds with that name.
        NumPy supplies the load_library function as a convenience.

        Parameters
        ----------
        libname : str
            Name of the library, which can have 'lib' as a prefix,
            but without an extension.
        loader_path : str
            Where the library can be found.

        Returns
        -------
        ctypes.cdll[libpath] : library object
           A ctypes library object

        Raises
        ------
        OSError
            If there is no library with the expected extension, or the
            library is defective and cannot be loaded.
        """
        if ctypes.__version__ < '1.0.1':
            import warnings
            warnings.warn("All features of ctypes interface may not work "
                          "with ctypes < 1.0.1", stacklevel=2)

        ext = os.path.splitext(libname)[1]
        if not ext:
            # Try to load library with platform-specific name, otherwise
            # default to libname.[so|pyd].  Sometimes, these files are built
            # erroneously on non-linux platforms.
            from numpy.distutils.misc_util import get_shared_lib_extension
            so_ext = get_shared_lib_extension()
            libname_ext = [libname + so_ext]
            # mac, windows and linux >= py3.2 shared library and loadable
            # module have different extensions so try both
            so_ext2 = get_shared_lib_extension(is_python_ext=True)
            if not so_ext2 == so_ext:
                libname_ext.insert(0, libname + so_ext2)
            try:
                import sysconfig
                so_ext3 = '.%s-%s.so' % (sysconfig.get_config_var('SOABI'),
                                         sysconfig.get_config_var('MULTIARCH'))
                libname_ext.insert(0, libname + so_ext3)
            except (KeyError, ImportError):
                pass

        else:
            libname_ext = [libname]

        loader_path = os.path.abspath(loader_path)
        if not os.path.isdir(loader_path):
            libdir = os.path.dirname(loader_path)
        else:
            libdir = loader_path

        for ln in libname_ext:
            libpath = os.path.join(libdir, ln)
            if os.path.exists(libpath):
                try:
                    return ctypes.cdll[libpath]
                except OSError:
                    ## defective lib file
                    raise
        ## if no successful return in the libname_ext loop:
        raise OSError("no file with expected extension")

    ctypes_load_library = deprecate(load_library, 'ctypes_load_library',
                                    'load_library')

def _num_fromflags(flaglist):
    num = 0
    for val in flaglist:
        num += _flagdict[val]
    return num

_flagnames = ['C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE',
              'OWNDATA', 'UPDATEIFCOPY', 'WRITEBACKIFCOPY']
def _flags_fromnum(num):
    res = []
    for key in _flagnames:
        value = _flagdict[key]
        if (num & value):
            res.append(key)
    return res


class _ndptr(_ndptr_base):
    @classmethod
    def from_param(cls, obj):
        if not isinstance(obj, ndarray):
            raise TypeError("argument must be an ndarray")
        if cls._dtype_ is not None \
               and obj.dtype != cls._dtype_:
            raise TypeError("array must have data type %s" % cls._dtype_)
        if cls._ndim_ is not None \
               and obj.ndim != cls._ndim_:
            raise TypeError("array must have %d dimension(s)" % cls._ndim_)
        if cls._shape_ is not None \
               and obj.shape != cls._shape_:
            raise TypeError("array must have shape %s" % str(cls._shape_))
        if cls._flags_ is not None \
               and ((obj.flags.num & cls._flags_) != cls._flags_):
            raise TypeError("array must have flags %s" %
                    _flags_fromnum(cls._flags_))
        return obj.ctypes


class _concrete_ndptr(_ndptr):
    """
    Like _ndptr, but with `_shape_` and `_dtype_` specified.

    Notably, this means the pointer has enough information to reconstruct
    the array, which is not generally true.
    """
    def _check_retval_(self):
        """
        This method is called when this class is used as the .restype
        attribute for a shared-library function, to automatically wrap the
        pointer into an array.
        """
        return self.contents

    @property
    def contents(self):
        """
        Get an ndarray viewing the data pointed to by this pointer.

        This mirrors the `contents` attribute of a normal ctypes pointer
        """
        full_dtype = _dtype((self._dtype_, self._shape_))
        full_ctype = ctypes.c_char * full_dtype.itemsize
        buffer = ctypes.cast(self, ctypes.POINTER(full_ctype)).contents
        return frombuffer(buffer, dtype=full_dtype).squeeze(axis=0)


# Factory for an array-checking class with from_param defined for
#  use with ctypes argtypes mechanism
_pointer_type_cache = {}
def ndpointer(dtype=None, ndim=None, shape=None, flags=None):
    """
    Array-checking restype/argtypes.

    An ndpointer instance is used to describe an ndarray in restypes
    and argtypes specifications.  This approach is more flexible than
    using, for example, ``POINTER(c_double)``, since several restrictions
    can be specified, which are verified upon calling the ctypes function.
    These include data type, number of dimensions, shape and flags.  If a
    given array does not satisfy the specified restrictions,
    a ``TypeError`` is raised.

    Parameters
    ----------
    dtype : data-type, optional
        Array data-type.
    ndim : int, optional
        Number of array dimensions.
    shape : tuple of ints, optional
        Array shape.
    flags : str or tuple of str
        Array flags; may be one or more of:

          - C_CONTIGUOUS / C / CONTIGUOUS
          - F_CONTIGUOUS / F / FORTRAN
          - OWNDATA / O
          - WRITEABLE / W
          - ALIGNED / A
          - WRITEBACKIFCOPY / X
          - UPDATEIFCOPY / U

    Returns
    -------
    klass : ndpointer type object
        A type object, which is an ``_ndtpr`` instance containing
        dtype, ndim, shape and flags information.

    Raises
    ------
    TypeError
        If a given array does not satisfy the specified restrictions.

    Examples
    --------
    >>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64,
    ...                                                  ndim=1,
    ...                                                  flags='C_CONTIGUOUS')]
    ... #doctest: +SKIP
    >>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64))
    ... #doctest: +SKIP

    """

    # normalize dtype to an Optional[dtype]
    if dtype is not None:
        dtype = _dtype(dtype)

    # normalize flags to an Optional[int]
    num = None
    if flags is not None:
        if isinstance(flags, str):
            flags = flags.split(',')
        elif isinstance(flags, (int, integer)):
            num = flags
            flags = _flags_fromnum(num)
        elif isinstance(flags, flagsobj):
            num = flags.num
            flags = _flags_fromnum(num)
        if num is None:
            try:
                flags = [x.strip().upper() for x in flags]
            except Exception:
                raise TypeError("invalid flags specification")
            num = _num_fromflags(flags)

    # normalize shape to an Optional[tuple]
    if shape is not None:
        try:
            shape = tuple(shape)
        except TypeError:
            # single integer -> 1-tuple
            shape = (shape,)

    cache_key = (dtype, ndim, shape, num)

    try:
        return _pointer_type_cache[cache_key]
    except KeyError:
        pass

    # produce a name for the new type
    if dtype is None:
        name = 'any'
    elif dtype.names is not None:
        name = str(id(dtype))
    else:
        name = dtype.str
    if ndim is not None:
        name += "_%dd" % ndim
    if shape is not None:
        name += "_"+"x".join(str(x) for x in shape)
    if flags is not None:
        name += "_"+"_".join(flags)

    if dtype is not None and shape is not None:
        base = _concrete_ndptr
    else:
        base = _ndptr

    klass = type("ndpointer_%s"%name, (base,),
                 {"_dtype_": dtype,
                  "_shape_" : shape,
                  "_ndim_" : ndim,
                  "_flags_" : num})
    _pointer_type_cache[cache_key] = klass
    return klass


if ctypes is not None:
    def _ctype_ndarray(element_type, shape):
        """ Create an ndarray of the given element type and shape """
        for dim in shape[::-1]:
            element_type = dim * element_type
            # prevent the type name include np.ctypeslib
            element_type.__module__ = None
        return element_type


    def _get_scalar_type_map():
        """
        Return a dictionary mapping native endian scalar dtype to ctypes types
        """
        ct = ctypes
        simple_types = [
            ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong,
            ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong,
            ct.c_float, ct.c_double,
            ct.c_bool,
        ]
        return {_dtype(ctype): ctype for ctype in simple_types}


    _scalar_type_map = _get_scalar_type_map()


    def _ctype_from_dtype_scalar(dtype):
        # swapping twice ensure that `=` is promoted to <, >, or |
        dtype_with_endian = dtype.newbyteorder('S').newbyteorder('S')
        dtype_native = dtype.newbyteorder('=')
        try:
            ctype = _scalar_type_map[dtype_native]
        except KeyError:
            raise NotImplementedError(
                "Converting {!r} to a ctypes type".format(dtype)
            )

        if dtype_with_endian.byteorder == '>':
            ctype = ctype.__ctype_be__
        elif dtype_with_endian.byteorder == '<':
            ctype = ctype.__ctype_le__

        return ctype


    def _ctype_from_dtype_subarray(dtype):
        element_dtype, shape = dtype.subdtype
        ctype = _ctype_from_dtype(element_dtype)
        return _ctype_ndarray(ctype, shape)


    def _ctype_from_dtype_structured(dtype):
        # extract offsets of each field
        field_data = []
        for name in dtype.names:
            field_dtype, offset = dtype.fields[name][:2]
            field_data.append((offset, name, _ctype_from_dtype(field_dtype)))

        # ctypes doesn't care about field order
        field_data = sorted(field_data, key=lambda f: f[0])

        if len(field_data) > 1 and all(offset == 0 for offset, name, ctype in field_data):
            # union, if multiple fields all at address 0
            size = 0
            _fields_ = []
            for offset, name, ctype in field_data:
                _fields_.append((name, ctype))
                size = max(size, ctypes.sizeof(ctype))

            # pad to the right size
            if dtype.itemsize != size:
                _fields_.append(('', ctypes.c_char * dtype.itemsize))

            # we inserted manual padding, so always `_pack_`
            return type('union', (ctypes.Union,), dict(
                _fields_=_fields_,
                _pack_=1,
                __module__=None,
            ))
        else:
            last_offset = 0
            _fields_ = []
            for offset, name, ctype in field_data:
                padding = offset - last_offset
                if padding < 0:
                    raise NotImplementedError("Overlapping fields")
                if padding > 0:
                    _fields_.append(('', ctypes.c_char * padding))

                _fields_.append((name, ctype))
                last_offset = offset + ctypes.sizeof(ctype)


            padding = dtype.itemsize - last_offset
            if padding > 0:
                _fields_.append(('', ctypes.c_char * padding))

            # we inserted manual padding, so always `_pack_`
            return type('struct', (ctypes.Structure,), dict(
                _fields_=_fields_,
                _pack_=1,
                __module__=None,
            ))


    def _ctype_from_dtype(dtype):
        if dtype.fields is not None:
            return _ctype_from_dtype_structured(dtype)
        elif dtype.subdtype is not None:
            return _ctype_from_dtype_subarray(dtype)
        else:
            return _ctype_from_dtype_scalar(dtype)


    def as_ctypes_type(dtype):
        r"""
        Convert a dtype into a ctypes type.

        Parameters
        ----------
        dtype : dtype
            The dtype to convert

        Returns
        -------
        ctype
            A ctype scalar, union, array, or struct

        Raises
        ------
        NotImplementedError
            If the conversion is not possible

        Notes
        -----
        This function does not losslessly round-trip in either direction.

        ``np.dtype(as_ctypes_type(dt))`` will:

         - insert padding fields
         - reorder fields to be sorted by offset
         - discard field titles

        ``as_ctypes_type(np.dtype(ctype))`` will:

         - discard the class names of `ctypes.Structure`\ s and
           `ctypes.Union`\ s
         - convert single-element `ctypes.Union`\ s into single-element
           `ctypes.Structure`\ s
         - insert padding fields

        """
        return _ctype_from_dtype(_dtype(dtype))


    def as_array(obj, shape=None):
        """
        Create a numpy array from a ctypes array or POINTER.

        The numpy array shares the memory with the ctypes object.

        The shape parameter must be given if converting from a ctypes POINTER.
        The shape parameter is ignored if converting from a ctypes array
        """
        if isinstance(obj, ctypes._Pointer):
            # convert pointers to an array of the desired shape
            if shape is None:
                raise TypeError(
                    'as_array() requires a shape argument when called on a '
                    'pointer')
            p_arr_type = ctypes.POINTER(_ctype_ndarray(obj._type_, shape))
            obj = ctypes.cast(obj, p_arr_type).contents

        return array(obj, copy=False)


    def as_ctypes(obj):
        """Create and return a ctypes object from a numpy array.  Actually
        anything that exposes the __array_interface__ is accepted."""
        ai = obj.__array_interface__
        if ai["strides"]:
            raise TypeError("strided arrays not supported")
        if ai["version"] != 3:
            raise TypeError("only __array_interface__ version 3 supported")
        addr, readonly = ai["data"]
        if readonly:
            raise TypeError("readonly arrays unsupported")

        # can't use `_dtype((ai["typestr"], ai["shape"]))` here, as it overflows
        # dtype.itemsize (gh-14214)
        ctype_scalar = as_ctypes_type(ai["typestr"])
        result_type = _ctype_ndarray(ctype_scalar, ai["shape"])
        result = result_type.from_address(addr)
        result.__keep = obj
        return result