1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
/* md2file.c - Quake 2 MD2 model loader */
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "md2.h"
void
md2FreeModel(Md2Model *model)
{
if (model) {
if (model->texCoords) {
free(model->texCoords);
}
if (model->triangles) {
free(model->triangles);
}
if (model->frames) {
int i;
for (i = 0; i < model->header.numFrames; i++) {
if (model->frames[i].vertices) {
free(model->frames[i].vertices);
}
}
free(model->frames);
}
if (model->filename) {
free(model->filename);
}
free(model);
}
}
static void
generateAutomaticNormals(Md2Model *model)
{
int i, j;
for (j = 0; j < model->header.numFrames; j++) {
Md2Frame *f = &model->frames[j];
Md2TriangleVertex *v = f->vertices;
for (i = 0; i < model->header.numVertices; i++) {
v[i].normal[0] = 0.0;
v[i].normal[1] = 0.0;
v[i].normal[2] = 0.0;
}
for (i = 0; i < model->header.numTriangles; i++) {
Md2Triangle *t = &model->triangles[i];
Md2TriangleVertex *v0, *v1, *v2;
float vec0[3], vec1[3], n[3];
float invLen;
v0 = &v[t->vertexIndices[0]];
v1 = &v[t->vertexIndices[1]];
v2 = &v[t->vertexIndices[2]];
/* Need 2 vectors to find cross product. */
vec0[0] = v1->vertex[0] - v0->vertex[0];
vec0[1] = v1->vertex[1] - v0->vertex[1];
vec0[2] = v1->vertex[2] - v0->vertex[2];
vec1[0] = v2->vertex[0] - v0->vertex[0];
vec1[1] = v2->vertex[1] - v0->vertex[1];
vec1[2] = v2->vertex[2] - v0->vertex[2];
n[0] = vec0[1] * vec1[2] - vec0[2] * vec1[1];
n[1] = -(vec0[0] * vec1[2] - vec0[2] * vec1[0]);
n[2] = vec0[0] * vec1[1] - vec0[1] * vec1[0];
invLen = (float) (-1.0/sqrt(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]));
n[0] *= invLen;
n[1] *= invLen;
n[2] *= invLen;
v0->normal[0] += n[0];
v0->normal[1] += n[1];
v0->normal[2] += n[2];
v1->normal[0] += n[0];
v1->normal[1] += n[1];
v1->normal[2] += n[2];
v2->normal[0] += n[0];
v2->normal[1] += n[1];
v2->normal[2] += n[2];
}
for (i = 0; i < model->header.numVertices; i++) {
float dot, invLen;
dot = v[i].normal[0] * v[i].normal[0] +
v[i].normal[1] * v[i].normal[1] +
v[i].normal[2] * v[i].normal[2];
invLen = (float)(1.0/sqrt(dot));
v[i].normal[0] *= invLen;
v[i].normal[1] *= invLen;
v[i].normal[2] *= invLen;
}
}
}
/* Return 2x the area of a 2D triangle. Return a "double" so
there is less chance of precision issues since we are
generally interested in the sign of the area. */
static double
area2(float *v0,
float *v1,
float *v2)
{
/* An equivalent algebraic expression for twice the area of a
2D triangle is:
v0[0]*v1[1] - v1[0]*v0[1] +
v1[0]*v2[1] - v2[0]*v1[1] +
v2[0]*v0[1] - v0[0]*v2[1]
However this is 6 multiplies and 5 add/subtracs rather
than the area2 implementations 2 multiplies and 5
add/subtracts. Moreover, the chosen implementation is
less prone to overflows. */
return (v1[0]-v0[0])*(v2[1]-v0[1]) - (v2[0]-v0[0])*(v1[1]-v0[1]);
}
/* Some models that I have encountered appear to have flipped normals.
The Bobafett and Grey Alien models are examples of such models.
This heuristic tries to determine when a model has bogus normals
that should be flipped. The algorithm is to sample each triangle
on a pseudo-random (modulo 17) frame and test the area of the
triangle flattened into the Z=0 plane (in model space) with the
summed vertex normal Z components. If the area and the normal
component sum have the same sign, that is considered an indication that
the normals for the model need to be flipped. If more triangles
appear to need flipping than not, then flip all the normals in
the model. Note that if a model doesn't backface cull properly,
this heuristic would not work, but the facingness of the polygons
seems reliable for the MD2 models that I've encountered. */
static int
flipNormalsIfProbablyNeeds(Md2Model *model)
{
int lovesMe = 0, lovesMeNot = 0;
unsigned int frame = 0;
double a;
float nz;
int i, j;
/* Sample each triangle on pseudo-random frames. */
for (i = 0; i < model->header.numTriangles; i++, frame += 17) {
Md2Frame *f = &model->frames[frame % model->header.numFrames];
Md2Triangle *t = &model->triangles[i % model->header.numTriangles];
Md2TriangleVertex *v0, *v1, *v2;
v0 = &f->vertices[t->vertexIndices[0]];
v1 = &f->vertices[t->vertexIndices[1]];
v2 = &f->vertices[t->vertexIndices[2]];
/* Compute the area of the polygon (in model space) projected
onto the Z=0 plane. */
a = area2(v0->vertex, v1->vertex, v2->vertex);
/* Sum the Z components of the vertex normals. */
nz = v0->normal[2] + v1->normal[2] + v2->normal[2];
/* Don't count cases where the polygon area or normal Z sum are zero.
Count cases where the polygon area and normal Z sum have opposite
signs as an indication that we don't need to flip normals, but when
the signs are the same, count that as a sign that we may need to
flip normals. */
if (a > 0) {
if (nz > 0) {
lovesMeNot++;
} else if (nz < 0) {
lovesMe++;
}
} else if (a < 0) {
if (nz > 0) {
lovesMe++;
} else if (nz < 0) {
lovesMeNot++;
}
}
}
/* If more normals seem wrong than not wrong... */
if (lovesMeNot > lovesMe) {
/* Then flip all the normals. */
for (i = 0; i < model->header.numFrames; i++) {
for (j = 0; j < model->header.numVertices; j++) {
model->frames[i].vertices[j].normal[0] *= -1;
model->frames[i].vertices[j].normal[1] *= -1;
model->frames[i].vertices[j].normal[2] *= -1;
}
}
}
return 0;
}
/* assume _WIN32 (Windows) is always little-endian */
#if defined(__LITTLE_ENDIAN__) || defined(_WIN32)
/* target is already little endian so no swapping is needed to read little-endian data */
#else
static const unsigned int nativeIntOrder = 0x03020100;
static const unsigned short nativeShortOrder = 0x0100;
#define LE_INT32_BYTE_OFFSET(a) (((unsigned char*)&nativeIntOrder)[a])
#define LE_INT16_BYTE_OFFSET(a) (((unsigned char*)&nativeShortOrder)[a])
#endif
static short short_le2native(short v)
{
/* works even if little-endian target and __LITTLE_ENDIAN__ not defined */
#if defined(__LITTLE_ENDIAN__) || defined(_WIN32)
return v;
#else
union {
short s;
unsigned char b[2];
} src, dst;
src.s = v;
dst.b[0] = src.b[LE_INT16_BYTE_OFFSET(0)];
dst.b[1] = src.b[LE_INT16_BYTE_OFFSET(1)];
return dst.s;
#endif
}
static int int_le2native(int v)
{
/* works even if little-endian target and __LITTLE_ENDIAN__ not defined */
#if defined(__LITTLE_ENDIAN__) || defined(_WIN32)
return v;
#else
union {
int i;
unsigned char b[4];
} src, dst;
src.i = v;
dst.b[0] = src.b[LE_INT32_BYTE_OFFSET(0)];
dst.b[1] = src.b[LE_INT32_BYTE_OFFSET(1)];
dst.b[2] = src.b[LE_INT32_BYTE_OFFSET(2)];
dst.b[3] = src.b[LE_INT32_BYTE_OFFSET(3)];
return dst.i;
#endif
}
static float float_le2native(float v)
{
/* works even if little-endian target and __LITTLE_ENDIAN__ not defined */
#if defined(__LITTLE_ENDIAN__) || defined(_WIN32)
return v;
#else
union {
float f;
unsigned char b[4];
} src, dst;
src.f = v;
dst.b[0] = src.b[LE_INT32_BYTE_OFFSET(0)];
dst.b[1] = src.b[LE_INT32_BYTE_OFFSET(1)];
dst.b[2] = src.b[LE_INT32_BYTE_OFFSET(2)];
dst.b[3] = src.b[LE_INT32_BYTE_OFFSET(3)];
return dst.f;
#endif
}
Md2Model *
md2ReadModel(const char *filename)
{
FILE *file;
Md2Model *model;
unsigned char buffer[MD2_MAX_FRAMESIZE];
int zeroLightNormalIndexCount = 0;
int i;
model = (Md2Model *) malloc(sizeof(Md2Model));
if (!model) {
return NULL;
}
file = fopen(filename, "rb");
if (!file) {
free(model);
return 0;
}
/* initialize model and read header */
memset(model, 0, sizeof(Md2Model));
fread(&model->header, sizeof(Md2Header), 1, file);
/* Byte-swap various values in the little-endian file format. */
model->header.magic = int_le2native(model->header.magic);
model->header.version = int_le2native(model->header.version);
model->header.skinWidth = int_le2native(model->header.skinWidth);
model->header.skinHeight = int_le2native(model->header.skinHeight);
model->header.frameSize = int_le2native(model->header.frameSize);
model->header.numSkins = int_le2native(model->header.numSkins);
model->header.numVertices = int_le2native(model->header.numVertices);
model->header.numTexCoords =
int_le2native(model->header.numTexCoords);
model->header.numTriangles =
int_le2native(model->header.numTriangles);
model->header.numGlCommands =
int_le2native(model->header.numGlCommands);
model->header.numFrames = int_le2native(model->header.numFrames);
model->header.offsetSkins = int_le2native(model->header.offsetSkins);
model->header.offsetTexCoords =
int_le2native(model->header.offsetTexCoords);
model->header.offsetTriangles =
int_le2native(model->header.offsetTriangles);
model->header.offsetFrames =
int_le2native(model->header.offsetFrames);
model->header.offsetGlCommands =
int_le2native(model->header.offsetGlCommands);
model->header.offsetEnd = int_le2native(model->header.offsetEnd);
if (model->header.magic !=
(int) (('2' << 24) + ('P' << 16) + ('D' << 8) + 'I')) {
fclose(file);
free(model);
return 0;
}
/* We skip the "skins" section of the MD2 file. */
/* Read texture coordinates. */
fseek(file, model->header.offsetTexCoords, SEEK_SET);
if (model->header.numTexCoords > 0) {
model->texCoords = (Md2TextureCoordinate *)
malloc(sizeof(Md2TextureCoordinate) * model->header.numTexCoords);
if (!model->texCoords) {
md2FreeModel(model);
return 0;
}
fread(model->texCoords, sizeof(Md2TextureCoordinate),
model->header.numTexCoords, file);
}
/* Byte-swap various values in the little-endian file format. */
for (i = 0; i < model->header.numTexCoords; i++) {
model->texCoords[i].s = short_le2native(model->texCoords[i].s);
model->texCoords[i].t = short_le2native(model->texCoords[i].t);
}
/* Read triangles. */
fseek(file, model->header.offsetTriangles, SEEK_SET);
if (model->header.numTriangles > 0) {
model->triangles = (Md2Triangle *)
malloc(sizeof(Md2Triangle) * model->header.numTriangles);
if (!model->triangles) {
md2FreeModel(model);
return 0;
}
fread(model->triangles, sizeof(Md2Triangle),
model->header.numTriangles, file);
/* Byte-swap various values in the little-endian file format. */
for (i = 0; i < model->header.numTriangles; i++) {
model->triangles[i].vertexIndices[0] =
short_le2native(model->triangles[i].vertexIndices[0]);
model->triangles[i].vertexIndices[1] =
short_le2native(model->triangles[i].vertexIndices[1]);
model->triangles[i].vertexIndices[2] =
short_le2native(model->triangles[i].vertexIndices[2]);
model->triangles[i].textureIndices[0] =
short_le2native(model->triangles[i].textureIndices[0]);
model->triangles[i].textureIndices[1] =
short_le2native(model->triangles[i].textureIndices[1]);
model->triangles[i].textureIndices[2] =
short_le2native(model->triangles[i].textureIndices[2]);
}
}
/* Read alias frames. */
fseek(file, model->header.offsetFrames, SEEK_SET);
if (model->header.numFrames > 0) {
model->frames =
(Md2Frame *) malloc(sizeof(Md2Frame) * model->header.numFrames);
if (!model->frames) {
md2FreeModel(model);
return 0;
}
for (i = 0; i < model->header.numFrames; i++) {
Md2AliasFrame *frame = (Md2AliasFrame *) buffer;
int j;
model->frames[i].vertices = (Md2TriangleVertex *)
malloc(sizeof(Md2TriangleVertex) * model->header.numVertices);
if (!model->frames[i].vertices) {
md2FreeModel(model);
return 0;
}
fread(frame, 1, model->header.frameSize, file);
strcpy(model->frames[i].name, frame->name);
/* Byte-swapping 32-bit values in the little-endian file format. */
frame->scale[0] =
float_le2native(frame->scale[0]);
frame->scale[1] =
float_le2native(frame->scale[1]);
frame->scale[2] =
float_le2native(frame->scale[2]);
frame->translate[0] =
float_le2native(frame->translate[0]);
frame->translate[1] =
float_le2native(frame->translate[1]);
frame->translate[2] =
float_le2native(frame->translate[2]);
for (j = 0; j < model->header.numVertices; j++) {
int lightNormalIndex;
/* Why is the Z coordinate negated? I believe that
there is a coordinate system handedness switch
occuring. */
model->frames[i].vertices[j].vertex[0] = (float)
((int) frame->alias_vertices[j].vertex[0]) * frame->scale[0]
+ frame->translate[0];
model->frames[i].vertices[j].vertex[1] = (float)
((int) frame->alias_vertices[j].vertex[2]) * frame->scale[2]
+ frame->translate[2];
model->frames[i].vertices[j].vertex[2] = -1*
((float) ((int) frame->alias_vertices[j].vertex[1]) * frame->scale[1]
+ frame->translate[1]);
lightNormalIndex = frame->alias_vertices[j].lightNormalIndex;
if (lightNormalIndex == 0) {
zeroLightNormalIndexCount++;
}
model->frames[i].vertices[j].normal[0] =
md2VertexNormals[lightNormalIndex][0];
model->frames[i].vertices[j].normal[1] =
md2VertexNormals[lightNormalIndex][2];
model->frames[i].vertices[j].normal[2] =
-md2VertexNormals[lightNormalIndex][1];
}
}
if (model->header.numFrames * model->header.numVertices ==
zeroLightNormalIndexCount) {
generateAutomaticNormals(model);
}
}
fclose(file);
flipNormalsIfProbablyNeeds(model);
/* We skip the "GL commands" section for stripped rendering
of the model. We naively send independent triangles and
let the GPU's pre- and post-transform vertex caching do
its thing. */
return model;
}
|