1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Bicubic filtering
See GPU Gems 2: "Fast Third-Order Texture Filtering", Sigg & Hadwiger
https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-20-fast-third-order-texture-filtering
Reformulation thanks to Keenan Crane
*/
#ifndef _BICUBICTEXTURE_KERNEL_CUH_
#define _BICUBICTEXTURE_KERNEL_CUH_
enum Mode {
MODE_NEAREST,
MODE_BILINEAR,
MODE_BICUBIC,
MODE_FAST_BICUBIC,
MODE_CATROM
};
cudaTextureObject_t texObjPoint, texObjLinear;
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
__host__ __device__ float w0(float a) {
// return (1.0f/6.0f)*(-a*a*a + 3.0f*a*a - 3.0f*a + 1.0f);
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f); // optimized
}
__host__ __device__ float w1(float a) {
// return (1.0f/6.0f)*(3.0f*a*a*a - 6.0f*a*a + 4.0f);
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
}
__host__ __device__ float w2(float a) {
// return (1.0f/6.0f)*(-3.0f*a*a*a + 3.0f*a*a + 3.0f*a + 1.0f);
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
}
__host__ __device__ float w3(float a) { return (1.0f / 6.0f) * (a * a * a); }
// g0 and g1 are the two amplitude functions
__device__ float g0(float a) { return w0(a) + w1(a); }
__device__ float g1(float a) { return w2(a) + w3(a); }
// h0 and h1 are the two offset functions
__device__ float h0(float a) {
// note +0.5 offset to compensate for CUDA linear filtering convention
return -1.0f + w1(a) / (w0(a) + w1(a)) + 0.5f;
}
__device__ float h1(float a) { return 1.0f + w3(a) / (w2(a) + w3(a)) + 0.5f; }
// filter 4 values using cubic splines
template <class T>
__device__ T cubicFilter(float x, T c0, T c1, T c2, T c3) {
T r;
r = c0 * w0(x);
r += c1 * w1(x);
r += c2 * w2(x);
r += c3 * w3(x);
return r;
}
// slow but precise bicubic lookup using 16 texture lookups
template <class T, class R> // texture data type, return type
__device__ R tex2DBicubic(const cudaTextureObject_t tex, float x, float y) {
x -= 0.5f;
y -= 0.5f;
float px = floorf(x);
float py = floorf(y);
float fx = x - px;
float fy = y - py;
return cubicFilter<R>(
fy, cubicFilter<R>(
fx, tex2D<R>(tex, px - 1, py - 1), tex2D<R>(tex, px, py - 1),
tex2D<R>(tex, px + 1, py - 1), tex2D<R>(tex, px + 2, py - 1)),
cubicFilter<R>(fx, tex2D<R>(tex, px - 1, py), tex2D<R>(tex, px, py),
tex2D<R>(tex, px + 1, py), tex2D<R>(tex, px + 2, py)),
cubicFilter<R>(fx, tex2D<R>(tex, px - 1, py + 1),
tex2D<R>(tex, px, py + 1), tex2D<R>(tex, px + 1, py + 1),
tex2D<R>(tex, px + 2, py + 1)),
cubicFilter<R>(fx, tex2D<R>(tex, px - 1, py + 2),
tex2D<R>(tex, px, py + 2), tex2D<R>(tex, px + 1, py + 2),
tex2D<R>(tex, px + 2, py + 2)));
}
// fast bicubic texture lookup using 4 bilinear lookups
// assumes texture is set to non-normalized coordinates, point sampling
template <class T, class R> // texture data type, return type
__device__ R tex2DFastBicubic(const cudaTextureObject_t tex, float x, float y) {
x -= 0.5f;
y -= 0.5f;
float px = floorf(x);
float py = floorf(y);
float fx = x - px;
float fy = y - py;
// note: we could store these functions in a lookup table texture, but maths
// is cheap
float g0x = g0(fx);
float g1x = g1(fx);
float h0x = h0(fx);
float h1x = h1(fx);
float h0y = h0(fy);
float h1y = h1(fy);
R r = g0(fy) * (g0x * tex2D<R>(tex, px + h0x, py + h0y) +
g1x * tex2D<R>(tex, px + h1x, py + h0y)) +
g1(fy) * (g0x * tex2D<R>(tex, px + h0x, py + h1y) +
g1x * tex2D<R>(tex, px + h1x, py + h1y));
return r;
}
// higher-precision 2D bilinear lookup
template <class T, class R> // texture data type, return type
__device__ R tex2DBilinear(const cudaTextureObject_t tex, float x, float y) {
x -= 0.5f;
y -= 0.5f;
float px = floorf(x); // integer position
float py = floorf(y);
float fx = x - px; // fractional position
float fy = y - py;
px += 0.5f;
py += 0.5f;
return lerp(lerp(tex2D<R>(tex, px, py), tex2D<R>(tex, px + 1.0f, py), fx),
lerp(tex2D<R>(tex, px, py + 1.0f),
tex2D<R>(tex, px + 1.0f, py + 1.0f), fx),
fy);
}
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 200
/*
bilinear 2D texture lookup using tex2Dgather function
- tex2Dgather() returns the four neighbouring samples in a single texture
lookup
- it is only supported on the Fermi architecture
- you can select which component to fetch using the "comp" parameter
- it can be used to efficiently implement custom texture filters
The samples are returned in a 4-vector in the following order:
x: (0, 1)
y: (1, 1)
z: (1, 0)
w: (0, 0)
*/
template <class T, class R> // texture data type, return type
__device__ float tex2DBilinearGather(const cudaTextureObject_t tex, float x,
float y, int comp = 0) {
x -= 0.5f;
y -= 0.5f;
float px = floorf(x); // integer position
float py = floorf(y);
float fx = x - px; // fractional position
float fy = y - py;
R samples = tex2Dgather<R>(tex, px + 0.5f, py + 0.5f, comp);
return lerp(lerp((float)samples.w, (float)samples.z, fx),
lerp((float)samples.x, (float)samples.y, fx), fy);
}
#endif
// Catmull-Rom interpolation
__host__ __device__ float catrom_w0(float a) {
// return -0.5f*a + a*a - 0.5f*a*a*a;
return a * (-0.5f + a * (1.0f - 0.5f * a));
}
__host__ __device__ float catrom_w1(float a) {
// return 1.0f - 2.5f*a*a + 1.5f*a*a*a;
return 1.0f + a * a * (-2.5f + 1.5f * a);
}
__host__ __device__ float catrom_w2(float a) {
// return 0.5f*a + 2.0f*a*a - 1.5f*a*a*a;
return a * (0.5f + a * (2.0f - 1.5f * a));
}
__host__ __device__ float catrom_w3(float a) {
// return -0.5f*a*a + 0.5f*a*a*a;
return a * a * (-0.5f + 0.5f * a);
}
template <class T>
__device__ T catRomFilter(float x, T c0, T c1, T c2, T c3) {
T r;
r = c0 * catrom_w0(x);
r += c1 * catrom_w1(x);
r += c2 * catrom_w2(x);
r += c3 * catrom_w3(x);
return r;
}
// Note - can't use bilinear trick here because of negative lobes
template <class T, class R> // texture data type, return type
__device__ R tex2DCatRom(const cudaTextureObject_t tex, float x, float y) {
x -= 0.5f;
y -= 0.5f;
float px = floorf(x);
float py = floorf(y);
float fx = x - px;
float fy = y - py;
return catRomFilter<R>(
fy, catRomFilter<R>(
fx, tex2D<R>(tex, px - 1, py - 1), tex2D<R>(tex, px, py - 1),
tex2D<R>(tex, px + 1, py - 1), tex2D<R>(tex, px + 2, py - 1)),
catRomFilter<R>(fx, tex2D<R>(tex, px - 1, py), tex2D<R>(tex, px, py),
tex2D<R>(tex, px + 1, py), tex2D<R>(tex, px + 2, py)),
catRomFilter<R>(fx, tex2D<R>(tex, px - 1, py + 1),
tex2D<R>(tex, px, py + 1), tex2D<R>(tex, px + 1, py + 1),
tex2D<R>(tex, px + 2, py + 1)),
catRomFilter<R>(fx, tex2D<R>(tex, px - 1, py + 2),
tex2D<R>(tex, px, py + 2), tex2D<R>(tex, px + 1, py + 2),
tex2D<R>(tex, px + 2, py + 2)));
}
// test functions
// render image using normal bilinear texture lookup
__global__ void d_render(uchar4 *d_output, uint width, uint height, float tx,
float ty, float scale, float cx, float cy,
cudaTextureObject_t texObj) {
uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
uint i = __umul24(y, width) + x;
float u = (x - cx) * scale + cx + tx;
float v = (y - cy) * scale + cy + ty;
if ((x < width) && (y < height)) {
// write output color
float c = tex2D<float>(texObj, u, v);
// float c = tex2DBilinear<uchar, float>(tex, u, v);
// float c = tex2DBilinearGather<uchar, uchar4>(tex2, u, v, 0) / 255.0f;
d_output[i] = make_uchar4(c * 0xff, c * 0xff, c * 0xff, 0);
}
}
// render image using bicubic texture lookup
__global__ void d_renderBicubic(uchar4 *d_output, uint width, uint height,
float tx, float ty, float scale, float cx,
float cy, cudaTextureObject_t texObj) {
uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
uint i = __umul24(y, width) + x;
float u = (x - cx) * scale + cx + tx;
float v = (y - cy) * scale + cy + ty;
if ((x < width) && (y < height)) {
// write output color
float c = tex2DBicubic<uchar, float>(texObj, u, v);
d_output[i] = make_uchar4(c * 0xff, c * 0xff, c * 0xff, 0);
}
}
// render image using fast bicubic texture lookup
__global__ void d_renderFastBicubic(uchar4 *d_output, uint width, uint height,
float tx, float ty, float scale, float cx,
float cy, cudaTextureObject_t texObj) {
uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
uint i = __umul24(y, width) + x;
float u = (x - cx) * scale + cx + tx;
float v = (y - cy) * scale + cy + ty;
if ((x < width) && (y < height)) {
// write output color
float c = tex2DFastBicubic<uchar, float>(texObj, u, v);
d_output[i] = make_uchar4(c * 0xff, c * 0xff, c * 0xff, 0);
}
}
// render image using Catmull-Rom texture lookup
__global__ void d_renderCatRom(uchar4 *d_output, uint width, uint height,
float tx, float ty, float scale, float cx,
float cy, cudaTextureObject_t texObj) {
uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
uint i = __umul24(y, width) + x;
float u = (x - cx) * scale + cx + tx;
float v = (y - cy) * scale + cy + ty;
if ((x < width) && (y < height)) {
// write output color
float c = tex2DCatRom<uchar, float>(texObj, u, v);
d_output[i] = make_uchar4(c * 0xff, c * 0xff, c * 0xff, 0);
}
}
#endif // _BICUBICTEXTURE_KERNEL_CUH_
|