1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample implements a simple task consumer using threads and streams
* with all data in Unified Memory, and tasks consumed by both host and device
*/
// system includes
#include <cstdio>
#include <ctime>
#include <vector>
#include <algorithm>
#ifdef USE_PTHREADS
#include <pthread.h>
#else
#include <omp.h>
#endif
#include <stdlib.h>
// cuBLAS
#include <cublas_v2.h>
// utilities
#include <helper_cuda.h>
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
// SRAND48 and DRAND48 don't exist on windows, but these are the equivalent
// functions
void srand48(long seed) { srand((unsigned int)seed); }
double drand48() { return double(rand()) / RAND_MAX; }
#endif
const char *sSDKname = "UnifiedMemoryStreams";
// simple task
template <typename T>
struct Task {
unsigned int size, id;
T *data;
T *result;
T *vector;
Task() : size(0), id(0), data(NULL), result(NULL), vector(NULL){};
Task(unsigned int s) : size(s), id(0), data(NULL), result(NULL) {
// allocate unified memory -- the operation performed in this example will
// be a DGEMV
checkCudaErrors(cudaMallocManaged(&data, sizeof(T) * size * size));
checkCudaErrors(cudaMallocManaged(&result, sizeof(T) * size));
checkCudaErrors(cudaMallocManaged(&vector, sizeof(T) * size));
checkCudaErrors(cudaDeviceSynchronize());
}
~Task() {
// ensure all memory is deallocated
checkCudaErrors(cudaDeviceSynchronize());
checkCudaErrors(cudaFree(data));
checkCudaErrors(cudaFree(result));
checkCudaErrors(cudaFree(vector));
}
void allocate(const unsigned int s, const unsigned int unique_id) {
// allocate unified memory outside of constructor
id = unique_id;
size = s;
checkCudaErrors(cudaMallocManaged(&data, sizeof(T) * size * size));
checkCudaErrors(cudaMallocManaged(&result, sizeof(T) * size));
checkCudaErrors(cudaMallocManaged(&vector, sizeof(T) * size));
checkCudaErrors(cudaDeviceSynchronize());
// populate data with random elements
for (unsigned int i = 0; i < size * size; i++) {
data[i] = drand48();
}
for (unsigned int i = 0; i < size; i++) {
result[i] = 0.;
vector[i] = drand48();
}
}
};
#ifdef USE_PTHREADS
struct threadData_t {
int tid;
Task<double> *TaskListPtr;
cudaStream_t *streams;
cublasHandle_t *handles;
int taskSize;
};
typedef struct threadData_t threadData;
#endif
// simple host dgemv: assume data is in row-major format and square
template <typename T>
void gemv(int m, int n, T alpha, T *A, T *x, T beta, T *result) {
// rows
for (int i = 0; i < n; i++) {
result[i] *= beta;
for (int j = 0; j < n; j++) {
result[i] += A[i * n + j] * x[j];
}
}
}
// execute a single task on either host or device depending on size
#ifdef USE_PTHREADS
void *execute(void *inpArgs) {
threadData *dataPtr = (threadData *)inpArgs;
cudaStream_t *stream = dataPtr->streams;
cublasHandle_t *handle = dataPtr->handles;
int tid = dataPtr->tid;
for (int i = 0; i < dataPtr->taskSize; i++) {
Task<double> &t = dataPtr->TaskListPtr[i];
if (t.size < 100) {
// perform on host
printf("Task [%d], thread [%d] executing on host (%d)\n", t.id, tid,
t.size);
// attach managed memory to a (dummy) stream to allow host access while
// the device is running
checkCudaErrors(
cudaStreamAttachMemAsync(stream[0], t.data, 0, cudaMemAttachHost));
checkCudaErrors(
cudaStreamAttachMemAsync(stream[0], t.vector, 0, cudaMemAttachHost));
checkCudaErrors(
cudaStreamAttachMemAsync(stream[0], t.result, 0, cudaMemAttachHost));
// necessary to ensure Async cudaStreamAttachMemAsync calls have finished
checkCudaErrors(cudaStreamSynchronize(stream[0]));
// call the host operation
gemv(t.size, t.size, 1.0, t.data, t.vector, 0.0, t.result);
} else {
// perform on device
printf("Task [%d], thread [%d] executing on device (%d)\n", t.id, tid,
t.size);
double one = 1.0;
double zero = 0.0;
// attach managed memory to my stream
checkCudaErrors(cublasSetStream(handle[tid + 1], stream[tid + 1]));
checkCudaErrors(cudaStreamAttachMemAsync(stream[tid + 1], t.data, 0,
cudaMemAttachSingle));
checkCudaErrors(cudaStreamAttachMemAsync(stream[tid + 1], t.vector, 0,
cudaMemAttachSingle));
checkCudaErrors(cudaStreamAttachMemAsync(stream[tid + 1], t.result, 0,
cudaMemAttachSingle));
// call the device operation
checkCudaErrors(cublasDgemv(handle[tid + 1], CUBLAS_OP_N, t.size, t.size,
&one, t.data, t.size, t.vector, 1, &zero,
t.result, 1));
}
}
pthread_exit(NULL);
}
#else
template <typename T>
void execute(Task<T> &t, cublasHandle_t *handle, cudaStream_t *stream,
int tid) {
if (t.size < 100) {
// perform on host
printf("Task [%d], thread [%d] executing on host (%d)\n", t.id, tid,
t.size);
// attach managed memory to a (dummy) stream to allow host access while the
// device is running
checkCudaErrors(
cudaStreamAttachMemAsync(stream[0], t.data, 0, cudaMemAttachHost));
checkCudaErrors(
cudaStreamAttachMemAsync(stream[0], t.vector, 0, cudaMemAttachHost));
checkCudaErrors(
cudaStreamAttachMemAsync(stream[0], t.result, 0, cudaMemAttachHost));
// necessary to ensure Async cudaStreamAttachMemAsync calls have finished
checkCudaErrors(cudaStreamSynchronize(stream[0]));
// call the host operation
gemv(t.size, t.size, 1.0, t.data, t.vector, 0.0, t.result);
} else {
// perform on device
printf("Task [%d], thread [%d] executing on device (%d)\n", t.id, tid,
t.size);
double one = 1.0;
double zero = 0.0;
// attach managed memory to my stream
checkCudaErrors(cublasSetStream(handle[tid + 1], stream[tid + 1]));
checkCudaErrors(cudaStreamAttachMemAsync(stream[tid + 1], t.data, 0,
cudaMemAttachSingle));
checkCudaErrors(cudaStreamAttachMemAsync(stream[tid + 1], t.vector, 0,
cudaMemAttachSingle));
checkCudaErrors(cudaStreamAttachMemAsync(stream[tid + 1], t.result, 0,
cudaMemAttachSingle));
// call the device operation
checkCudaErrors(cublasDgemv(handle[tid + 1], CUBLAS_OP_N, t.size, t.size,
&one, t.data, t.size, t.vector, 1, &zero,
t.result, 1));
}
}
#endif
// populate a list of tasks with random sizes
template <typename T>
void initialise_tasks(std::vector<Task<T> > &TaskList) {
for (unsigned int i = 0; i < TaskList.size(); i++) {
// generate random size
int size;
size = std::max((int)(drand48() * 1000.0), 64);
TaskList[i].allocate(size, i);
}
}
int main(int argc, char **argv) {
// set device
cudaDeviceProp device_prop;
int dev_id = findCudaDevice(argc, (const char **)argv);
checkCudaErrors(cudaGetDeviceProperties(&device_prop, dev_id));
if (!device_prop.managedMemory) {
// This samples requires being run on a device that supports Unified Memory
fprintf(stderr, "Unified Memory not supported on this device\n");
exit(EXIT_WAIVED);
}
if (device_prop.computeMode == cudaComputeModeProhibited) {
// This sample requires being run with a default or process exclusive mode
fprintf(stderr,
"This sample requires a device in either default or process "
"exclusive mode\n");
exit(EXIT_WAIVED);
}
// randomise task sizes
int seed = (int)time(NULL);
srand48(seed);
// set number of threads
const int nthreads = 4;
// number of streams = number of threads
cudaStream_t *streams = new cudaStream_t[nthreads + 1];
cublasHandle_t *handles = new cublasHandle_t[nthreads + 1];
for (int i = 0; i < nthreads + 1; i++) {
checkCudaErrors(cudaStreamCreate(&streams[i]));
checkCudaErrors(cublasCreate(&handles[i]));
}
// create list of N tasks
unsigned int N = 40;
std::vector<Task<double> > TaskList(N);
initialise_tasks(TaskList);
printf("Executing tasks on host / device\n");
// run through all tasks using threads and streams
#ifdef USE_PTHREADS
pthread_t threads[nthreads];
threadData *InputToThreads = new threadData[nthreads];
for (int i = 0; i < nthreads; i++) {
checkCudaErrors(cudaSetDevice(dev_id));
InputToThreads[i].tid = i;
InputToThreads[i].streams = streams;
InputToThreads[i].handles = handles;
if ((TaskList.size() / nthreads) == 0) {
InputToThreads[i].taskSize = (TaskList.size() / nthreads);
InputToThreads[i].TaskListPtr =
&TaskList[i * (TaskList.size() / nthreads)];
} else {
if (i == nthreads - 1) {
InputToThreads[i].taskSize =
(TaskList.size() / nthreads) + (TaskList.size() % nthreads);
InputToThreads[i].TaskListPtr =
&TaskList[i * (TaskList.size() / nthreads) +
(TaskList.size() % nthreads)];
} else {
InputToThreads[i].taskSize = (TaskList.size() / nthreads);
InputToThreads[i].TaskListPtr =
&TaskList[i * (TaskList.size() / nthreads)];
}
}
pthread_create(&threads[i], NULL, &execute, &InputToThreads[i]);
}
for (int i = 0; i < nthreads; i++) {
pthread_join(threads[i], NULL);
}
#else
omp_set_num_threads(nthreads);
#pragma omp parallel for schedule(dynamic)
for (int i = 0; i < TaskList.size(); i++) {
checkCudaErrors(cudaSetDevice(dev_id));
int tid = omp_get_thread_num();
execute(TaskList[i], handles, streams, tid);
}
#endif
cudaDeviceSynchronize();
// Destroy CUDA Streams, cuBlas handles
for (int i = 0; i < nthreads + 1; i++) {
cudaStreamDestroy(streams[i]);
cublasDestroy(handles[i]);
}
// Free TaskList
std::vector<Task<double> >().swap(TaskList);
printf("All Done!\n");
exit(EXIT_SUCCESS);
}
|