1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//
// This sample demonstrates the use of streams for concurrent execution. It also
// illustrates how to introduce dependencies between CUDA streams with the
// cudaStreamWaitEvent function.
//
// Devices of compute capability 2.0 or higher can overlap the kernels
//
#include <cooperative_groups.h>
#include <stdio.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include <helper_functions.h>
// This is a kernel that does no real work but runs at least for a specified
// number of clocks
__global__ void clock_block(clock_t *d_o, clock_t clock_count) {
unsigned int start_clock = (unsigned int)clock();
clock_t clock_offset = 0;
while (clock_offset < clock_count) {
unsigned int end_clock = (unsigned int)clock();
// The code below should work like
// this (thanks to modular arithmetics):
//
// clock_offset = (clock_t) (end_clock > start_clock ?
// end_clock - start_clock :
// end_clock + (0xffffffffu - start_clock));
//
// Indeed, let m = 2^32 then
// end - start = end + m - start (mod m).
clock_offset = (clock_t)(end_clock - start_clock);
}
d_o[0] = clock_offset;
}
// Single warp reduction kernel
__global__ void sum(clock_t *d_clocks, int N) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ clock_t s_clocks[32];
clock_t my_sum = 0;
for (int i = threadIdx.x; i < N; i += blockDim.x) {
my_sum += d_clocks[i];
}
s_clocks[threadIdx.x] = my_sum;
cg::sync(cta);
for (int i = 16; i > 0; i /= 2) {
if (threadIdx.x < i) {
s_clocks[threadIdx.x] += s_clocks[threadIdx.x + i];
}
cg::sync(cta);
}
d_clocks[0] = s_clocks[0];
}
int main(int argc, char **argv) {
int nkernels = 8; // number of concurrent kernels
int nstreams = nkernels + 1; // use one more stream than concurrent kernel
int nbytes = nkernels * sizeof(clock_t); // number of data bytes
float kernel_time = 10; // time the kernel should run in ms
float elapsed_time; // timing variables
int cuda_device = 0;
printf("[%s] - Starting...\n", argv[0]);
// get number of kernels if overridden on the command line
if (checkCmdLineFlag(argc, (const char **)argv, "nkernels")) {
nkernels = getCmdLineArgumentInt(argc, (const char **)argv, "nkernels");
nstreams = nkernels + 1;
}
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
cuda_device = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDevice(&cuda_device));
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));
if ((deviceProp.concurrentKernels == 0)) {
printf("> GPU does not support concurrent kernel execution\n");
printf(" CUDA kernel runs will be serialized\n");
}
printf("> Detected Compute SM %d.%d hardware with %d multi-processors\n",
deviceProp.major, deviceProp.minor, deviceProp.multiProcessorCount);
// allocate host memory
clock_t *a = 0; // pointer to the array data in host memory
checkCudaErrors(cudaMallocHost((void **)&a, nbytes));
// allocate device memory
clock_t *d_a = 0; // pointers to data and init value in the device memory
checkCudaErrors(cudaMalloc((void **)&d_a, nbytes));
// allocate and initialize an array of stream handles
cudaStream_t *streams =
(cudaStream_t *)malloc(nstreams * sizeof(cudaStream_t));
for (int i = 0; i < nstreams; i++) {
checkCudaErrors(cudaStreamCreate(&(streams[i])));
}
// create CUDA event handles
cudaEvent_t start_event, stop_event;
checkCudaErrors(cudaEventCreate(&start_event));
checkCudaErrors(cudaEventCreate(&stop_event));
// the events are used for synchronization only and hence do not need to
// record timings this also makes events not introduce global sync points when
// recorded which is critical to get overlap
cudaEvent_t *kernelEvent;
kernelEvent = (cudaEvent_t *)malloc(nkernels * sizeof(cudaEvent_t));
for (int i = 0; i < nkernels; i++) {
checkCudaErrors(
cudaEventCreateWithFlags(&(kernelEvent[i]), cudaEventDisableTiming));
}
//////////////////////////////////////////////////////////////////////
// time execution with nkernels streams
clock_t total_clocks = 0;
#if defined(__arm__) || defined(__aarch64__)
// the kernel takes more time than the channel reset time on arm archs, so to
// prevent hangs reduce time_clocks.
clock_t time_clocks = (clock_t)(kernel_time * (deviceProp.clockRate / 100));
#else
clock_t time_clocks = (clock_t)(kernel_time * deviceProp.clockRate);
#endif
cudaEventRecord(start_event, 0);
// queue nkernels in separate streams and record when they are done
for (int i = 0; i < nkernels; ++i) {
clock_block<<<1, 1, 0, streams[i]>>>(&d_a[i], time_clocks);
total_clocks += time_clocks;
checkCudaErrors(cudaEventRecord(kernelEvent[i], streams[i]));
// make the last stream wait for the kernel event to be recorded
checkCudaErrors(
cudaStreamWaitEvent(streams[nstreams - 1], kernelEvent[i], 0));
}
// queue a sum kernel and a copy back to host in the last stream.
// the commands in this stream get dispatched as soon as all the kernel events
// have been recorded
sum<<<1, 32, 0, streams[nstreams - 1]>>>(d_a, nkernels);
checkCudaErrors(cudaMemcpyAsync(
a, d_a, sizeof(clock_t), cudaMemcpyDeviceToHost, streams[nstreams - 1]));
// at this point the CPU has dispatched all work for the GPU and can continue
// processing other tasks in parallel
// in this sample we just wait until the GPU is done
checkCudaErrors(cudaEventRecord(stop_event, 0));
checkCudaErrors(cudaEventSynchronize(stop_event));
checkCudaErrors(cudaEventElapsedTime(&elapsed_time, start_event, stop_event));
printf("Expected time for serial execution of %d kernels = %.3fs\n", nkernels,
nkernels * kernel_time / 1000.0f);
printf("Expected time for concurrent execution of %d kernels = %.3fs\n",
nkernels, kernel_time / 1000.0f);
printf("Measured time for sample = %.3fs\n", elapsed_time / 1000.0f);
bool bTestResult = (a[0] > total_clocks);
// release resources
for (int i = 0; i < nkernels; i++) {
cudaStreamDestroy(streams[i]);
cudaEventDestroy(kernelEvent[i]);
}
free(streams);
free(kernelEvent);
cudaEventDestroy(start_event);
cudaEventDestroy(stop_event);
cudaFreeHost(a);
cudaFree(d_a);
if (!bTestResult) {
printf("Test failed!\n");
exit(EXIT_FAILURE);
}
printf("Test passed\n");
exit(EXIT_SUCCESS);
}
|