File: matrixMul_kernel.cu

package info (click to toggle)
nvidia-cuda-samples 12.4.1~dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 313,216 kB
  • sloc: cpp: 82,042; makefile: 53,971; xml: 15,381; ansic: 8,630; sh: 91; python: 74
file content (127 lines) | stat: -rw-r--r-- 4,890 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Matrix multiplication: C = A * B.
 * Device code.
 */

#ifndef _MATRIXMUL_KERNEL_H_
#define _MATRIXMUL_KERNEL_H_

#include <stdio.h>

#define AS(i, j) As[i][j]
#define BS(i, j) Bs[i][j]

////////////////////////////////////////////////////////////////////////////////
//! Matrix multiplication on the device: C = A * B
//! wA is A's width and wB is B's width
////////////////////////////////////////////////////////////////////////////////
template <int block_size, typename size_type>
__device__ void matrixMul(float *C, float *A, float *B, size_type wA,
                          size_type wB) {
  // Block index
  size_type bx = blockIdx.x;
  size_type by = blockIdx.y;

  // Thread index
  size_type tx = threadIdx.x;
  size_type ty = threadIdx.y;

  // Index of the first sub-matrix of A processed by the block
  size_type aBegin = wA * block_size * by;

  // Index of the last sub-matrix of A processed by the block
  size_type aEnd = aBegin + wA - 1;

  // Step size used to iterate through the sub-matrices of A
  size_type aStep = block_size;

  // Index of the first sub-matrix of B processed by the block
  size_type bBegin = block_size * bx;

  // Step size used to iterate through the sub-matrices of B
  size_type bStep = block_size * wB;

  // Csub is used to store the element of the block sub-matrix
  // that is computed by the thread
  float Csub = 0;

  // Loop over all the sub-matrices of A and B
  // required to compute the block sub-matrix
  for (size_type a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {
    // Declaration of the shared memory array As used to
    // store the sub-matrix of A
    __shared__ float As[block_size][block_size];

    // Declaration of the shared memory array Bs used to
    // store the sub-matrix of B
    __shared__ float Bs[block_size][block_size];

    // Load the matrices from device memory
    // to shared memory; each thread loads
    // one element of each matrix
    AS(ty, tx) = A[a + wA * ty + tx];
    BS(ty, tx) = B[b + wB * ty + tx];

    // Synchronize to make sure the matrices are loaded
    __syncthreads();

    // Multiply the two matrices together;
    // each thread computes one element
    // of the block sub-matrix
#pragma unroll

    for (size_type k = 0; k < block_size; ++k) Csub += AS(ty, k) * BS(k, tx);

    // Synchronize to make sure that the preceding
    // computation is done before loading two new
    // sub-matrices of A and B in the next iteration
    __syncthreads();
  }

  // Write the block sub-matrix to device memory;
  // each thread writes one element
  size_type c = wB * block_size * by + block_size * bx;
  C[c + wB * ty + tx] = Csub;
}

// C wrappers around our template kernel
extern "C" __global__ void matrixMul_bs8_64bit(float *C, float *A, float *B,
                                               size_t wA, size_t wB) {
  matrixMul<8, size_t>(C, A, B, wA, wB);
}
extern "C" __global__ void matrixMul_bs16_64bit(float *C, float *A, float *B,
                                                size_t wA, size_t wB) {
  matrixMul<16, size_t>(C, A, B, wA, wB);
}
extern "C" __global__ void matrixMul_bs32_64bit(float *C, float *A, float *B,
                                                size_t wA, size_t wB) {
  matrixMul<32, size_t>(C, A, B, wA, wB);
}

#endif  // #ifndef _MATRIXMUL_KERNEL_H_