File: mergeSort.cu

package info (click to toggle)
nvidia-cuda-samples 12.4.1~dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 313,216 kB
  • sloc: cpp: 82,042; makefile: 53,971; xml: 15,381; ansic: 8,630; sh: 91; python: 74
file content (529 lines) | stat: -rw-r--r-- 19,384 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Based on "Designing efficient sorting algorithms for manycore GPUs"
 * by Nadathur Satish, Mark Harris, and Michael Garland
 * http://mgarland.org/files/papers/gpusort-ipdps09.pdf
 *
 * Victor Podlozhnyuk 09/24/2009
 */

#include <assert.h>
#include <cooperative_groups.h>

namespace cg = cooperative_groups;

#include <helper_cuda.h>
#include "mergeSort_common.h"

////////////////////////////////////////////////////////////////////////////////
// Helper functions
////////////////////////////////////////////////////////////////////////////////
static inline __host__ __device__ uint iDivUp(uint a, uint b) {
  return ((a % b) == 0) ? (a / b) : (a / b + 1);
}

static inline __host__ __device__ uint getSampleCount(uint dividend) {
  return iDivUp(dividend, SAMPLE_STRIDE);
}

#define W (sizeof(uint) * 8)
static inline __device__ uint nextPowerOfTwo(uint x) {
  /*
      --x;
      x |= x >> 1;
      x |= x >> 2;
      x |= x >> 4;
      x |= x >> 8;
      x |= x >> 16;
      return ++x;
  */
  return 1U << (W - __clz(x - 1));
}

template <uint sortDir>
static inline __device__ uint binarySearchInclusive(uint val, uint *data,
                                                    uint L, uint stride) {
  if (L == 0) {
    return 0;
  }

  uint pos = 0;

  for (; stride > 0; stride >>= 1) {
    uint newPos = umin(pos + stride, L);

    if ((sortDir && (data[newPos - 1] <= val)) ||
        (!sortDir && (data[newPos - 1] >= val))) {
      pos = newPos;
    }
  }

  return pos;
}

template <uint sortDir>
static inline __device__ uint binarySearchExclusive(uint val, uint *data,
                                                    uint L, uint stride) {
  if (L == 0) {
    return 0;
  }

  uint pos = 0;

  for (; stride > 0; stride >>= 1) {
    uint newPos = umin(pos + stride, L);

    if ((sortDir && (data[newPos - 1] < val)) ||
        (!sortDir && (data[newPos - 1] > val))) {
      pos = newPos;
    }
  }

  return pos;
}

////////////////////////////////////////////////////////////////////////////////
// Bottom-level merge sort (binary search-based)
////////////////////////////////////////////////////////////////////////////////
template <uint sortDir>
__global__ void mergeSortSharedKernel(uint *d_DstKey, uint *d_DstVal,
                                      uint *d_SrcKey, uint *d_SrcVal,
                                      uint arrayLength) {
  // Handle to thread block group
  cg::thread_block cta = cg::this_thread_block();
  __shared__ uint s_key[SHARED_SIZE_LIMIT];
  __shared__ uint s_val[SHARED_SIZE_LIMIT];

  d_SrcKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
  d_SrcVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
  d_DstKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
  d_DstVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
  s_key[threadIdx.x + 0] = d_SrcKey[0];
  s_val[threadIdx.x + 0] = d_SrcVal[0];
  s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] =
      d_SrcKey[(SHARED_SIZE_LIMIT / 2)];
  s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] =
      d_SrcVal[(SHARED_SIZE_LIMIT / 2)];

  for (uint stride = 1; stride < arrayLength; stride <<= 1) {
    uint lPos = threadIdx.x & (stride - 1);
    uint *baseKey = s_key + 2 * (threadIdx.x - lPos);
    uint *baseVal = s_val + 2 * (threadIdx.x - lPos);

    cg::sync(cta);
    uint keyA = baseKey[lPos + 0];
    uint valA = baseVal[lPos + 0];
    uint keyB = baseKey[lPos + stride];
    uint valB = baseVal[lPos + stride];
    uint posA =
        binarySearchExclusive<sortDir>(keyA, baseKey + stride, stride, stride) +
        lPos;
    uint posB =
        binarySearchInclusive<sortDir>(keyB, baseKey + 0, stride, stride) +
        lPos;

    cg::sync(cta);
    baseKey[posA] = keyA;
    baseVal[posA] = valA;
    baseKey[posB] = keyB;
    baseVal[posB] = valB;
  }

  cg::sync(cta);
  d_DstKey[0] = s_key[threadIdx.x + 0];
  d_DstVal[0] = s_val[threadIdx.x + 0];
  d_DstKey[(SHARED_SIZE_LIMIT / 2)] =
      s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
  d_DstVal[(SHARED_SIZE_LIMIT / 2)] =
      s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
}

static void mergeSortShared(uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey,
                            uint *d_SrcVal, uint batchSize, uint arrayLength,
                            uint sortDir) {
  if (arrayLength < 2) {
    return;
  }

  assert(SHARED_SIZE_LIMIT % arrayLength == 0);
  assert(((batchSize * arrayLength) % SHARED_SIZE_LIMIT) == 0);
  uint blockCount = batchSize * arrayLength / SHARED_SIZE_LIMIT;
  uint threadCount = SHARED_SIZE_LIMIT / 2;

  if (sortDir) {
    mergeSortSharedKernel<1U><<<blockCount, threadCount>>>(
        d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, arrayLength);
    getLastCudaError("mergeSortShared<1><<<>>> failed\n");
  } else {
    mergeSortSharedKernel<0U><<<blockCount, threadCount>>>(
        d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, arrayLength);
    getLastCudaError("mergeSortShared<0><<<>>> failed\n");
  }
}

////////////////////////////////////////////////////////////////////////////////
// Merge step 1: generate sample ranks
////////////////////////////////////////////////////////////////////////////////
template <uint sortDir>
__global__ void generateSampleRanksKernel(uint *d_RanksA, uint *d_RanksB,
                                          uint *d_SrcKey, uint stride, uint N,
                                          uint threadCount) {
  uint pos = blockIdx.x * blockDim.x + threadIdx.x;

  if (pos >= threadCount) {
    return;
  }

  const uint i = pos & ((stride / SAMPLE_STRIDE) - 1);
  const uint segmentBase = (pos - i) * (2 * SAMPLE_STRIDE);
  d_SrcKey += segmentBase;
  d_RanksA += segmentBase / SAMPLE_STRIDE;
  d_RanksB += segmentBase / SAMPLE_STRIDE;

  const uint segmentElementsA = stride;
  const uint segmentElementsB = umin(stride, N - segmentBase - stride);
  const uint segmentSamplesA = getSampleCount(segmentElementsA);
  const uint segmentSamplesB = getSampleCount(segmentElementsB);

  if (i < segmentSamplesA) {
    d_RanksA[i] = i * SAMPLE_STRIDE;
    d_RanksB[i] = binarySearchExclusive<sortDir>(
        d_SrcKey[i * SAMPLE_STRIDE], d_SrcKey + stride, segmentElementsB,
        nextPowerOfTwo(segmentElementsB));
  }

  if (i < segmentSamplesB) {
    d_RanksB[(stride / SAMPLE_STRIDE) + i] = i * SAMPLE_STRIDE;
    d_RanksA[(stride / SAMPLE_STRIDE) + i] = binarySearchInclusive<sortDir>(
        d_SrcKey[stride + i * SAMPLE_STRIDE], d_SrcKey + 0, segmentElementsA,
        nextPowerOfTwo(segmentElementsA));
  }
}

static void generateSampleRanks(uint *d_RanksA, uint *d_RanksB, uint *d_SrcKey,
                                uint stride, uint N, uint sortDir) {
  uint lastSegmentElements = N % (2 * stride);
  uint threadCount =
      (lastSegmentElements > stride)
          ? (N + 2 * stride - lastSegmentElements) / (2 * SAMPLE_STRIDE)
          : (N - lastSegmentElements) / (2 * SAMPLE_STRIDE);

  if (sortDir) {
    generateSampleRanksKernel<1U><<<iDivUp(threadCount, 256), 256>>>(
        d_RanksA, d_RanksB, d_SrcKey, stride, N, threadCount);
    getLastCudaError("generateSampleRanksKernel<1U><<<>>> failed\n");
  } else {
    generateSampleRanksKernel<0U><<<iDivUp(threadCount, 256), 256>>>(
        d_RanksA, d_RanksB, d_SrcKey, stride, N, threadCount);
    getLastCudaError("generateSampleRanksKernel<0U><<<>>> failed\n");
  }
}

////////////////////////////////////////////////////////////////////////////////
// Merge step 2: generate sample ranks and indices
////////////////////////////////////////////////////////////////////////////////
__global__ void mergeRanksAndIndicesKernel(uint *d_Limits, uint *d_Ranks,
                                           uint stride, uint N,
                                           uint threadCount) {
  uint pos = blockIdx.x * blockDim.x + threadIdx.x;

  if (pos >= threadCount) {
    return;
  }

  const uint i = pos & ((stride / SAMPLE_STRIDE) - 1);
  const uint segmentBase = (pos - i) * (2 * SAMPLE_STRIDE);
  d_Ranks += (pos - i) * 2;
  d_Limits += (pos - i) * 2;

  const uint segmentElementsA = stride;
  const uint segmentElementsB = umin(stride, N - segmentBase - stride);
  const uint segmentSamplesA = getSampleCount(segmentElementsA);
  const uint segmentSamplesB = getSampleCount(segmentElementsB);

  if (i < segmentSamplesA) {
    uint dstPos = binarySearchExclusive<1U>(
                      d_Ranks[i], d_Ranks + segmentSamplesA, segmentSamplesB,
                      nextPowerOfTwo(segmentSamplesB)) +
                  i;
    d_Limits[dstPos] = d_Ranks[i];
  }

  if (i < segmentSamplesB) {
    uint dstPos = binarySearchInclusive<1U>(d_Ranks[segmentSamplesA + i],
                                            d_Ranks, segmentSamplesA,
                                            nextPowerOfTwo(segmentSamplesA)) +
                  i;
    d_Limits[dstPos] = d_Ranks[segmentSamplesA + i];
  }
}

static void mergeRanksAndIndices(uint *d_LimitsA, uint *d_LimitsB,
                                 uint *d_RanksA, uint *d_RanksB, uint stride,
                                 uint N) {
  uint lastSegmentElements = N % (2 * stride);
  uint threadCount =
      (lastSegmentElements > stride)
          ? (N + 2 * stride - lastSegmentElements) / (2 * SAMPLE_STRIDE)
          : (N - lastSegmentElements) / (2 * SAMPLE_STRIDE);

  mergeRanksAndIndicesKernel<<<iDivUp(threadCount, 256), 256>>>(
      d_LimitsA, d_RanksA, stride, N, threadCount);
  getLastCudaError("mergeRanksAndIndicesKernel(A)<<<>>> failed\n");

  mergeRanksAndIndicesKernel<<<iDivUp(threadCount, 256), 256>>>(
      d_LimitsB, d_RanksB, stride, N, threadCount);
  getLastCudaError("mergeRanksAndIndicesKernel(B)<<<>>> failed\n");
}

////////////////////////////////////////////////////////////////////////////////
// Merge step 3: merge elementary intervals
////////////////////////////////////////////////////////////////////////////////
template <uint sortDir>
inline __device__ void merge(uint *dstKey, uint *dstVal, uint *srcAKey,
                             uint *srcAVal, uint *srcBKey, uint *srcBVal,
                             uint lenA, uint nPowTwoLenA, uint lenB,
                             uint nPowTwoLenB, cg::thread_block cta) {
  uint keyA, valA, keyB, valB, dstPosA, dstPosB;

  if (threadIdx.x < lenA) {
    keyA = srcAKey[threadIdx.x];
    valA = srcAVal[threadIdx.x];
    dstPosA = binarySearchExclusive<sortDir>(keyA, srcBKey, lenB, nPowTwoLenB) +
              threadIdx.x;
  }

  if (threadIdx.x < lenB) {
    keyB = srcBKey[threadIdx.x];
    valB = srcBVal[threadIdx.x];
    dstPosB = binarySearchInclusive<sortDir>(keyB, srcAKey, lenA, nPowTwoLenA) +
              threadIdx.x;
  }

  cg::sync(cta);

  if (threadIdx.x < lenA) {
    dstKey[dstPosA] = keyA;
    dstVal[dstPosA] = valA;
  }

  if (threadIdx.x < lenB) {
    dstKey[dstPosB] = keyB;
    dstVal[dstPosB] = valB;
  }
}

template <uint sortDir>
__global__ void mergeElementaryIntervalsKernel(uint *d_DstKey, uint *d_DstVal,
                                               uint *d_SrcKey, uint *d_SrcVal,
                                               uint *d_LimitsA, uint *d_LimitsB,
                                               uint stride, uint N) {
  // Handle to thread block group
  cg::thread_block cta = cg::this_thread_block();
  __shared__ uint s_key[2 * SAMPLE_STRIDE];
  __shared__ uint s_val[2 * SAMPLE_STRIDE];

  const uint intervalI = blockIdx.x & ((2 * stride) / SAMPLE_STRIDE - 1);
  const uint segmentBase = (blockIdx.x - intervalI) * SAMPLE_STRIDE;
  d_SrcKey += segmentBase;
  d_SrcVal += segmentBase;
  d_DstKey += segmentBase;
  d_DstVal += segmentBase;

  // Set up threadblock-wide parameters
  __shared__ uint startSrcA, startSrcB, lenSrcA, lenSrcB, startDstA, startDstB;

  if (threadIdx.x == 0) {
    uint segmentElementsA = stride;
    uint segmentElementsB = umin(stride, N - segmentBase - stride);
    uint segmentSamplesA = getSampleCount(segmentElementsA);
    uint segmentSamplesB = getSampleCount(segmentElementsB);
    uint segmentSamples = segmentSamplesA + segmentSamplesB;

    startSrcA = d_LimitsA[blockIdx.x];
    startSrcB = d_LimitsB[blockIdx.x];
    uint endSrcA = (intervalI + 1 < segmentSamples) ? d_LimitsA[blockIdx.x + 1]
                                                    : segmentElementsA;
    uint endSrcB = (intervalI + 1 < segmentSamples) ? d_LimitsB[blockIdx.x + 1]
                                                    : segmentElementsB;
    lenSrcA = endSrcA - startSrcA;
    lenSrcB = endSrcB - startSrcB;
    startDstA = startSrcA + startSrcB;
    startDstB = startDstA + lenSrcA;
  }

  // Load main input data
  cg::sync(cta);

  if (threadIdx.x < lenSrcA) {
    s_key[threadIdx.x + 0] = d_SrcKey[0 + startSrcA + threadIdx.x];
    s_val[threadIdx.x + 0] = d_SrcVal[0 + startSrcA + threadIdx.x];
  }

  if (threadIdx.x < lenSrcB) {
    s_key[threadIdx.x + SAMPLE_STRIDE] =
        d_SrcKey[stride + startSrcB + threadIdx.x];
    s_val[threadIdx.x + SAMPLE_STRIDE] =
        d_SrcVal[stride + startSrcB + threadIdx.x];
  }

  // Merge data in shared memory
  cg::sync(cta);
  merge<sortDir>(s_key, s_val, s_key + 0, s_val + 0, s_key + SAMPLE_STRIDE,
                 s_val + SAMPLE_STRIDE, lenSrcA, SAMPLE_STRIDE, lenSrcB,
                 SAMPLE_STRIDE, cta);

  // Store merged data
  cg::sync(cta);

  if (threadIdx.x < lenSrcA) {
    d_DstKey[startDstA + threadIdx.x] = s_key[threadIdx.x];
    d_DstVal[startDstA + threadIdx.x] = s_val[threadIdx.x];
  }

  if (threadIdx.x < lenSrcB) {
    d_DstKey[startDstB + threadIdx.x] = s_key[lenSrcA + threadIdx.x];
    d_DstVal[startDstB + threadIdx.x] = s_val[lenSrcA + threadIdx.x];
  }
}

static void mergeElementaryIntervals(uint *d_DstKey, uint *d_DstVal,
                                     uint *d_SrcKey, uint *d_SrcVal,
                                     uint *d_LimitsA, uint *d_LimitsB,
                                     uint stride, uint N, uint sortDir) {
  uint lastSegmentElements = N % (2 * stride);
  uint mergePairs = (lastSegmentElements > stride)
                        ? getSampleCount(N)
                        : (N - lastSegmentElements) / SAMPLE_STRIDE;

  if (sortDir) {
    mergeElementaryIntervalsKernel<1U><<<mergePairs, SAMPLE_STRIDE>>>(
        d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, d_LimitsA, d_LimitsB, stride,
        N);
    getLastCudaError("mergeElementaryIntervalsKernel<1> failed\n");
  } else {
    mergeElementaryIntervalsKernel<0U><<<mergePairs, SAMPLE_STRIDE>>>(
        d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, d_LimitsA, d_LimitsB, stride,
        N);
    getLastCudaError("mergeElementaryIntervalsKernel<0> failed\n");
  }
}

extern "C" void bitonicSortShared(uint *d_DstKey, uint *d_DstVal,
                                  uint *d_SrcKey, uint *d_SrcVal,
                                  uint batchSize, uint arrayLength,
                                  uint sortDir);

extern "C" void bitonicMergeElementaryIntervals(uint *d_DstKey, uint *d_DstVal,
                                                uint *d_SrcKey, uint *d_SrcVal,
                                                uint *d_LimitsA,
                                                uint *d_LimitsB, uint stride,
                                                uint N, uint sortDir);

static uint *d_RanksA, *d_RanksB, *d_LimitsA, *d_LimitsB;
static const uint MAX_SAMPLE_COUNT = 32768;

extern "C" void initMergeSort(void) {
  checkCudaErrors(
      cudaMalloc((void **)&d_RanksA, MAX_SAMPLE_COUNT * sizeof(uint)));
  checkCudaErrors(
      cudaMalloc((void **)&d_RanksB, MAX_SAMPLE_COUNT * sizeof(uint)));
  checkCudaErrors(
      cudaMalloc((void **)&d_LimitsA, MAX_SAMPLE_COUNT * sizeof(uint)));
  checkCudaErrors(
      cudaMalloc((void **)&d_LimitsB, MAX_SAMPLE_COUNT * sizeof(uint)));
}

extern "C" void closeMergeSort(void) {
  checkCudaErrors(cudaFree(d_RanksA));
  checkCudaErrors(cudaFree(d_RanksB));
  checkCudaErrors(cudaFree(d_LimitsB));
  checkCudaErrors(cudaFree(d_LimitsA));
}

extern "C" void mergeSort(uint *d_DstKey, uint *d_DstVal, uint *d_BufKey,
                          uint *d_BufVal, uint *d_SrcKey, uint *d_SrcVal,
                          uint N, uint sortDir) {
  uint stageCount = 0;

  for (uint stride = SHARED_SIZE_LIMIT; stride < N; stride <<= 1, stageCount++)
    ;

  uint *ikey, *ival, *okey, *oval;

  if (stageCount & 1) {
    ikey = d_BufKey;
    ival = d_BufVal;
    okey = d_DstKey;
    oval = d_DstVal;
  } else {
    ikey = d_DstKey;
    ival = d_DstVal;
    okey = d_BufKey;
    oval = d_BufVal;
  }

  assert(N <= (SAMPLE_STRIDE * MAX_SAMPLE_COUNT));
  assert(N % SHARED_SIZE_LIMIT == 0);
  mergeSortShared(ikey, ival, d_SrcKey, d_SrcVal, N / SHARED_SIZE_LIMIT,
                  SHARED_SIZE_LIMIT, sortDir);

  for (uint stride = SHARED_SIZE_LIMIT; stride < N; stride <<= 1) {
    uint lastSegmentElements = N % (2 * stride);

    // Find sample ranks and prepare for limiters merge
    generateSampleRanks(d_RanksA, d_RanksB, ikey, stride, N, sortDir);

    // Merge ranks and indices
    mergeRanksAndIndices(d_LimitsA, d_LimitsB, d_RanksA, d_RanksB, stride, N);

    // Merge elementary intervals
    mergeElementaryIntervals(okey, oval, ikey, ival, d_LimitsA, d_LimitsB,
                             stride, N, sortDir);

    if (lastSegmentElements <= stride) {
      // Last merge segment consists of a single array which just needs to be
      // passed through
      checkCudaErrors(cudaMemcpy(
          okey + (N - lastSegmentElements), ikey + (N - lastSegmentElements),
          lastSegmentElements * sizeof(uint), cudaMemcpyDeviceToDevice));
      checkCudaErrors(cudaMemcpy(
          oval + (N - lastSegmentElements), ival + (N - lastSegmentElements),
          lastSegmentElements * sizeof(uint), cudaMemcpyDeviceToDevice));
    }

    uint *t;
    t = ikey;
    ikey = okey;
    okey = t;
    t = ival;
    ival = oval;
    oval = t;
  }
}