1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample implements multi-threaded heterogeneous computing workloads with
* the new CPU callbacks for CUDA streams and events introduced with CUDA 5.0.
* Together with the thread safety of the CUDA API implementing heterogeneous
* workloads that float between CPU threads and GPUs has become simple and
* efficient.
*
* The workloads in the sample follow the form CPU preprocess -> GPU process ->
* CPU postprocess.
* Each CPU processing step is handled by its own dedicated thread. GPU
* workloads are sent to all available GPUs in the system.
*
*/
// System includes
#include <stdio.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
#include "multithreading.h"
const int N_workloads = 8;
const int N_elements_per_workload = 100000;
CUTBarrier thread_barrier;
void CUDART_CB myStreamCallback(cudaStream_t event, cudaError_t status,
void *data);
struct heterogeneous_workload {
int id;
int cudaDeviceID;
int *h_data;
int *d_data;
cudaStream_t stream;
bool success;
};
__global__ void incKernel(int *data, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) data[i]++;
}
CUT_THREADPROC launch(void *void_arg) {
heterogeneous_workload *workload = (heterogeneous_workload *)void_arg;
// Select GPU for this CPU thread
checkCudaErrors(cudaSetDevice(workload->cudaDeviceID));
// Allocate Resources
checkCudaErrors(cudaStreamCreate(&workload->stream));
checkCudaErrors(
cudaMalloc(&workload->d_data, N_elements_per_workload * sizeof(int)));
checkCudaErrors(cudaHostAlloc(&workload->h_data,
N_elements_per_workload * sizeof(int),
cudaHostAllocPortable));
// CPU thread generates data
for (int i = 0; i < N_elements_per_workload; ++i) {
workload->h_data[i] = workload->id + i;
}
// Schedule work for GPU in CUDA stream without blocking the CPU thread
// Note: Dedicated streams enable concurrent execution of workloads on the GPU
dim3 block(512);
dim3 grid((N_elements_per_workload + block.x - 1) / block.x);
checkCudaErrors(cudaMemcpyAsync(workload->d_data, workload->h_data,
N_elements_per_workload * sizeof(int),
cudaMemcpyHostToDevice, workload->stream));
incKernel<<<grid, block, 0, workload->stream>>>(workload->d_data,
N_elements_per_workload);
checkCudaErrors(cudaMemcpyAsync(workload->h_data, workload->d_data,
N_elements_per_workload * sizeof(int),
cudaMemcpyDeviceToHost, workload->stream));
// New in CUDA 5.0: Add a CPU callback which is called once all currently
// pending operations in the CUDA stream have finished
checkCudaErrors(
cudaStreamAddCallback(workload->stream, myStreamCallback, workload, 0));
CUT_THREADEND;
// CPU thread end of life, GPU continues to process data...
}
CUT_THREADPROC postprocess(void *void_arg) {
heterogeneous_workload *workload = (heterogeneous_workload *)void_arg;
// ... GPU is done with processing, continue on new CPU thread...
// Select GPU for this CPU thread
checkCudaErrors(cudaSetDevice(workload->cudaDeviceID));
// CPU thread consumes results from GPU
workload->success = true;
for (int i = 0; i < N_workloads; ++i) {
workload->success &= workload->h_data[i] == i + workload->id + 1;
}
// Free Resources
checkCudaErrors(cudaFree(workload->d_data));
checkCudaErrors(cudaFreeHost(workload->h_data));
checkCudaErrors(cudaStreamDestroy(workload->stream));
// Signal the end of the heterogeneous workload to main thread
cutIncrementBarrier(&thread_barrier);
CUT_THREADEND;
}
void CUDART_CB myStreamCallback(cudaStream_t stream, cudaError_t status,
void *data) {
// Check status of GPU after stream operations are done
checkCudaErrors(status);
// Spawn new CPU worker thread and continue processing on the CPU
cutStartThread(postprocess, data);
}
int main(int argc, char **argv) {
int N_gpus, max_gpus = 0;
int gpuInfo[32]; // assume a maximum of 32 GPUs in a system configuration
printf("Starting simpleCallback\n");
checkCudaErrors(cudaGetDeviceCount(&N_gpus));
printf("Found %d CUDA capable GPUs\n", N_gpus);
if (N_gpus > 32) {
printf("simpleCallback only supports 32 GPU(s)\n");
}
for (int devid = 0; devid < N_gpus; devid++) {
int SMversion;
cudaDeviceProp deviceProp;
cudaSetDevice(devid);
cudaGetDeviceProperties(&deviceProp, devid);
SMversion = deviceProp.major << 4 + deviceProp.minor;
printf("GPU[%d] %s supports SM %d.%d", devid, deviceProp.name,
deviceProp.major, deviceProp.minor);
printf(", %s GPU Callback Functions\n",
(SMversion >= 0x11) ? "capable" : "NOT capable");
if (SMversion >= 0x11) {
gpuInfo[max_gpus++] = devid;
}
}
printf("%d GPUs available to run Callback Functions\n", max_gpus);
heterogeneous_workload *workloads;
workloads = (heterogeneous_workload *)malloc(N_workloads *
sizeof(heterogeneous_workload));
;
thread_barrier = cutCreateBarrier(N_workloads);
// Main thread spawns a CPU worker thread for each heterogeneous workload
printf("Starting %d heterogeneous computing workloads\n", N_workloads);
for (int i = 0; i < N_workloads; ++i) {
workloads[i].id = i;
workloads[i].cudaDeviceID = gpuInfo[i % max_gpus]; // i % N_gpus;
cutStartThread(launch, &workloads[i]);
}
// Sleep until all workloads have finished
cutWaitForBarrier(&thread_barrier);
printf("Total of %d workloads finished:\n", N_workloads);
bool success = true;
for (int i = 0; i < N_workloads; ++i) {
success &= workloads[i].success;
}
printf("%s\n", success ? "Success" : "Failure");
free(workloads);
exit(success ? EXIT_SUCCESS : EXIT_FAILURE);
}
|