1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample demonstrates how to use texture fetches from layered 2D textures
* in CUDA C
*
* This sample first generates a 3D input data array for the layered texture
* and the expected output. Then it starts CUDA C kernels, one for each layer,
* which fetch their layer's texture data (using normalized texture coordinates)
* transform it to the expected output, and write it to a 3D output data array.
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// includes CUDA
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
static const char *sSDKname = "simpleCubemapTexture";
// includes, kernels
////////////////////////////////////////////////////////////////////////////////
//! Transform a cubemap face of a linear buffe using cubemap texture lookups
//! @param g_odata output data in global memory
////////////////////////////////////////////////////////////////////////////////
__global__ void transformKernel(float *g_odata, int width,
cudaTextureObject_t tex) {
// calculate this thread's data point
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
// 0.5f offset and division are necessary to access the original data points
// in the texture (such that bilinear interpolation will not be activated).
// For details, see also CUDA Programming Guide, Appendix D
float u = ((x + 0.5f) / (float)width) * 2.f - 1.f;
float v = ((y + 0.5f) / (float)width) * 2.f - 1.f;
float cx, cy, cz;
for (unsigned int face = 0; face < 6; face++) {
// Layer 0 is positive X face
if (face == 0) {
cx = 1;
cy = -v;
cz = -u;
}
// Layer 1 is negative X face
else if (face == 1) {
cx = -1;
cy = -v;
cz = u;
}
// Layer 2 is positive Y face
else if (face == 2) {
cx = u;
cy = 1;
cz = v;
}
// Layer 3 is negative Y face
else if (face == 3) {
cx = u;
cy = -1;
cz = -v;
}
// Layer 4 is positive Z face
else if (face == 4) {
cx = u;
cy = -v;
cz = 1;
}
// Layer 4 is negative Z face
else if (face == 5) {
cx = -u;
cy = -v;
cz = -1;
}
// read from texture, do expected transformation and write to global memory
g_odata[face * width * width + y * width + x] =
-texCubemap<float>(tex, cx, cy, cz);
}
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
int devID = findCudaDevice(argc, (const char **)argv);
bool bResult = true;
// get number of SMs on this GPU
cudaDeviceProp deviceProps;
checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID));
printf("CUDA device [%s] has %d Multi-Processors ", deviceProps.name,
deviceProps.multiProcessorCount);
printf("SM %d.%d\n", deviceProps.major, deviceProps.minor);
if (deviceProps.major < 2) {
printf(
"%s requires SM 2.0 or higher for support of Texture Arrays. Test "
"will exit... \n",
sSDKname);
exit(EXIT_WAIVED);
}
// generate input data for layered texture
unsigned int width = 64, num_faces = 6, num_layers = 1;
unsigned int cubemap_size = width * width * num_faces;
unsigned int size = cubemap_size * num_layers * sizeof(float);
float *h_data = (float *)malloc(size);
for (int i = 0; i < (int)(cubemap_size * num_layers); i++) {
h_data[i] = (float)i;
}
// this is the expected transformation of the input data (the expected output)
float *h_data_ref = (float *)malloc(size);
for (unsigned int layer = 0; layer < num_layers; layer++) {
for (int i = 0; i < (int)(cubemap_size); i++) {
h_data_ref[layer * cubemap_size + i] =
-h_data[layer * cubemap_size + i] + layer;
}
}
// allocate device memory for result
float *d_data = NULL;
checkCudaErrors(cudaMalloc((void **)&d_data, size));
// allocate array and copy image data
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaArray *cu_3darray;
// checkCudaErrors(cudaMalloc3DArray( &cu_3darray, &channelDesc,
// make_cudaExtent(width, height, num_layers), cudaArrayLayered ));
checkCudaErrors(cudaMalloc3DArray(&cu_3darray, &channelDesc,
make_cudaExtent(width, width, num_faces),
cudaArrayCubemap));
cudaMemcpy3DParms myparms = {0};
myparms.srcPos = make_cudaPos(0, 0, 0);
myparms.dstPos = make_cudaPos(0, 0, 0);
myparms.srcPtr =
make_cudaPitchedPtr(h_data, width * sizeof(float), width, width);
myparms.dstArray = cu_3darray;
myparms.extent = make_cudaExtent(width, width, num_faces);
myparms.kind = cudaMemcpyHostToDevice;
checkCudaErrors(cudaMemcpy3D(&myparms));
cudaTextureObject_t tex;
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = cu_3darray;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = true;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeWrap;
texDescr.addressMode[1] = cudaAddressModeWrap;
texDescr.addressMode[2] = cudaAddressModeWrap;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&tex, &texRes, &texDescr, NULL));
dim3 dimBlock(8, 8, 1);
dim3 dimGrid(width / dimBlock.x, width / dimBlock.y, 1);
printf(
"Covering Cubemap data array of %d~3 x %d: Grid size is %d x %d, each "
"block has 8 x 8 threads\n",
width, num_layers, dimGrid.x, dimGrid.y);
transformKernel<<<dimGrid, dimBlock>>>(d_data, width,
tex); // warmup (for better timing)
// check if kernel execution generated an error
getLastCudaError("warmup Kernel execution failed");
checkCudaErrors(cudaDeviceSynchronize());
StopWatchInterface *timer = NULL;
sdkCreateTimer(&timer);
sdkStartTimer(&timer);
// execute the kernel
transformKernel<<<dimGrid, dimBlock, 0>>>(d_data, width, tex);
// check if kernel execution generated an error
getLastCudaError("Kernel execution failed");
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&timer);
printf("Processing time: %.3f msec\n", sdkGetTimerValue(&timer));
printf("%.2f Mtexlookups/sec\n",
(cubemap_size / (sdkGetTimerValue(&timer) / 1000.0f) / 1e6));
sdkDeleteTimer(&timer);
// allocate mem for the result on host side
float *h_odata = (float *)malloc(size);
// copy result from device to host
checkCudaErrors(cudaMemcpy(h_odata, d_data, size, cudaMemcpyDeviceToHost));
// write regression file if necessary
if (checkCmdLineFlag(argc, (const char **)argv, "regression")) {
// write file for regression test
sdkWriteFile<float>("./data/regression.dat", h_odata, width * width, 0.0f,
false);
} else {
printf("Comparing kernel output to expected data\n");
#define MIN_EPSILON_ERROR 5e-3f
bResult =
compareData(h_odata, h_data_ref, cubemap_size, MIN_EPSILON_ERROR, 0.0f);
}
// cleanup memory
free(h_data);
free(h_data_ref);
free(h_odata);
checkCudaErrors(cudaDestroyTextureObject(tex));
checkCudaErrors(cudaFree(d_data));
checkCudaErrors(cudaFreeArray(cu_3darray));
exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
|