1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Quadro and Tesla GPUs with compute capability >= 2.0 can overlap two
* memcopies with kernel execution. This sample illustrates the usage of CUDA
* streams to achieve overlapping of kernel execution with copying data to and
* from the device.
*
* Additionally, this sample uses CUDA events to measure elapsed time for
* CUDA calls. Events are a part of CUDA API and provide a system independent
* way to measure execution times on CUDA devices with approximately 0.5
* microsecond precision.
*
* Elapsed times are averaged over nreps repetitions (10 by default).
*
*/
const char *sSDKname = "simpleMultiCopy";
// includes, system
#include <stdio.h>
// include CUDA
#include <cuda_runtime.h>
// includes, project
#include <helper_cuda.h>
#include <helper_functions.h> // helper for shared that are common to CUDA Samples
// includes, kernels
// Declare the CUDA kernels here and main() code that is needed to launch
// Compute workload on the system
__global__ void incKernel(int *g_out, int *g_in, int N, int inner_reps) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) {
for (int i = 0; i < inner_reps; ++i) {
g_out[idx] = g_in[idx] + 1;
}
}
}
#define STREAM_COUNT 4
// Uncomment to simulate data source/sink IO times
//#define SIMULATE_IO
int *h_data_source;
int *h_data_sink;
int *h_data_in[STREAM_COUNT];
int *d_data_in[STREAM_COUNT];
int *h_data_out[STREAM_COUNT];
int *d_data_out[STREAM_COUNT];
cudaEvent_t cycleDone[STREAM_COUNT];
cudaStream_t stream[STREAM_COUNT];
cudaEvent_t start, stop;
int N = 1 << 22;
int nreps = 10; // number of times each experiment is repeated
int inner_reps = 5;
int memsize;
dim3 block(512);
dim3 grid;
int thread_blocks;
float processWithStreams(int streams_used);
void init();
bool test();
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char *argv[]) {
int cuda_device = 0;
float scale_factor;
cudaDeviceProp deviceProp;
printf("[%s] - Starting...\n", sSDKname);
if (checkCmdLineFlag(argc, (const char **)argv, "device")) {
cuda_device = getCmdLineArgumentInt(argc, (const char **)argv, "device=");
if (cuda_device < 0) {
printf("Invalid command line parameters\n");
exit(EXIT_FAILURE);
} else {
printf("cuda_device = %d\n", cuda_device);
cuda_device = gpuDeviceInit(cuda_device);
if (cuda_device < 0) {
printf("No CUDA Capable devices found, exiting...\n");
exit(EXIT_SUCCESS);
}
}
} else {
// Otherwise pick the device with the highest Gflops/s
cuda_device = gpuGetMaxGflopsDeviceId();
checkCudaErrors(cudaSetDevice(cuda_device));
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));
printf("> Using CUDA device [%d]: %s\n", cuda_device, deviceProp.name);
}
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));
printf("[%s] has %d MP(s) x %d (Cores/MP) = %d (Cores)\n", deviceProp.name,
deviceProp.multiProcessorCount,
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
deviceProp.multiProcessorCount);
// Anything that is less than 32 Cores will have scaled down workload
scale_factor =
max((32.0f / (_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
(float)deviceProp.multiProcessorCount)),
1.0f);
N = (int)((float)N / scale_factor);
printf("> Device name: %s\n", deviceProp.name);
printf("> CUDA Capability %d.%d hardware with %d multi-processors\n",
deviceProp.major, deviceProp.minor, deviceProp.multiProcessorCount);
printf("> scale_factor = %.2f\n", 1.0f / scale_factor);
printf("> array_size = %d\n\n", N);
memsize = N * sizeof(int);
thread_blocks = N / block.x;
grid.x = thread_blocks % 65535;
grid.y = (thread_blocks / 65535 + 1);
// Allocate resources
h_data_source = (int *)malloc(memsize);
h_data_sink = (int *)malloc(memsize);
for (int i = 0; i < STREAM_COUNT; ++i) {
checkCudaErrors(
cudaHostAlloc(&h_data_in[i], memsize, cudaHostAllocDefault));
checkCudaErrors(cudaMalloc(&d_data_in[i], memsize));
checkCudaErrors(cudaMemset(d_data_in[i], 0, memsize));
checkCudaErrors(
cudaHostAlloc(&h_data_out[i], memsize, cudaHostAllocDefault));
checkCudaErrors(cudaMalloc(&d_data_out[i], memsize));
checkCudaErrors(cudaStreamCreate(&stream[i]));
checkCudaErrors(cudaEventCreate(&cycleDone[i]));
cudaEventRecord(cycleDone[i], stream[i]);
}
cudaEventCreate(&start);
cudaEventCreate(&stop);
init();
// Kernel warmup
incKernel<<<grid, block>>>(d_data_out[0], d_data_in[0], N, inner_reps);
// Time copies and kernel
cudaEventRecord(start, 0);
checkCudaErrors(cudaMemcpyAsync(d_data_in[0], h_data_in[0], memsize,
cudaMemcpyHostToDevice, 0));
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float memcpy_h2d_time;
cudaEventElapsedTime(&memcpy_h2d_time, start, stop);
cudaEventRecord(start, 0);
checkCudaErrors(cudaMemcpyAsync(h_data_out[0], d_data_out[0], memsize,
cudaMemcpyDeviceToHost, 0));
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float memcpy_d2h_time;
cudaEventElapsedTime(&memcpy_d2h_time, start, stop);
cudaEventRecord(start, 0);
incKernel<<<grid, block, 0, 0>>>(d_data_out[0], d_data_in[0], N, inner_reps);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float kernel_time;
cudaEventElapsedTime(&kernel_time, start, stop);
printf("\n");
printf("Relevant properties of this CUDA device\n");
printf(
"(%s) Can overlap one CPU<>GPU data transfer with GPU kernel execution "
"(device property \"deviceOverlap\")\n",
deviceProp.deviceOverlap ? "X" : " ");
// printf("(%s) Can execute several GPU kernels simultaneously (compute
// capability >= 2.0)\n", deviceProp.major >= 2 ? "X": " ");
printf(
"(%s) Can overlap two CPU<>GPU data transfers with GPU kernel execution\n"
" (Compute Capability >= 2.0 AND (Tesla product OR Quadro "
"4000/5000/6000/K5000)\n",
(deviceProp.major >= 2 && deviceProp.asyncEngineCount > 1) ? "X" : " ");
printf("\n");
printf("Measured timings (throughput):\n");
printf(" Memcpy host to device\t: %f ms (%f GB/s)\n", memcpy_h2d_time,
(memsize * 1e-6) / memcpy_h2d_time);
printf(" Memcpy device to host\t: %f ms (%f GB/s)\n", memcpy_d2h_time,
(memsize * 1e-6) / memcpy_d2h_time);
printf(" Kernel\t\t\t: %f ms (%f GB/s)\n", kernel_time,
(inner_reps * memsize * 2e-6) / kernel_time);
printf("\n");
printf(
"Theoretical limits for speedup gained from overlapped data "
"transfers:\n");
printf("No overlap at all (transfer-kernel-transfer): %f ms \n",
memcpy_h2d_time + memcpy_d2h_time + kernel_time);
printf("Compute can overlap with one transfer: %f ms\n",
max((memcpy_h2d_time + memcpy_d2h_time), kernel_time));
printf("Compute can overlap with both data transfers: %f ms\n",
max(max(memcpy_h2d_time, memcpy_d2h_time), kernel_time));
// Process pipelined work
float serial_time = processWithStreams(1);
float overlap_time = processWithStreams(STREAM_COUNT);
printf("\nAverage measured timings over %d repetitions:\n", nreps);
printf(" Avg. time when execution fully serialized\t: %f ms\n",
serial_time / nreps);
printf(" Avg. time when overlapped using %d streams\t: %f ms\n", STREAM_COUNT,
overlap_time / nreps);
printf(" Avg. speedup gained (serialized - overlapped)\t: %f ms\n",
(serial_time - overlap_time) / nreps);
printf("\nMeasured throughput:\n");
printf(" Fully serialized execution\t\t: %f GB/s\n",
(nreps * (memsize * 2e-6)) / serial_time);
printf(" Overlapped using %d streams\t\t: %f GB/s\n", STREAM_COUNT,
(nreps * (memsize * 2e-6)) / overlap_time);
// Verify the results, we will use the results for final output
bool bResults = test();
// Free resources
free(h_data_source);
free(h_data_sink);
for (int i = 0; i < STREAM_COUNT; ++i) {
cudaFreeHost(h_data_in[i]);
cudaFree(d_data_in[i]);
cudaFreeHost(h_data_out[i]);
cudaFree(d_data_out[i]);
cudaStreamDestroy(stream[i]);
cudaEventDestroy(cycleDone[i]);
}
cudaEventDestroy(start);
cudaEventDestroy(stop);
// Test result
exit(bResults ? EXIT_SUCCESS : EXIT_FAILURE);
}
float processWithStreams(int streams_used) {
int current_stream = 0;
float time;
// Do processing in a loop
//
// Note: All memory commands are processed in the order they are issued,
// independent of the stream they are enqueued in. Hence the pattern by
// which the copy and kernel commands are enqueued in the stream
// has an influence on the achieved overlap.
cudaEventRecord(start, 0);
for (int i = 0; i < nreps; ++i) {
int next_stream = (current_stream + 1) % streams_used;
#ifdef SIMULATE_IO
// Store the result
memcpy(h_data_sink, h_data_out[current_stream], memsize);
// Read new input
memcpy(h_data_in[next_stream], h_data_source, memsize);
#endif
// Ensure that processing and copying of the last cycle has finished
cudaEventSynchronize(cycleDone[next_stream]);
// Process current frame
incKernel<<<grid, block, 0, stream[current_stream]>>>(
d_data_out[current_stream], d_data_in[current_stream], N, inner_reps);
// Upload next frame
checkCudaErrors(
cudaMemcpyAsync(d_data_in[next_stream], h_data_in[next_stream], memsize,
cudaMemcpyHostToDevice, stream[next_stream]));
// Download current frame
checkCudaErrors(cudaMemcpyAsync(
h_data_out[current_stream], d_data_out[current_stream], memsize,
cudaMemcpyDeviceToHost, stream[current_stream]));
checkCudaErrors(
cudaEventRecord(cycleDone[current_stream], stream[current_stream]));
current_stream = next_stream;
}
cudaEventRecord(stop, 0);
cudaDeviceSynchronize();
cudaEventElapsedTime(&time, start, stop);
return time;
}
void init() {
for (int i = 0; i < N; ++i) {
h_data_source[i] = 0;
}
for (int i = 0; i < STREAM_COUNT; ++i) {
memcpy(h_data_in[i], h_data_source, memsize);
}
}
bool test() {
bool passed = true;
for (int j = 0; j < STREAM_COUNT; ++j) {
for (int i = 0; i < N; ++i) {
passed &= (h_data_out[j][i] == 1);
}
}
return passed;
}
|